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Abstract. We prove decidability for contextual equivalence of the Auv-
calculus, that is the simply-typed call-by-value Au-calculus equipped with
booleans and fresh name creation, with contexts taken in Auyet, that is
Auv-calculus extended with higher-order references.

The proof exploits a labelled transition system capturing the interactions
between Auv programs and Aurer contexts. The induced bisimulation
equivalence is characterized as equality of certain trees, inspired by the
work of Lassen. Since these trees are computable and finite, decidability
follows. Bisimulation coincides also with trace equivalence, which in turn
coincides with contextual equivalence .

1 Introduction

Dynamic allocation is central to many programming constructions. Many lan-
guages provide built-in support for dynamically-allocated resources, for exam-
ple, objects in Java or references in ML. The creation of these resources is local,
meaning that resources can be accessed only within their scope. They can also be
passed around via function applications, in which case their scope is not static
but evolves dynamically. When building semantics for such languages, one rep-
resents dynamic allocation as the creation of fresh locations, that can be seen as
atoms or names.

In this paper, we study a paradigmatic language with dynamic allocation,
namely the v-calculus, a simply-typed call-by-value A-calculus with fresh atom
creation and equality test of atoms, as introduced by Pitts and Stark in [24]. For
instance, the v-calculus program new n in Ax.(x = n) allocates a new atom n,
receives an atom x and returns the result of the comparison between x and n.

A central question while studying this language is to determine when two
programs can be considered to be equivalent. The most studied approach to
express behavioral equivalence between programs is contextual equivalence. In-
tuitively, two programs are deemed equivalent if and only if whenever they are
run as part of an enclosing program called the context, it is not possible to dis-
tinguish one from the other. For instance, because the context has no way to
guess the atom n, we expect the program above to be equivalent to Ax.false.

Reasoning on contextual equivalence for the v-calculus has shown to be chal-
lenging, due to the interplay between the higher-order control flow and the scope
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extrusion of atoms. A variety of frameworks has been introduced to do so, based
on logical relations [24], environmental bisimulations [5], and game semantics [1].

However, the question of whether this equivalence is decidable remains open
since the introduction of this language 30 years ago.

In this paper, we address this question by working in an asymmetric setting,
giving contexts more discriminating power than just the mere creation of atoms.
Indeed, contextual equivalence depends on two languages: the language for pro-
grams, and the language for contexts interacting with these programs. We take
contexts in the Auyes-calculus, an extension of the v-calculus with both higher-
order references and continuations. In this setting, atoms are simply references
where only the unit value can be stored. Contextual equivalence is then coarser
than for the symmetric setting when the contexts are also taken in the v-calculus.
For example, one of the standard examples of equivalence of the literature

newn innewn’ in Af.(f n=f n') =, Af.true

is not an equivalence anymore, since a Aduyes context can provide a function that
stores its argument in a reference and use it to discriminate these programs.

The main result we establish in this paper is the decidability of contextual
equivalence for terms of v-calculus with contexts in the Au,es-calculus. More gen-
erally, we establish this result for terms of the Auv-calculus, which corresponds
to terms of the Auyes-calculus that only use references storing the unit value.

To establish this result, we provide a Béhm-like tree representation [6,3]
for the terms of the Auv-calculus. Being in call-by-value, equality of such trees
coincides with Lassen’s eager normal form bisimulations [16]. Moreover, since
programs in the Auv-calculus are terminating, these trees, which we call Lassen
trees, are finite. It is thus straightforward to check their equality. Then, we prove
that Lassen trees equality is fully-abstract, that is it coincides with contextual
equivalence with contexts in the Auyes-calculus.

Proving this full-abstraction result is done through the introduction of an
operational game semantics (OGS) for Aures by defining a Labelled Transition
System (LTS) that distinguishes between internal operations, Proponent moves
(originating in the program) and Opponent moves (originating in the context).
Trace equivalence based on these labelled transitions is shown to coincide with
the contextual equivalence of Apiyes.

The OGS also gives rise to a notion of bipartite bisimulation, describing a
game between Proponent (the program in Aur.s) and Opponent (a context in
Altres ). Proponent reduces the program until it reaches a normal form, that trig-
gers an interaction with the context. Along the game, knowledge is accumulated
in configurations. When it is Opponent’s turn to play, it chooses between an-
swering a previous function call from Proponent, or generating a new function
call, to which Proponent shall answer. Among this knowledge, we accumulate
the atoms that have been disclosed by the two players, so that Opponent cannot
use an atom private to Proponent.
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The OGS LTS generates infinite trees since Opponent can interrogate an
arbitrary number of times each value provided by Proponent. The Lassen trees
used to decide contextual equivalence are generated using a linearized variant of
the OGS LTS, called the Prime Operational Game Semantics (POGS) LTS. The
POGS LTS enforces that Opponent interrogates only once each value provided
by Proponent. For this linearization to be sound, one has to guess the disclosed
status of atoms as soon as they are created. This can be illustrated by considering
the following example of inequivalence

new n in Ax.n #.x Ax.new n in n.

Opponent must be able to interrogate at least twice each of these two programs
to discriminate them. The first program would then return the same atom at each
call, while the second program would return two different atoms. The Lassen tree
of the first program would declare n to be disclosed when giving back the control
to Opponent by providing the A-abstraction, but this could not be matched by
the second program, since n would not exist yet at that point of the interaction.

