
Coverability in 2-VASS with One Unary Counter
is in NP ⋆

Filip Mazowiecki1 , Henry Sinclair-Banks2(�) , and Karol Węgrzycki3

1 University of Warsaw, Warsaw, Poland
f.mazowiecki@mimuw.edu.pl

2 Centre for Discrete Mathematics and its Applications (DIMAP) & Department
of Computer Science, University of Warwick, Coventry, UK

h.sinclair-banks@warwick.ac.uk
3 Saarland University and Max Planck Institute for Informatics, Saarbrücken,

Germany
wegrzycki@cs.uni-saarland.de

Abstract. Coverability in Petri nets finds applications in verification
of safety properties of reactive systems. We study coverability in the
equivalent model: Vector Addition Systems with States (VASS).
A k-VASS can be seen as k counters and a finite automaton whose transi-
tions are labelled with k integers. Counter values are updated by adding
the respective transition labels. A configuration in this system consists
of a state and k counter values. Importantly, the counters are never al-
lowed to take negative values. The coverability problem asks whether one
can traverse the k-VASS from the initial configuration to a configuration
with at least the counter values of the target.
In a well-established line of work on k-VASS, coverability in 2-VASS is
already PSPACE-hard when the integer updates are encoded in binary.
This lower bound limits the practicality of applications, so it is natural
to focus on restrictions. In this paper we initiate the study of 2-VASS
with one unary counter. Here, one counter receives binary encoded up-
dates and the other receives unary encoded updates. Our main result
is that coverability in 2-VASS with one unary counter is in NP. This
improves upon the inherited state-of-the-art PSPACE upper bound. Our
main technical contribution is that one only needs to consider runs in a
certain compressed linear form.

Keywords: Vector Addition Systems · Coverability Problem · Linear
Path Schemes

1 Introduction

Vector Addition Systems with States (VASS) are a well-studied class of infinite-
state systems (see the survey [37]). These are finite automata with counters that

⋆ Filip Mazowiecki is supported by the ERC grant INFSYS, agreement no. 950398.
Henry Sinclair-Banks is supported by EPSRC Standard Research Studentship
(DTP), grant EP/T5179X/1. Karol Węgrzycki is supported by the ERC grant TI-
PEA agreement no. 850979.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_10

196–217, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_10&domain=pdf
http://orcid.org/0000-0002-4535-6508
http://orcid.org/0000-0003-1653-4069
http://orcid.org/0000-0001-9746-5733
https://doi.org/10.1007/978-3-031-30829-1_10
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_10&domain=pdf

Coverability in 2-VASS with One Unary Counter is in NP 197

can be updated, but are never allowed to take negative values. Thus, a config-
uration consists of a state and a vector over the natural numbers. The central
decision problems are the reachability and coverability problems. The reacha-
bility problem asks whether from a given start configuration one can reach the
target configuration. The coverability problem is the same except that the tar-
get configuration need not be reached exactly, counter values are allowed to
be greater. Both problems are not only mathematically elegant, but they have
interesting theoretical applications [7] and implementations [6]. Coverability is
provably a simpler problem that is better suited for applications; reachability
tools are mostly applied to coverability benchmarks [14]. Yet coverability has
applications in the verification of safety conditions in reactive systems [17,21].
Such systems may require additional data structures to be accurately repre-
sented, like counters for example. Safety conditions often boil down to whether
a particular state can be reached as opposed to a particular configuration [8].

Coverability and reachability have been studied for decades. The equivalent
model of Petri nets was introduced already in the sixties [34]. For general VASS,
Lipton proved in 1976 an EXPSPACE lower bound that applies to both coverabil-
ity and reachability [31]. Two years later, Rackoff proved a matching EXPSPACE
upper bound for coverability [35]. Later in 1981, Mayr proved that reachability
is decidable [32] without providing an upper bound for the algorithm. The con-
struction was simplified by Kosaraju [24] and Lambert [25], and a recent series
of papers by Leroux and Schmitz ended in 2019 by proving an Ackermann upper
bound [27]. A matching Ackermann lower bound was published in 2021 by two
independent groups [12,26].

Plenty of attention has been given to VASS with fixed dimension, that is
when the number of counters k is invariable, denoted k-VASS. For fixed dimen-
sion VASS it matters much whether the counter updates are encoded in unary or
binary. Already, Rackoff gives NL and PSPACE upper bounds for coverability in
unary encoded and binary encoded k-VASS, respectively [35]. The coverability
problem where there are no counters is just directed graph reachability that is
NL-complete [3]. Thus, coverability in unary encoded k-VASS is NL-complete,
for every fixed k. Coverability in binary encoded 1-VASS is in NC2 [2], it can
therefore be decided in deterministic polynomial time. If there are two or more
binary counters, coverability is PSPACE-hard [5] via a reduction from reachabil-
ity in bounded one-counter automata that is PSPACE-complete [18]. Therefore,
coverability in binary encoded k-VASS is PSPACE-complete for every k ≥ 2. See
Figure 1 for the complexities of coverability in VASS with a fixed number of
unary and binary encoded counters. This is all in striking contrast to the reach-
ability problem in fixed dimension VASS, since reachability in 8-VASS is already
known to be nonelementary [13].

There is a prominent line of work on 2-VASS with various encodings. The
seminal paper in 1979 of Hopcroft and Pansiot [23] shows reachability in 2-VASS
is decidable, proving that the reachability set is effectively semi-linear. Moreover,
in the same paper the authors show, by an example, that the 3-VASS reachabil-
ity set need not be semi-linear. Later, this was improved as it was shown that for

198 F. Mazowiecki et al.

Number of unary counters
P = NP 0 1 ≥ 2

N
um

be
r

of
bi

na
ry

co
un

te
rs

0 NL-complete [3] NL-complete [38] NL-complete [35]

1 in NC2 ⊆P [2] in NP [this paper] Open

≥ 2 PSPACE-complete [5] PSPACE-complete PSPACE-complete [35]

Fig. 1. The complexities of coverability in VASS with a fixed number of unary and
binary encoded counters. All NL lower bounds arise from the zero counters case, here
coverability is directed graph reachability and that is well known to be NL-complete [3].
In the case of one binary counter, regardless of the number of unary counters, we are
aware only of this trivial NL lower bound. Furthermore, with one binary counter and
at least two unary counters, we are not aware of a non-trivial upper bound (denoted
“Open” in the table). When there are at least two binary counters and any number of
unary counters, coverability is PSPACE-complete. The lower bound holds for 2-VASS
with two binary counters [5] and the upper bound is given by Rackoff for any fixed
dimension [35]. Recall that coverability in general VASS, where the number of counters
is not fixed, is EXPSPACE-complete [35].

2-VASS the reachability relation is effectively semi-linear [28]. This proof shows
that every 2-VASS can be characterised by a flat model, i.e. where the underly-
ing finite automaton does not contain nested cycles. A more careful analysis of
that paper, resulted in a PSPACE upper bound result for reachability in binary
encoded 2-VASS [5]. Since coverability in binary encoded 2-VASS is PSPACE-
hard [5], the authors were able to conclude that both coverability and reachability
are PSPACE-complete. Just as coverability demonstrated the difference encoding
makes to complexity, so does reachability; later it was proved that reachability
in unary encoded 2-VASS is NL-complete [16].

Our Results and Techniques. We consider the coverability problem for 2-VASS
with one unary counter. Here, updates of one counter are encoded in binary
and the updates of the other are encoded in unary, see Figure 2 for an example.
Notice that the unary counter need not be limited to polynomially bounded
values. Otherwise, the value of the unary counter could be encoded into the
states for an instance of coverability in binary encoded 1-VASS. Furthermore,
we do not impose any restrictions on the initial and the target configurations,
i.e. both coordinates of these vectors are encoded in binary. Our main result is
that coverability in 2-VASS with one unary counter is in NP.

Coverability in binary encoded k-VASS is PSPACE-complete, for k ≥ 2. The
lower bound limits the practicality of applications. Therefore, it is sensible to
consider restricted variations and quantify their complexity. We remark that
coverability in fixed dimension VASS had widely-open complexity if there was
exactly one binary counter and at least one unary counter. See Figure 1 for a
summary of the known results.

Coverability in 2-VASS with One Unary Counter is in NP 199

qλ(100,−1) ρ (−99, 1)

Fig. 2. Example 2-VASS with one unary counter V . Consider the instance of cover-
ability consisting of V , the initial configuration q(0, 1), and the target configuration
q(0, 10). Consider the path π = λρ λρ · · ·λρ ρ · · · ρ which induces a run in V from the
initial configuration q(0, 1). There are 990 repetitions of the pair of cycles λρ to witness
the configuration q(990, 1). The cycles alternate so both counters remain non-negative
throughout the run. This is followed by 10 iterations of the cycle ρ so the configuration
q(0, 11) is witnessed, achieving coverability of the target configuration q(0, 10).