The main technical challenge at this point is to prove that this forecasting of
the disclosure process is sound and complete. This is done by proving that the
bipartite bisimilarities defined over the OGS LTS and the POGS LTS coincide.
One direction is proven by lifting POGS bisimulations into OGS bisimulations
via an up-to technique. The other direction is done by introducing a new limit
construction of the disclosed set of atoms appearing in the OGS bisimulations,
to transform it into a POGS bisimulation.

Paper outline. After introducing the Apyes-calculus and the Auv-calculus in Sec-
tion 2, we define the LTS for the OGS in Section 3. The induced trace equivalence
coincides with contextual equivalence. We then move to Lassen trees in Section 4,
and show that they yield an equivalence that coincides with bipartite bisimilarity
in the OGS in Section 5. We discuss related work in Section 6, and present con-
cluding remarks in Section 7. For lack of space, several technical developments
are given in [9].

2 The Auyres-calculus and the Auv-calculus

The syntax of the Auyes-calculus is given by the following grammar:

Values V,W 2 x|()| Ax.M| true | false|?
Terms MN =2V |letx=MinN|VW| if V then N; else Ny
|[V=W|newx=Vin M| V:=W|[IV]| ucM| [c]M
Contexts C,C’ = o |[c]C|let x=Cin M| let x =M in C | Ax.C | uc.C
| if Vthen C else M| if Vthen Melse C|new x =V in C
Evaluation Contexts EE’ £ [c]e |E[let x = e in M]
Types 0,7 £Unit |Bool |0 — 7 |ref, | L

with x € Vars (variables), ¢ € Covars (continution variables), £ € Locs (loca-
tions). We write supp(M) for the set of locations appearing in M, and FV(M) for



Deciding Contextual Equivalence of v-Calculus with Effectful Contexts 27

I'x)=0 I'(c) = -0 2(€) = ref
XTrx:o X;I'rc: o 5Tk :refy 2Tk (): Unit
b € {true, false} Shx:0rM: 7T ST+rV:o—>1 XTHW: 0o
%; '+ b:Bool EZIrAxM:0o -1 ErVW: T
XTFN:o Shx:orM:T 2:T'+V:Bool XTEM o XTrMy: o
>;'rlet x=NinM: 71 2;I'+ if V then M; else My : o
XTrvV:T :x:ref; FM: o ;T V:ref, STrW: o
>;T'rnewx=VinM: o 2 T'FV:=W:Unit
STV :ref, ;T V:refs, X;TFW:refs, :lc:=oFM: L
5TV : o Z;T'FV=W:Bool STrpucM: o
5THM:o I'(c) = -0 I'(c) = -0 Shx:0orM:T X THE: -7
5T F[cM: L T F[cle: =0 ¥;T+E[let x=e in M]: -0

Fig. 1. Auyes: typing rules for terms and evaluation contexts

the free variables of M. This language has two binders, the standard A-abstraction,
and the yu binder for continuation variables ¢, d [22].

A store, ranged over by S, T, is a finite mapping from locations to values. S(¢)
stands for the value associated to £ in S. We use notation S - [¢ + V] for the
extension of S with a mapping for £, which is only defined if £ is not defined in
S. S[¢ + V] denotes the store S in which the value associated to ¢ is updated.

The operational semantics =4, of the Auyes-calculus is defined over configu-
rations, which are pairs (M, S) formed by a term and a store. It is given by the
following rules:

(E[(Ax.M)V], 8) Hop (E[M{x := V}], )

(E[let x =V in M],S) op (E[M{x =V}],9)

(E[if true then N; else N3], S) >qp (E[N1],5)

(E[if false then Ny else N3], 8) >qp (E[N2], )

(E[new x =V in M],S) —op (E[M{x :=€}],S- [ —V])
(E[¢ := V], 8) Hop (E[(], S[€ — V])

(E[!(],8) Hop (E[S(0)],8)

(E[¢ =(],8) —op (E[true], 8)

(E[£ =1"],9) —op (E[false], S)

(E[pc.M), S) —op (M{c :=E})

The typing system for terms is given by the rules in Figure 1. We chose
here a typing judgement with a single typing context I', so that continuation
variables are given types of the shape —o. Such negated types are also used to
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type evaluation contexts, as specified by the two last rules in Figure 1. While
we cannot store a continuation variable c in a reference, we can always store
its associated function Ax.[c]x. Typing rules force terms of type L to be of the
shape [d]VM, following Parigot’s original presentation of the Au-calculus [22].

We also consider a typing judgement of the shape X + C : (I'; o) ~w» (A; 1),
for contexts C that take terms M of type ;" + M : o and produce terms of type
2; A+ C[M] : 7. The typing rules defining this judgement are standard and not
recalled here.

In the following, we consider the Auv-calculus, the fragment of the Apyes-
calculus that only handles references of type refy,;;. That is, for any reference
type ref, appearing in the typing derivation, we have o = Unit.

We use a,b,... to range over locations of type refy,;¢, also called atoms, and
introduce the slightly shorter notation new n in M to stand for new n = () in M
in Auv. The syntax for values and terms of the Auv-calculus is thus:

Values V,W £ x | () | Ax.N | true | false | a
Terms N2V |let x=Min N| VW | if V then Ny else Ny | V=W | new n in M
| pc.M

In this setting, we see stores S directly as sets of atoms, all mapping to the
unit value (). For L a set of atoms. we write L for the store that maps atoms in
L to the unit value ().