The natural starting point is the characterisation of runs via linear path
schemes [4]. Intuitively, the authors prove that if coverability or reachability
holds then there is a witnessing path of a specific shape. Namely, all paths can
be characterised by a bounded language defined by a regular expression of the
form τ0γ

∗
1τ1 . . . τk−1γ

∗
kτk. Here τ0, . . . , τk are paths that connect disjoint cycles

γ1, . . . , γk. Since the language is bounded, checking if there is a path for a given
expression essentially amounts to an instance of integer linear programming. In
particular, the authors argue that both k and |τ0| + |γ1| + |τ1| + . . . + |τk−1| +
|γk| + |τk| are pseudo-polynomially bounded [4]. However, a polynomial bound
would immediately yield an NP upper bound as such a regular expression can be
guessed. Given that coverability in 2-VASS with two binary counters is PSPACE-
hard [5], we cannot simply directly apply the known results when dealing with
2-VASS with one binary and one unary counter. In Section 3, we provide a
detailed discussion and a difficult yet motivating example in Figure 3.

To overcome this problem, we show that coverability can be witnessed by
paths in compressed linear form. We relax the condition of the bounded lan-
guage, by allowing to nest linear forms, provided that the exponents are fixed.
Intuitively, an expression of the form (τγ∗τ ′)∗ is still forbidden, but we allow
for (τγeτ ′)∗, where e is fixed but can be exponentially large (encoded using
polynomially many bits). Such a form easily provides an NP upper bound.

We rely on two crucial observations to prove that we can focus on paths
in compressed linear form. First, notice that the ∗ operation in a linear path
scheme corresponds to iterating some cycle in the VASS. Since γ1, . . . , γk need
to be short, one naturally focuses on short cycles. The issue is that there are
exponentially many cycles of polynomial size. In Section 4 we prove that for
coverability there are only polynomially many ‘optimal’ cycles. In Section 5 we
deal with the problem when some cycle γ occurs many times in a linear path
scheme witnessing coverability, resulting in a polynomial bound on k, the width
of the linear path scheme. Then we prove that, either we can merge some γi and
γj thus reducing the width, or that there is a cycle that has positive effect on one
counter and non-negative effect on the other counter. Intuitively, in the latter

200 F. Mazowiecki et al.

case, we can reduce the problem to coverability in 1-VASS by pumping such a
cycle that forces one counter to take an arbitrarily large value. Moreover, such
a cycle is witnessed by a linear path scheme. Since we need to pump this cycle,
we require compressed linear forms to describe the repetitions of the cycle.

We highlight that both our crucial observations rely on that we work with
coverability, not reachability. We further highlight that we address these crucial
observations through our technical contributions that often depend on the fact
there is one unary counter.

Further Related Work. Asymmetric treatment of the counters has been already
considered for VASS. Recall that Minsky machines can be seen as VASS with the
additional ability of zero-testing. For this model coverability is undecidable [33],
even with two counters. This raised natural questions of what happens where
only one of the counters is able to be reset or tested for zero. This, and more
generally, reachability in VASS with hierarchical zero-tests are known to be de-
cidable [36]. There is a further investigation into VASS with one zero-test [20].
Recently, work has appeared containing detailed analysis about 2-VASS where
counters have different powers [19,29]. Finally, one of the most famous open
problems in the community is whether reachability is decidable for 1-VASS
with a pushdown stack. For these systems, coverability is known to be decid-
able [30]. The best known lower bound is that coverability, thus reachability also,
is PSPACE-hard [15]. Our model, 2-VASS with one unary counter, can be seen
as 1-VASS with a singleton alphabet pushdown stack.

The complexity of reachability in binary encoded 3-VASS remains an intrigu-
ing open problem. It is PSPACE-hard, like in dimension two, and the only known
upper bound is primitive recursive, but not even elementary [27]. Recent works
on reachability in fixed dimension VASS [11,9,13] provide new examples and a
better understanding of the VASS model. Interestingly, many techniques applied
to fixed dimension VASS are very closely related to recent progress on the nonele-
mentary and Ackermann lower bounds for general VASS [10,12,26]. We finally
and additionally motivate coverability in VASS with one binary counter and (at
least) one unary counter as an avenue for finding new techniques to approach
VASS problems with.

2 Preliminaries

Given an integer z ∈ Z we denote bitsize(z) = log2(|z| + 1) + 1. For a vector
v := (v1, v2) we use (v)1 := v1 and (v)2 := v2 to be the projections to the
first and second coordinates, respectively. We use |v|max := max{|v1|, |v2|} + 1
to denote the size of vector v. We write v ≤ w if the inequalities hold on each
coordinate. We write v < w if at least one of the inequalities is strict.

A 2-VASS with one unary counter V = (Q,T) consists of a finite set of
control states Q and a set of transitions T ⊆ Q × Z × {−1, 0, 1} × Q. We
shall refer to the first counter as the binary counter and the second counter as
the unary counter. The size of V is |V | = |Q| +

∑
(p,b,u,q)∈T bitsize(b). With

Coverability in 2-VASS with One Unary Counter is in NP 201

|V |max := |Q| + |T | · |T |max we denote the total ‘pseudo-polynomial size’ of the
automaton, where |T |max denotes the maximum absolute value that occurs in
the transitions. Note that in a standard 2-VASS both counters are in binary, i.e.
the domain of updates for the second counter is also Z.