We consider the following extension of the typing judgement respectively to
stores S and value-mapping substitutions y:

V¢ € dom(S),X; @ + S(¢) : Z(£) dom(S) = dom(X)
FS:X

Vx € dom(I'), Z; A+ y(x) : I'(x) dom(y) = dom(T")
S Ary: T

Definition 1. A normal form (M, S) is a configuration that is irreducible for the
reduction relation +—=q,. We write (M, S)|} N when there exists a store T such that
(M;8) g, (N5 T) and that (N; T) is a normal form.

We call the types Bool,Unit and ref, positive types, while 0 — 7 and —o
are called negative types. By only allowing free variables of negative types, we
can provide a sharp characterization of normal forms.

Theorem 2. Taking a term M such that ;T + M : L with T' a typing context
mapping variables to megative types, if (M,S) is in normal form with respect to
—op, then M is either a named value [c]V or a neutral term E[xV].

Moreover, for any configuration (M, S) such that M is in Auv, ;T +M: L and
kS : X, there exists N such that (M,S)| N.

Definition 3. Taking two terms M,N such that Z;T+M: 0 and £;T +N: o, we
say that they are contextually equivalent, written ;T + M =~ N : o, when for all
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continuation variable ¢ and context C such that X+ C: (I'; o) »» (c : =Unit; 1),
and for all store S such that v S : X/, we have (C[M],S) | [c]() if and only if

(C[v], 8) U [c]O).

In the definition above, we use Auyos contexts to observe Auv terms. Such con-
texts can use higher-order references, and lead to divergent computations. For
this reason, testing for convergence to () is enough when defining ~;.

3 Operational Game Semantics

We now introduce a fully-abstract trace semantics for Au,es programs. We follow
a modular presentation, inspired by the one provided by Laird in [15], where the
semantics is built from a synchronization product of three LTS:

— the Interactive LTS £}, that represents the raw interactions of programs with
their environment.

— the Typing LTS L, that keeps track of the polarization and types of names
exchanged, to preserve well-typedness.

— the Disclosing LTS Lp;, that prevents the environment from using private
resources that have not been disclosed by Proponent.

3.1 Abstract values

To represent the interaction between the program and its environment, we dis-
tinguish between values that we can observe and values that we can interact
with. The two players only exchange observable values, called abstract values in
this paper. They are defined by the following grammar:

AB=f|a|true|false|()

with f a function name, that is a variable used to represent functions exchanged
between the two players. These correspond to the positive part of values, and are
also called ultimate patterns in [17]. Like for terms, supp(a) stands for the set of
atoms occurring in A. We consider the typing judgement A I+ A : o for abstract
values, with o a positive type, that is defined similarly as done for terms.
Then we introduce the abstraction relation ,/ that transforms a value V into
a pair (4,y) formed by an abstract value and a substitution, such that A{y} =V:

f, g function names b € {true, false} a an atom

f /(g lgmf) 0 Z(0.€) b (b, €) a/(a &)

AxM 2, [f — Ax.M])
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3.2 Labelled Transition Systems

The two players, Opponent and Proponent, exchange moves, which are in one
of six forms:

P-question|P-answer|O-question|O-answer|P-init question|O-init question
fao  few  Jfao  lew 7@ 2(&)

We use m to range over moves, and p (resp. o) to range over Proponent (resp.
Opponent) moves. Initial questions are the introductory moves. In contrast with
other moves, they can introduce multiple abstract values in a row, which is useful
to instantiate all the variables of a typing context I'. They use a distinguished
function name 7.

Traces t are sequences of moves. We write m for the corresponding move
with reversed polarity (input switched to output, and vice-versa). We extend
this definition to switch traces, written t.

The three labelled transition systems we define are instances of the following
definition:

Definition 4. A labelled transition system (LTS) L is a triple of the form
(Confs, Actions,—). Confs is a set of configurations C,D. Actions is a set of
actions a, formed by the moves m, together with a silent action op, correspond-
ing to internal computations. Relation —C Confs X Actions x Confs is the labelled

transition relation. We write C — D for (C,a,D) e—.

Taking C a configuration of an LTS £, we write Tr £(C) for the set of traces, as
sequences of moves generated by this LTS over C (so with op actions removed).
We write C ~, D for the trace equivalence relation, which equates configurations
C,D when both have the same set of traces.

3.3 Interactive LTS

We consider interactive configurations I;J € IConfs which are either passive
of the shape (S;y), or active of the shape (M;S;y) with M a term, S a store,
and y a substitution. The Interactive LTS L, is then defined as the triple
(IConfs, Actions,—) with relation —, defined in Figure 2.

The two rules for Proponent moves describe transitions performed by normal
forms and make use,cﬂle abstraction relation. In the two rules for Opponent,
the notation S © [supp(4)] stands for S extended with a binding a + () in the
case when A = a and a is fresh for Proponent, and simply S otherwise: Proponent
extends its store when a new atom is received.

3.4 Typing LTS

We consider type-context configurations S,T € Confsty, which are either active
of the shape (Ao | L;Ap) or passive of the shape (Ao | Ap), with Ag, Ap two
disjoint typing contexts that map variables to negative types.
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M;8) —op (N; T)

op op
M; S57) — (N; T; y)
v A; ! o
PQ ?(A/)/‘( Y') V/—((:w oA
(E[fV];8;7) —— (S;y - y" - [c = E]) ([c]V; S5 9) —1 S5y -¥")
oQ f(a,c) —_— c(h) —_— OA
(8;7) —1 {[cly(f)A; S © [supp(V)]; v) (8;7) —1 {y(c)[Al; S @ [supp(B)]; ¥)

Fig. 2. Definition of £, the Interactive LTS: transitions of interactive configurations

Aof)=0 -1 ArA:o — .
PQ o(f) o Ao(c) (i'(A) ArA:o PA
C Cl
(Ao | L;Ap) ——Ty (Ao | Ap, A —T) (Ao | L;Ap) —>1y (Ao | Ap, A)
Ap(f) =0 > 71 ArA:o Ap(c) = —o AFA:o
0Q p( )f(A ) p(c) h OA
,C Cl
(Ao | Ap) ——T1y (Ap,A,c: =7 | L;Ap) (Ao | Ap) —>1y (Ao, A | L;Ap)

Fig. 3. Definition of Lyy, the typing LTS: transitions of type-context configurations

The Interactive LTS £ is then defined as the triple (Confsty, Actions,—y)
with relation —, defined in Figure 3. Notice that the type of the active term is
1 since the reduction relation -, is well-defined only on terms of this type.

Typing configurations can be used to specify interactive configurations, via
the following validity judgement.

Definition 5. An interactive configuration I is said to be validated by a typing
configuration S, written I>S, when:

— either I = (S;v), S = (Ao | Ap), and there exists a store typing context X
such that Z; Ao Fy : Ap and + S : X,

—orl=MS;y), S = (Ao | L;Ap), and there exists a store typing context X
such that ;Ao v M: L, ;Ao 7y :Ap and + S : .

3.5 Disclosing LTS

In order to enforce a mon-omniscient condition on Opponent transitions, we
introduce a Disclosing LTS Lp; £ (DConfs, Actions,—p;) whose configurations
DConlfs are pairs of sets of locations (L; D) with D a set of atoms contained in L.
The transition relation —p; is defined in Figure 4. The condition L Nsupp(o) € D
corresponds to the fact that Opponent cannot play Proponent atoms that have
not been disclosed yet, i.e. not in D.
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op o
(L;D) —pi (LUL; D)

PQ/PA L Nsupp(o) € D 0Q/OA
(L; D) Bp;i (L; D U supp(p)) (L;D) Zp; (L U supp(o); D U supp(o))

Fig. 4. Definition of Lp;, the Disclosing LTS

Definition 6. An interactive configuration 1 is said to be validated by a dis-
closing configuration D = (L; D), written I>D, if when writing S for the store
component of I, we have dom(S) = L.

3.6 Operational Game Semantics: LTS and Trace Equivalence

The Operational Game Semantics (OGS) LTS Logs = (Confsegs, Actions,iogs)
is defined over configurations G, H € Confsygs of the shape (I, S, D), with I» S and
I>D, or over initial configurations (X;T + M : o°) for Proponent and {c : =Unit +
(S;6) : (;T)) for Opponent. Its transition relation is defined by the following
rules:

157 $353,T D3nE J»T J»E
(LS, D) ogs (I, T, E)

I'=(x;:09) AV Vo L = (U;supp(4;)) U dom(X)

28, e
ST R 1) o (0 = AT ), (W11 2, (L5 1))

I'=(xi:0%) 0(xi) A(Ai5yi) AiIFA oy L = X7 (refynic)

2
(C: ~UnEt b (8:0) 1 (5T)) ~gs ({8572 (¢ 1 ~Unit[A), (Li1)

The initial question generated by (X;T M : o) provides a way for Opponent to
instantiate variables of I with abstract values. In this setting ¥ only contains
atoms since M is a term of Auv. The transition for (c : =Unit + (S;d) : (£; 1))
represents this behavior from the point of view of Opponent. Since contexts
belong to Auyes, these initial configurations come equipped with an initial store
S of type X, but only the locations of type refy,;; are considered to be disclosed,
since the other ones cannot be used by Proponent. The continuation name c is
used for Opponent to provide its final answer, which is of type Unit, following
the notion of observation used to define contextual equivalence.

We use notation =p>ogs to denote a p transition preceded by a possibly empty
sequence of op transitions. Trace equivalence according to Logs and contextual
equivalence coincide.
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(L) —op L) pq V7%) VZ®Y o
Ly Do Ly ERVEL) D Ly [cm B ([eViL) <y (Liy)
0Q f(A,c) c(8) OA
(L7 Y (el (P L U supp(a)) 17> <o) (y(O)[AL;L U supp(a))

Fig. 5. Definition of Lp: transitions of prime interactive configurations

Theorem 7. Consider two terms M,N such that ;T + M,N : 0.
We have (Z;T +M:0) =, (Z;TFN: o) if and only if Z;T - M~ N: 0.

Such a full-abstraction theorem was proven in [13] for RefML, that is the
intuitionistic fragment of Auges-calculus, without control operators. It was also
proven in [10] for HOSC, a variant of the Apyes-calculus, with the call/cc op-
erator, but without atom disclosure. Such a full-abstraction result being rather
standard, we have chosen to present its proof in [9].

In the remainder of the paper, we focus on the Auv-calculus. In particular,
we only consider OGS configurations corresponding to Auv from now on.

4 Lassen Trees for the Auv-calculus

4.1 POGS and POGS bipartite bisimulation

We introduce Lassen trees for terms of the Auv-calculus, as a form of linearized
version of Logs, where Opponent can interrogate a name provided by Proponent
only once, immediately after it has been introduced. So we consider prime inter-
active configurations which are either passive of the shape (L;v), or active of the
shape (M;L) with M a term, L a set of atoms, and y a substitution. Compared to
interactive configurations, the active configurations do not carry an environment
v. Furthermore, we have a set of atoms rather than a full store, since this LTS
is defined only for the Auv-calculus and not for the whole Auyes-calculus.