A path π in V is a, possibly empty, sequence of transitions π = (ti)
m
i=1 such

that ti = (qi−1, bi, ui, qi) ∈ T . A path is simple if q0, . . . , qm are distinct. A path
is a cycle if q0 = qm and m > 0 (thus empty cycles are forbidden). We call it
a q0-cycle to emphasise the first and last state of the cycle. A cycle is simple
if q1, . . . , qm are distinct. A cycle is short if m ≤ |Q|. The length of a path is
the number of transitions in the path, denoted len(π) = m. We write π[i..j] to
denote the path that is the subsequence of transitions (ti, . . . , tj) in π.

A configuration (p,u) ∈ Q × N2, denoted p(u), is a state paired with the
current binary and unary counter values. A run is a sequence of configurations
(qi(vi))

m
i=0 such that (qi−1, (vi)1 − (vi−1)1, (vi)2 − (vi−1)2, qi) ∈ T . A run can

equivalently be defined by the sequence of configurations induced by following a
path π starting from an initial configuration q0(v0). We denote this run q0(v0)

π−→
qm(vm). We also write q0(v0)

∗−→ qm(vm) to indicate the existence of a run
between two configurations.

In this paper we study the coverability problem for VASS.
VASS Coverability
INPUT: A VASS V = (Q,T) and two configurations p(u) and q(v).
QUESTION: Does p(u)

∗−→ q(v′) hold, for some v′ ≥ v?
Do note that the initial configuration p(u) and the target configuration q(v)

have both the binary and unary components encoded as binary integers. The
reachability problem for VASS—which we will not study in this paper—requires
v′ = v.

Consider a path π = (ti)
m
i=1, where ti = (qi−1, bi, ui, qi). The effect of π is

the sum of the counter updates, i.e. the vector eff(π) :=
∑m

i=1(bi, ui). We often
focus on the two projections: the binary effect effb(π) :=

∑m
i=1 bi, and the unary

effect effu(π) :=
∑m

i=1 ui.
We say that a cycle γ is monotone if eff(γ) ≥ 0 or eff(γ) ≤ 0. Otherwise, we

say that γ is non-monotone. Note the two variants of a non-monotone cycle: a
positive-negative cycle effb(γ) > 0 and effu(γ) < 0, and a negative-positive cycle
effb(γ) < 0 and effu(γ) > 0.

Let γ be a cycle. Given e ∈ N we write γe for the path obtained by e
repetitions of γ. We refer to e as the exponent. A linear path scheme is a regular
expression of the form τ0γ

∗
1τ1 · · · τk−1γ

∗
kτk, where the paths τ0, τ1, . . . , τk connect

disjoint cycles γ1, . . . , γk. Note that a collection of cycles is disjoint if no two
cycles have a common state. Given ℓ = (τ0, γ1, τ1, . . . , τk−1, γk, τk), we say the a
path π is in linear form ℓ if π = πℓ = τ0γ

e1
1 τ1 · · · τk−1γ

ek
k τk for some exponents

e1, . . . , ek. Note that in this definition every path has a linear form, e.g. τ0 = π
is valid. To leverage the definition, we will ask whether paths are in a linear
form of certain size. The size of a linear form ℓ is

∑k
i=0 len(τi) +

∑k
i=1 len(γi).

The size of πℓ is
∑k

i=0 len(τi) +
∑k

i=1 len(γi) +
∑k

i=1 bitsize(ei), i.e. includes the
exponents. We refer to k as the width of the linear form.

202 F. Mazowiecki et al.

3 Coverability in 2-VASS with One Unary Counter

In this section we briefly discuss why the state-of-the-art techniques are not
enough to prove that coverability in 2-VASS with one unary counter is in NP.
Blondin et al. [4] show that for a given 2-VASS V there exists a set of linear
path schemes S such that if p(u)

∗−→ q(v) in V , then there exists a path π

in a linear path scheme ρ ∈ S such that p(u)
π−→ q(v). For every linear path

scheme ρ ∈ S the width of ρ, and therefore the width of every path, is bounded
above by poly(|Q|, |T |max) [4, Theorem 3.1]. Such a path π is not necessarily
a polynomial size witness, as the width depends on |T |max polynomially. We
provide an example of a 2-VASS with one unary counter where the width of
every linear form ℓ for a path is exponential in the input size. This demonstrates
that the combinatorial structure of linear path schemes is not self-sufficient to
show that there always exists a polynomial size witness of coverability.