The Prime Interactive LTS, Lpy, is then defined as (Confsp), Actions,—p)),
with —p defined in Figure 5.

The corresponding Typing LTS is defined using the transitions given in Fig-
ure 6, which are very close in spirit to the transitions in Figure 3.

The transitions for the Disclosing LTS for POGS are presented on Figure 7.
We compare these with the Disclosing LTS for OGS (Figure 4) below.

The Prime Operational Game Semantics LTS is introduced as a synchroniza-
tion product, together with initial transitions, like for OGS. More precisely, the
synchronization between the interactive and typing LTSs requires that active
configurations (M;L) correspond to type-contexts of the shape (Ag | L), with
Y:Ao F M: L and + L : X, for some store typing context X. Accordingly, for
passive configurations (L;7y), we synchronize with (Ao | Ap), and check that
X;Ao+F7y:Ap and F L: X, for some store typing context Z.
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Aof)=0 > ArA:o -4 .
PQ o(f) o Ao(c) ,(;) ArA:o PA
Cc C
(Ao | LY ——p1y (Ao | Ac: —T) (Ao | L) —pT1y (A0 | A)
Ap(f) =0 > 71 AlFA:o Ap(c) = =0 ArFA:o
0Q P()f(A) p(c) - OA
,C Cl
(Ao | Ap) ——pTy (Ap,A,c: T | L) (Ao | Ap) —pT1y (A0, A | L)

Fig. 6. Definition of Lpty: transitions of prime type-context configurations

D' cL’

op o
(L; D) —pg (LW L’;DwD’)

PQ/PA supplfp) cDbh i L Nsupp(o) € D 0Q/OA
(L; D) —pg (L; D) (L; D) —pd (L Usupp(o); D U supp(o))

Fig. 7. Definition of Lpp;: Disclosing LTS for POGS

To synchronize with the Disclosing LTS, whose states are of the form (L; D),
we simply impose that the L component is the same in the state of Lp;, both for
active and passive configurations.

We call Lpogs the LTS obtained by synchronizing Lpi, Lp1, and Lppi. We
write P,Q € Confspogs the configurations of Lpogs. The Lassen tree of a term
is then defined as the unfolding of the Lpogs on the initial active configuration
associated with this term.

Ezample 8. The Lassen trees (omitting the typing configurations) for
[clnew n in A_.n and [c]A_.new n in n are given by:

([c]new n in A_.n;0), {0;0) ([c]A_.new n in n;0), {0; 0)
EV %f) E(f)JL
{ah;[f = a-a]), ({ah0)  {a};[f = 1-a]), ({ah{a})  (0;[f — A_new n in n]), (0, 0)
H(OX=01} L. @) f((.c)]
(['l(1-2)0, {a}h). ({a}, 0)  ([c'l(1-2)0.{a}), {a}, {a})  ([c'](A-new n in n)(), D), (0, 0)
: (LA LN
(ko). (fa), (a)) (akie). (fa), ()

Due to the condition supp(p) € D in lpd, some configurations with terms in
normal form do not have a corresponding Proponent transition. The dashed
arrows correspond to op transitions that lead to such stuck configurations.
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4.2 Bipartite Bisimulations for OGS and POGS

We consider typed relations on passive and active configurations, that is, we
require related configurations to have the same type. This means in particular
that the environment components y of the two configurations have the same
domain. In addition to the typing, we also enforce that both sets of disclosed
atoms are identical.

Definition 9. A bipartite bisimulation is a pair of relations (Racr, Rpas) Te-
spectively on active and passive configurations, such that:

— If (G, Gs2) € Rpas then for all Opponent moves o and Hy, Hy such that Gy N
H; and Gy BN Hs, we have (Hy, Hs) € Racr-

— If (Gy,Go) € Racr then there exists a Proponent move p and (Hy, Ho) € Rpas
such that Gy =p> H; and Go % Hs.

An OGS-bipartite bisimulation is a bipartite bisimulation defined over Logs,
and a POGS-bipartite bisimulation is a bipartite bisimulation defined over Lpogs.
We write ~ogs and =poqs Tespectively for the greatest bipartite bisimulation respec-
tively over Logs and Lpocs.-

The following property follows from the fact that the transition relation is
deterministic (up to the choice of fresh names).

Lemma 10. =~ coincides with trace equivalence on OGS configurations.

For op transitions, the difference between OGS and POGS shows up in the

disclosing LTS: in ipd, a D’ component can be chosen non-deterministically.
This observation is related to the existential quantification in the second clause
of Definition 13. Both in Logs and Lpogs, there is only one possible next visible
(Proponent) move. However, in =44, the game involves choosing an appropriate

set of atoms to be disclosed along ﬂpd transitions. For instance, when construct-
ing a POGS bipartite bisimulation between terms new n in A_.n and A_.newn inn
from Example 8, we have two choices for the second step:

((({a}; [f — A_.a]), ({a}, 0)), ({0; [f — A_new n in n]), (0, 0)))
((({a};[f = A_a]), ({a}. {a})), ((0;[f — A_new n in n]), (0,0)))

The latter does not satisfy the constraint on the disclosed set, since the sets are
not the same in the two configurations. The former leads to a stuck configuration:
([c'1(1-.a)(), {a}), {({a}, B)) cannot perform any Proponent move. Thus the two
programs are not equivalent.