q

pa

b

c

d

λ ρ

(N4,−1)

(0, 0)

(−N6 +N, 0)

(−N, 0)
(N4, 0)

(0, 0)

(−N6 + 1, 1)

(−N2, 1)

α

(N4,−1)

β

(−N2, 1)

γ

(N4,−1)

δ

Fig. 3. Example 2-VASS with one unary counter V , where N = 2n, where n is an input
parameter (thus making N exponentially large). Consider the coverability instance
with the initial configuration q(0, 1), and the target configuration q(N, 1). Let λ =

tqaα
N2

tabβ
N2

tbq and ρ = tqptpcγ
N2

tcdδ
N2

tdq, where txy is the transition from state x
to state y. Observe that eff(λ) = (N,−1) and eff(ρ) = (−N+1, 1), thus eff(λρ) = (1, 0).

It is easy to then see that q(0, 1)
(λρ)N−−−−→ q(N, 1). Intuitively the cycles λ and ρ alternate

so both counters remain non-negative throughout the run. In the appendix, we prove
that there does not exist a linear form of polynomial size for a path that induces a
coverability run.

Coverability in 2-VASS with One Unary Counter is in NP 203

Paths in Compressed Linear Form. Nevertheless, there is a natural way to suc-
cinctly describe the path presented in Figure 3. Let σ = λρ, and note that

σN =
(
tqa αN2

tab β
N2

tbqtqptpc γ
N2

tcd δN
2

tdq

)N

.

All paths and cycles are ‘small’, and the bitsize of N and N2 are polynomial in
n, so σ itself is a path in linear form. We introduce the following generalisation
of linear form paths that encapsulates the idea behind paths of this kind of
arrangement.

Definition 1 (Compressed linear form path). A path π is in compressed
linear form if π = ρ0σ

f1
1 ρ1 · · · ρk−1σ

fk
k ρk for some connected paths in linear form

ρ0, ρ1, . . . , ρk; cycles in linear form σ1, . . . , σk; and exponents f1, . . . , fk. The size
of a compressed linear form path is the sum of the sizes of all ρi and σi (including
the bitsize of their exponents) plus the bitsize of the exponents fi.

σf1
1

· · ·

σ
fk
k

ρ0 ρ1 ρk−1 ρk

Fig. 4. A compressed linear form path.

The following theorem is our main contribution.

Theorem 1. Let V be a 2-VASS with one unary counter and fix two configu-
rations p(u) and q(v). If p(u)

∗−→ q(v), then there exists a path in compressed
linear form π such that p(u)

π−→ q(v′) and v′ ≥ v. The size of the compressed
linear form path is polynomial in |V |+ bitsize(u) + bitsize(v).

Corollary 1. Coverability in 2-VASS with one unary counter is in NP.

Proof. By Theorem 1 it suffices to consider paths in compressed linear form
of polynomial size, that can be guessed in NP. It suffices to observe that a
coverability instance on a given compressed linear form amounts to an instance
of integer linear programming. Intuitively, this is because the nested cycles are
fixed. Thus to check whether a run drops below zero it suffices to check before
applying a cycle and after applying it for the last time (see e.g. [5, Section V,
Lemma 14]).

We highlight that it is rather unexpected that only one extra ‘level’ of linear
form paths is enough to obtain polynomial size witnesses of coverability in a 2-
VASS with one unary counter, since the problem is PSPACE-complete for general

204 F. Mazowiecki et al.

2-VASS. Roughly speaking, the example given in Figure 3 observes the most
complex behaviour possible and this instance of coverability is witnessed by a
compressed linear form path. More specifically, compressed linear form paths
containing only one linear form cycle suffice as witnesses for coverability in 2-
VASS with one unary counter. Therefore, all witnesses can be represented by a
compressed linear form path ρσNτ where ρ and τ are linear form paths to and
from the single linear form cycle σ which is iterated N times.

The rest of the paper is dedicated to proving Theorem 1. We heavily exploit
both distinguishing features of the problem: the fact that one counter receives
unary encoded updates (as opposed to both counters in binary) and the fact
that we aim to assert coverability (as opposed to reachability). Our approach
is as presented in the introduction. In 4 we observe that we can polynomially
bound the total number of distinct short cycles. We formalise this and show that
there are only polynomially many ‘irreplaceable’ short cycles. In 5 we provide a
‘reshuffling procedure’. If some short cycle γ repeats exponentially many times
we aim to modify the path π by moving the cycles γ close to each other. Then
either every short cycle γ will appear only in polynomially many ‘bundles’ γe,
or we find a cycle σ such that eff(σ) > 0. In the latter case, by pumping σ we
are essentially left with one counter. Finally, in Section 6 we conclude the proof
of Theorem 1.

4 Replacing Short Cycles

In this section, we show that there are only polynomially many short cycles that
need occur in a run witnessing coverability. Fix a path π = (qi−1, bi, ui, qi)

k
i=1.

Let 0 ≤ ib, iu ≤ k be the first indices such that gb =
∑ib

i=1 bi and gu =
∑iu

i=1 ui

are at their lowest, respectively. Note that gb, gu ≤ 0 since by convention if we
consider ib, iu = 0 then the sum evaluates to 0. We call and denote these two
numbers the binary guard grdb(π) = gb and the unary guard grdu(π) = gu. The
following claim immediately follows from these definitions.

Claim 1. Both grdb(π[ib + 1..k]) = 0 and grdu(π[iu + 1..k]) = 0.

Much like the nadir of a cycle in a one-counter net, defined in [1], we define the
binary-nadir state as qib , i.e. the first state in which the binary counter first at-
tains the lowest value when executing π. We call the binary-nadir decomposition
π = πb

1π
b
2, for πb

1 = π[1..ib] and πb
2 = π[ib+1..k], as intimated in Claim 1. Notice

that this decomposition necessitates the binary guard of the path π is equal to
the binary effect of the prefix πb

1, grdb(π) = effb(π
b
1) = grdb(π

b
1). Furthermore,

the suffix of the binary-nadir decomposition has zero binary guard grdb(π
b
2) = 0.

We primarily utilise binary-nadir states and binary-nadir decompositions, hence
the omission of matching unary-nadir states and unary-nadir-decompositions.

Definition 2 (Replaceable cycles). Let γ be a q-cycle and let p be the binary-
nadir state of γ. We say that γ is replaceable if there exists a q-cycle γ′ with the
same binary-nadir state p, such that

Coverability in 2-VASS with One Unary Counter is in NP 205

(a) effb(γ
′) ≥ effb(γ) and effu(γ

′) ≥ effu(γ),
(b) grdb(γ

′) ≥ grdb(γ) and grdu(γ
′) ≥ grdu(γ), and

(c) len(γ′) ≤ len(γ).

Additionally, at least one inequality is strict and we write γ ≺ γ′.

We say a cycle is irreplaceable if it is not replaceable. We also say that an
irreplaceable q-cycle γ with the binary-nadir state p is characterised by the five
values: effb(γ), effu(γ), grdb(γ), grdu(γ), and len(γ).

Lemma 1 (Replacing cycles). Let π = π1γπ2, where γ is a q-cycle. Suppose
p(u)

π−→ q(v) then the following hold.

– If γ is replaceable, then there exists an irreplaceable q-cycle γ ≺ γ′ such that

p(u)
π1γ

′π2−−−−→ q(v′).
– If γ is irreplaceable, then for every irreplaceable q-cycle γ′ that has the same

characterisation as γ, p(u) π1γ
′π2−−−−→ q(v′).

In both cases v′ ≥ v and len(π) ≥ len(π1γ
′π2).

For convenience, we define the polynomial R(|Q|) := |Q|4(|Q|+1)(2|Q|+1)2.

Lemma 2. There exists at most R(|Q|) many irreplaceable short cycles with
different characterisations.

Proof. We fix two states q and p and consider only q-cycles γ with the binary-
nadir state p. Thus in the final argument one must multiply everything by |Q|2.
Since we consider short cycles, the unary effect and the unary guard are small,
i.e. −|Q| ≤ effu(γ) ≤ |Q| and −|Q| ≤ grdu(γ) ≤ 0.

Towards a contradiction, suppose there exists more than |Q|2(|Q|+1)(2|Q|+
1)2 many such irreplaceable q-cycles with different characterisations. By the pi-
geonhole principle there must exist two cycles, denoted in binary-nadir decom-
position γ = γ1γ2 and γ′ = γ′

1γ
′
2, that have the same values effu(γ1) = effu(γ

′
1),

effu(γ2) = effu(γ
′
2), grdu(γ) = grdu(γ

′), len(γ1) = len(γ′
1), and len(γ2) = len(γ′

2).
We know that the irreplaceable q-cycles γ and γ′ have different characteri-

sations, so it must be the case that their binary effects differ effb(γ) ̸= effb(γ
′).