4.3 Deciding =~y

We now study how to decide when two POGS configurations are bisimilar. First,
trees generated by Lpogs are of finite depth.
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Lemma 11. Taking a POGS configuration G, any trace in Trpogs(G) is finite.

This lemma is proven using a biorthogonal logical predicate, following the use of
biorthogonality to prove strong normalization of Au-calculus [23], the computa-
tional metalanguage [18], and cut elimination for linear logic [8]. The proof can
be found in [9].

Due to the non-determinism of atom generation in +—4p, of function name
generation in /, and of name picking in Opponent transitions, the trees gen-
erated by Lpogs are infinitely branching. To tame this infinite branching, we
see the set of moves Moves and the set of configurations Confspogs of Lpogs as
nominal sets [7] over atoms, function and continuation variables. So taking 7 a
finite permutation over these sets, we write 7 X for the action of permutation 7
over elements of nominal set X. The transition relation —pogs of Lpogs preserves

this action of permutation, i.e., it is equivariant: if P E)pogs Q then for all finite

permutation m, we have 7 x P mpogs Q.

One can then consider a variant Lppogs of the POGS LTS which uses the
same set of configurations as Lpogs, but whose transition relation —gpogs chooses
fresh atoms and names deterministically. So —gpogs is then deterministic on op
and Proponent actions, and finitely branching on Opponent actions.

We remark at this point that the notion of bipartite bisimulation ~pegs intro-
duced in Definition 13 is not suited for Lppogs. Indeed, it requires equality of
actions in the bisimulation game, and also that configurations related by bisim-
ulation have the same type. So we relax the definition of ~,.z and work with
ternary relations, adding a finite permutation of names and atoms in order to
match the actions, rather than enforcing syntactic equality.

Definition 12. A relation R C Confspogs X Confspogs X Perm is said to
be valid when, for all (IS, {,D)),(J,T,{(,D")),n) € R, we have T = n xS and
D' =n=«D.

Definition 13. A relaxed bipartite bisimulation is a pair of valid relations
(Ract, Rpas) respectively on active and passive configurations such that:

— If (P1,Py, ) € Rpus then for all Opponent moves 01,02, permutation n’ ex-
tending m, and active POGS configurations Q1, Qg satisfying oo = ' * 01,
P; = Q1 and Py 2, Qq, we have (Q1,Qo, ") € Rac:-

— If (P1,Po,m) € Racr then there exists a permutation n’ extending n, two
Proponent moves p1, p2 s.t. p2 = n’xp1, and two passive POGS configurations

Q1,Q; such that (Qy,Qa, 7") € Rpas, Py = Q; and Py = Qy.
We write ~ .. for the greatest relaxed bipartite bisimulation over Lpogs.
From the fact that —pogs is equivariant, we deduce that ~[ .. and =~ coincide.
Since Lppogs generates finite Lassen trees, we deduce that the bisimulation game
can be decided.

Theorem 14. Taking two POGS configurations P,Q, we can decide if P ~p0es Q.
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4.4 Relating the Transitions in OGS and POGS

To relate the transitions in the OGS and in the POGS, we need to introduce
some relations and operations on OGS configurations.

Definition 15. Let G = (I, S,(L; D)) and H = (I, S, (L; D’)) be two OGS configu-
rations. We write G Cp; H when D € D’.

When G Cp; H, the configurations only differ by their set of disclosed atoms.
Lemma 16. If G Cp; H and Ggogs G’ then Hiogs H" and G’ Cp; H'.
Lemma 17. Let P be an active prime configuration. We have the following:

— P P, then P D 0p P,

o OP op
— if P —pogs P/, then P — 44 Cpi P’

In POGS, the disclosed set increases in op transitions as seen above, but not
in p transitions. In a sense, disclosing in OGS is done only when needed, whereas
in POGS, disclosing must be declared as soon as the atom is created. This is

ensured by the additional condition supp(p) € D in the rule for gpd.

Lemma 18. When P Lpogs P’ with P active, we also have P i)ogs P’.

However, the converse does not always hold, specifically if an atom has been

declared non-disclosed but still appears in the action p. Indeed, the transition

(([cla; T 0), S, (L; 0)) ogs ((T: 0). S, (L; {a})) is valid for OGS, but has no coun-

terpart in POGS, since (L; @) cannot make the transition ﬂpd.
Using the following notion of limit (on OGS configurations), we can intuitively
replace D by its minimal extension, preventing this phenomenon from happening.

Definition 19. Given a configuration G = (I, S, (L; D)), we define its limit as:

lim(G) £ (LS.(L; | ] (LND))) with G S ogs (o= (L D).

teTraces

We have that G Cp; lim(G) and lim is idempotent. We call limit configurations
those configurations that are a limit (or alternatively, that are their own limit).
Being a limit configuration is preserved by moves but not necessarily by op.

Lemma 20. Let P be a limit configuration. If P Logs P’, then Pipogs P’.

For Opponent transitions, the situation is less simple since not all active
OGS configurations are active POGS configurations. To circumvent that issue,
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we reuse the tensor product from [12]. For two OGS configurations where at least

one is passive, we define the tensor product, written ®, as follows:

1LS,D)®(J,T,E)=(I®],S®T,D®E)
S;y)®(sy)y=(@usiy-y) M;8;y) @ (S";y) =M;8US sy -y)

D'nNnLcD

(L;D)®(L"; D’y =(LUL’;DUD’) when DAL c D’

The side conditions for the L and D components ensure that no shared atom is
disclosed on one configuration but not the other.