Otherwise, the cycle with the lesser binary guard is replaceable, because the
unary effect, unary guard, and length do not differ. Without loss of general-
ity, suppose effb(γ) > effb(γ

′), then grdb(γ) < grdb(γ
′). Otherwise, γ′ would be

replaceable as γ ≺ γ′.
Now consider the q-cycle σ = γ′

1γ2, also with the binary-nadir state p. We
will show that γ ≺ σ contradicting the fact that γ is an irreplaceable q-cycle.
First, observe that σ has greater binary effect than γ as

effb(σ) = effb(γ
′
1) + effb(γ2) > effb(γ1) + effb(γ2) = effb(γ),

where the inequality holds because grdb(γ) < grdb(γ
′). Second, σ and γ have

equal unary effect because effu(γ
′
1) = effu(γ1). Third, we show that σ has a

206 F. Mazowiecki et al.

greater binary guard than γ. Since γ2 is the suffix of the binary-nadir decompo-
sition of γ, it must be true that grdb(γ2) = 0. By Claim 1 grdb(σ) = grdb(γ

′
1).

Combining these facts, grdb(σ) = grdb(γ
′) > grdb(γ). Fourth, σ has at least the

unary guard of γ because, in particular, the unary guard of the prefix of a path
is at most the unary guard of the entire path.

grdu(σ) = min{grdu(γ′
1), effu(γ

′
1) + grdu(γ2)}

≥ min{grdu(γ′), effu(γ
′
1) + grdu(γ2)}

= min{grdu(γ), effu(γ1) + grdu(γ2)} = grdu(γ).

Fifth and finally, σ and γ have equal length because len(γ′
1) = len(γ1). We have at

least one strict inequality. Thus, we have reached the desired contradiction.

5 Reshuffling Linear Form Paths

5.1 Reshuffling Procedure

There can be many linear forms for a path π. We will try to find an ‘optimal’
one, so we introduce a cost function to quantify linear forms. Recall that a linear
form ℓ is a sequence of paths τ0, τ1, . . . , τk and a sequence of cycles γ1, . . . , γk.
If π is in the linear form ℓ = (τ0, γ1, τ1, . . . , τk−1, γk, τk) then we write πℓ =
τ0γ

e1
1 τ1 · · · τk−1γ

ek
k τk, where π = πℓ (the index is here to stress the exact linear

form). For this section, we will consider linear forms only containing short cycles
γ, they will play a key role in the following arguments.

We define a cost function that assigns, to a linear form ℓ, the following pair of
naturals C(ℓ) :=

(∑k
i=0 len(τi), k

)
. For convenience, we define the polynomial

P (|Q|) := 2(|Q|2 + 1)(|Q|2 + 2) · R(|Q|), where R is the polynomial defined
for Lemma 2. We say that a linear form ℓ is narrow if C(ℓ) ≤ (|Q|(P (|Q|) +
1), P (|Q|)), otherwise we say that ℓ is wide. We say that the triple (π′, σ, π′′) is a
monotone cycle decomposition of a path π if σ is a monotone cycle, π = π′σπ′′,
and len(σ) < len(π).

Lemma 3 (Reshuffling). Let π be a path such that p(u) π−→ q(v). Then there
exists a path ρ such that p(u) ρ−→ q(w) where w ≥ v, len(ρ) ≤ len(π), and either

(i) there exists a narrow linear form for ρ, or
(ii) there exists a monotone cycle decomposition of ρ.

Proof. We start with a series of preparations. In the early part of this proof,
we provide simple observations to ascertain some auspicious properties of our
path. In the later part of this proof, we present the ‘reshuffling procedure’ and
conclude with one of the cases in the statement of this lemma. In this proof we
will compare linear forms using the lexicographic order ≺lex, that is known to
be a linear-order and a well-order. Formally,

C(ℓ′) ≺lex C(ℓ) ⇐⇒ (C(ℓ′))1 < (C(ℓ))1 or,
(C(ℓ′))1 = (C(ℓ))1 and (C(ℓ′))2 < (C(ℓ))2.

Coverability in 2-VASS with One Unary Counter is in NP 207

We start with a path π′ such that p(u)
π′

−→ q(v′) where v′ ≥ v, len(π′) ≤
len(π), and π′ has a linear form ℓ′ that has the least cost among all linear forms
for all like-paths. That means there does not exist another path π′′ such that
p(u)

π′′

−−→ q(v′′) where v′′ ≥ v, len(π′′) ≤ len(π), and π′′ has a linear form ℓ′′

such that C(ℓ′′) ≺lex C(ℓ′).
For the first observation, suppose there exists 0 ≤ i ≤ k such that len(τi) >

|Q|. Then the path τi can be written as τi = τ ′γτ ′′, where γ is a short cycle.
We can define the linear form ℓ′′ by modifying ℓ′ where τi is swapped for τ ′γτ ′′.
Although this increments the number of cycles k, we decrease the total length of
the paths as len(τ ′) + len(τ ′′) < len(τi) (recall that empty cycles are forbidden).
Thus C(ℓ′′) ≺lex C(ℓ′) contradicting the assumption that ℓ has minimum cost.
Therefore, we assume that len(τi) ≤ |Q| for all 0 ≤ i ≤ k.