We can then describe an active OGS configuration as the tensor of two POGS
configurations (where S = L):

(M;8;7), (Ao + L; Ap), (L, D)) = (ML), (Ao + L), (L, D)) ® ((L; ), (Ao + Ap), (L, D))
Finally, we have the following property for opponent transitions:

Lemma 21. When ngogs Q, we have Piogs QeP.
When Plogs G, we have Pi)pogs Q withG=Q®P.

5 Relating Bisimilarities in OGS and POGS

In this section, we show that =, can be used to characterize =g for the
limit configurations introduced above. We rely for that on up-to techniques for
bipartite bisimulation in OGS, which we introduce first.

5.1 Up-to techniques for

The proofs in this section use the theory of compatible functions [27,25]. More
details can be found in [9].

Definition 22 (Bipartite bisimulation up-to). Given a function f, a bipar-
tite bisimulation up to f is a pair (Racs, Rpas) such that:

— If (G1,G3) € Rpys then for all Opponent moves o and Hy, Hy such that
Gy i>ogs H; and G, i’ogs Hy, we have (Hl’ H2) € f(RAct)-

— If (G1,G3) € Racr then there exists a Proponent move p and (Hy,Hs) €
f(Rpas) such that Gy éogs H; and Go éogs Hs.

We then define hide(Racs, Rras) = (CpiRacr20is SpiRpas20i)- Recall that
we still require that hide(Racs, Rpas) only contains pairs of configurations with
the same disclosed set. The soundness of hide can be proved using Lemma 16.

Lemma 23. hide is a sound up-to technique, i.e. if (Ract, Rpas) s a bisimula-
tion up to hide, then (Racs, Rras) S=ogs-
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Given a pair of relations (Ra¢s, Rpas) on active and passive OGS configura-
tions respectively, we define the following functions:

tensor(Ract, Rpas) = ( {(G1 ® Gy, Hy @ Hy) s.t. (G1,H1) € Racr, (Go, Ha) € Rpasts

{(G1 ® Gy, Hy ® Hy) s.t. (G, H), (Go, Ha) € Rpast )
split(Race, Rpas) = ( {(G1, Hy) s.t. (G ® Gy, Hy ® Ha) € Racr )
{(Gy, Hy) s.t. (G, ® G, H; ® Hy) € Rpas} )

Lemma 24. split(=ogs) Cogs-

tensor is not a sound up-to technique. It is nevertheless useful to reason
about POGS bipartite bisimilar configurations; see Theorem 30 below.

5.2 Properties of the Limit (in OGS)

Lemma 25 (Monotonicity). If G is passive and G—t>ogs H, then there exists
G’ such that G ® G’ Cp; H.

Lemma 25 shows that transitions can only increase the substitution and the store
(corresponding to the G’ component), and the set of disclosed atoms (represented
by the use of Cp;). More precisely, Cp; is required if some atoms from G are
disclosed along the trace t, in which case new ones can appear in G’.

Lemma 25 is language specific. It does not hold when the language allows
the content of the store to be modified (like, e.g. in Apyer). Additionally, LT'Ss
enforcing some local restriction on the usage of function or continuation names
usually have extra components that are modified along the transitions; we return
to this point in Section 7.

In a limit configuration (Definition 19), all atoms that may be disclosed at
some point are disclosed. By Lemma 25, these atoms can be disclosed using a
single trace.

Lemma 26. Given a passive configuration G, there exists a trace t and a con-
figuration H such that G—t>og5 lim(G) ® H.

The limit is also useful to relate transitions in OGS and in POGS as follows.

Lemma 27. Take a POGS configuration P.
If P is active and Piogs Q, then lim(P) ipogs lim(Q).
If P is passive and P logs QQ®P, then lim(P) gpogs lim(Q).

All in all, we obtain that =~ is a congruence for lim. For R a relation over
configurations, we write lim(R) for the set {(lim(G), lim(H)) | (G, H) € R}.

Lemma 28. =y is closed by computing the limit: Hm(=qes)C ~ogs.

The case for passive configurations follows immediately from Lemmas 26 and 24.
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The property of the limit might make us think that the disclosure process
of an atom could be decided statically, by annotating new syntactically. The
following example shows that it is not the case:

Abnew n,m in A_.if b then n else m

Either n or m will be disclosed depending on the boolean b given by Opponent,
but never both. So this term is indeed contextually equivalent to Ab.new n in A_.n.

5.3 Correspondence Between =~ and p;

Theorem 29 (From =u to ~,q). Consider two POGS configurations P and
Q. If P =ogs Q are both limit configurations, then P ~pogs Q.

To reason about bisimilar POGS configurations, we use the closure of tensor,
written tensor. Intuitively, tensor(Ra.;) contains the pairs (G; ® Gs, H; ® Hs)
with (G, Hy) € Racr, (Go,Hs) € tensor(Rpas), and tensor(Rp,s) contains the
pairs (G ® Go, Hy ® Hy) with (G1,H;) € Rpys, (Go, Hs) € tensor(Rpas).

Theorem 30 (From =, to ~u). Suppose R is a POGS bipartite bisimula-
tion. Then tensor(R) is a OGS bipartite bisimulation up-to hiding.

By Lemma 23, Theorem 30 means that if P ~po. Q, then P =g, Q.

The correspondence between =ggs and ~pqg is restricted to prime configura-
tions as ~pegs can only relate those. Having the additional conditions of config-
urations being limits is enough for our decidability result.

6 Related Work

The v-calculus was introduced in [24], together with logical relations to rea-
son over contextual equivalence for this language. These logical relations use a
Kripke-style definition, worlds being defined as spans of atoms to keep track of
the disclosed atoms, similar to the permutation we use in our relaxed bipartite
bisimulations. They capture contextual equivalence for programs of first order
type, but are an incomplete technique for higher-order programs. This entails
a decidability result for the first-order fragment of the v-calculus, since logical
relations only quantify over finite objects at first-order types.

Categorical models of the v-calculus were provided in [29,30], using a repre-
sentation of name creation via a strong monad. Two examples of such models
were given: (i) the functor category Set! with I the category of finite sets and in-
jection; (ii) the category BG of continuous G-sets, with G the topological group
of automorphisms over N. None of these models are fully-abstract, since they
distinguish new n in Ax.x = n from Ax.false.

These models were later refined using nominal sets [7], so that types are
interpreted via Fraenkel-Mostowski sets [28] or domains [14]. Both of these works
are continuation models; they might be used to provide a semantics for the Auv-
calculus studied in this paper, a direction we wish to explore in future work. Such
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use of continuations was justified in [28] to provide a model for an extension of
the v-calculus with recursion. More recently, proof-relevant logical relations were
introduced to deal with recursion in the presence of name generation [4].

In [26], a model of the v-calculus is given in quasi-Borel spaces, showing
a correspondence between random sampling and fresh name generation. This
model is shown to be fully-abstract for terms of first-order types.

In [5], environmental bisimulations for the v-calculus are defined and shown
to be fully abstract. Nevertheless, it does not seem possible to extract a decision
procedure from that result, since environmental bisimulations are played over a
higher-order LTS, that is, an LTS whose actions contain A-terms. So this LTS is
infinitely branching at higher-order types.

Eager normal-form bisimulations have been introduced by Lassen for the call-
by-value A-calculus [16] and Ap-calculus. In [31], a notion of bisimulation similar
t0 qgs is introduced and shown to be fully abstract for an untyped version of
Aptres. Compared to the standard notion of eager normal form bisimulations, the
configurations in the bisimulations in [31] contain an environment similar to the
environment component y of the OGS LTS in Section 3.

In [1], a fully-abstract game model is provided for the v-calculus. However,
this model requires an extensional collapse, that is not directly computable at
higher-order type. So that model could only be used to prove the decidability of
contextual equivalence for terms of first-order types. Enforcing a well-bracketed
and visible behavior for Opponent in the OGS model, we believe that our trace
model would coincide with the intentional game model of [1]. Nominal game
semantics was developed for languages with nominal references and exceptions
in [32]. In that setting, algorithmic presentations of game semantics make it
possible to provide a classification of decidability of call-by-value languages with
(bounded) integer references [19], and ground references [21]. In this setting,
the undecidability of contextual equivalence originates from the use of integer
references by Proponent. A detailed survey on the literature on contextual equiv-
alence for the v-calculus is available in [33].

7 Conclusion

To decide the contextual equivalence between two Auv typed terms M and N
with contexts in the Aues-calculus, we first construct the corresponding initial
configurations, and we can decide by Thm. 14 if they are POGS-bisimilar. This
decidability result comes from the fact that the POGS LTS generates finite trees.

Then, we prove in Thm. 29 and Thm. 30 that two initial active configura-
tions are POGS-bisimilar iff they are OGS-bisimilar. This is possible because
initial configurations are prime (they are active and y is empty) and are also
limit configurations (their disclosed sets contain all the atoms of the store). In
Thm. 7 and Lemma 10, we prove that M and N are contextually equivalent iff the
corresponding initial configurations are OGS-bisimilar, which yields decidability.

We now examine the obstacles that remain to prove the decidability of con-
textual equivalence with contexts in the v-calculus.
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First of all, in that setting, trace equivalence would not be fully-abstract
anymore (Thm. 7). Indeed, without integer references, one cannot observe the
sequentiality of calls and returns. So an extensional collapse would be necessary.

Another obstacle is that in the absence of higher-order references, Oppo-
nent must satisfy a condition of O-visibility [2], that corresponds to a local
well-scoping discipline, for the function names it is allowed to call. Working in
an intuitionistic type system, corresponding to the standard A-calculus without
control operators, the call-and-return discipline of the interaction between Pro-
ponent and Opponent has to be well-bracketed. These two conditions, namely
O-visibility and well-bracketing, can be enforced operationally [13] in the LTS,
by keeping track of part of the history of the interaction. However the reduc-
tion of g5 10 ~p0e is not possible anymore in that setting. Indeed, the limit
over-approximates the set of atoms that can be tested. This can be seen when
comparing the programs

new n in let _= y(dz.z = a)inn and new n in let_= y(1z.false)inn

Assuming n is immediately disclosed makes it possible to distinguish the two
programs. Because the local conditions of well-bracketing or visibility would pre-
vent Opponent from playing some actions, Opponent could perform irreversible
changes that would invalidate Lemma 25. This would make ~,.gs incomplete.

To handle this difficulty, we could try and use Kripke eager normal-form
bisimulation [11], using a structure for worlds richer than just a set of atoms.

Finally, in absence of full ground references, that can store locations, atoms
played by Opponent would also follow a local well-scoping discipline, but the
discriminatory power over Player atoms would also be restricted [20]. In such a
setting, the same difficulties as with well-bracketing and O-visibility would arise,
and a more complex extensional collapse would be needed.
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