For the second observation, we define U := {0 ≤ i ≤ m : (vi)2 < |Q|} to be
the set of indices of configurations in the run that have unary counter value less
than |Q|. Observe that if |U | > |Q|2+1 then there are two indices 0 < i < j ≤ m
such that the two corresponding configurations in the run have matching states
qi = qj and equal unary counter values (vi)2 = (vj)2. Then, regardless of sign of
its binary effect, π′[i..j] is a monotone cycle. Here, case (ii) immediately holds
by decomposing π′ itself using the monotone cycle π′[i..j], given that i > 0
and j ≤ m implies len(π′[i..j]) = j − i < m = len(π′). Therefore, we assume
|U | ≤ |Q|2 +1. We continue with the aim of satisfying the conditions of case (ii)
by finding a monotone cycle decomposition.

Let d = |{γ1, . . . , γk}| be the number of distinct cycles in the linear form ℓ′.
By Lemma 1 and Lemma 2, we can assume that d ≤ R(|Q|). Otherwise, we can
exchange replaceable q-cycles for irreplaceable q-cycles using the first point in
Lemma 1. It is possible that for a particular characterisation, we can observe
more than one irreplaceable q-cycle. Then using the second point in Lemma 1,
we can arbitrarily select one of these irreplaceable q-cycles with equal charac-
terisations to exchange all others with. By applying these cycle replacements
to π′, we obtain a different path ρ. Definition 2 ensures that we do so without
decreasing the effect (a), without allowing the counters to take a negative value
(b), and without increasing the length of the path (c). Therefore p(u)

ρ−→ q(w)
and w ≥ v′ ≥ v, and len(ρ) ≤ len(π′) ≤ len(π). We remark since cycles have
been exchanged one-for-one, then ρ takes a linear form ℓ with the same path
segments as ℓ′. Therefore, it is clear that neither the number of cycles k, nor the
sum of the lengths of the paths between cycles, have changed. We also know that
ℓ is a linear form for ρ with minimum cost C(ℓ) = C(ℓ′), as per the initialisation
in this proof.

Suppose ρ = ρℓ = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk. Let (qj(vj))

m
j=0 be the run obtained

by following the path ρℓ from the initial configuration q0(v0) = p(u) to the final
configuration qm(vm) = q(w). We may assume that ℓ is wide. Otherwise, case (i)
is immediately satisfied. We also know that len(ρℓ) ≥ max{(C(ℓ))1, (C(ℓ))2} >
P (|Q|). We may also assume that each cycle γ1, . . . , γk is non-monotone, i.e. it is
positive-negative or negative-positive. Otherwise, case (ii) immediately holds by
decomposing ρ itself using some monotone cycle γi, given that len(γi) ≤ |Q| <

208 F. Mazowiecki et al.

P (|Q|) < len(ρℓ). Notice this is valid since each ei > 0 by the minimality of C(ℓ),
otherwise you can write · · · τi−1γ

0
i τi · · · with one less cycle, decreasing (C(ℓ))2.

From the first observation, we get
∑k

i=0 len(τi) ≤ (k + 1)|Q|. Given that ℓ

is wide, either |Q|(P (|Q|) + 1) < (C(ℓ′))1 =
∑k

i=0 len(τi) ≤ (k + 1)|Q| that
implies P (|Q|) < k, or P (|Q|) < (C(ℓ′))2 = k. Regardless, P (|Q|) < k holds.
Recall that |U | ≤ |Q|2+1 from the second observation. Since there are relatively
‘few’ configurations indexed by U , there must exist a relatively ‘distant’ pair
of consecutive configurations indexed by U . More formally, there are i and j
such that 0 ≤ i < j ≤ k and j − i ≥ 2(|Q|2 + 2)R(|Q|) and all configurations
that occur in the run over the path segment τiγ

ei+1

i+1 · · · γej
j τj have unary counter

value at least |Q|. Notice that j− i is the number of cycles in this path segment.
Since j − i ≥ 2(|Q|2 + 2)R(|Q|) and by pigeonhole principle on the number of
irreplaceable cycles, there is a common irreplaceable cycle γ repeated at least
x = 2(|Q|2+2) many times. We will focus on the first x such occurrences of this
cycle. Let s1, . . . , sx be the indices of this cycle γ, i.e. γ = γs1 = . . . = γsx . To
highlight these cycles, we decompose this path segment into

τiγ
ei+1

i+1 · · · γej
j τj = Λ0γ

f1Λ1 · · ·Λx−1γ
fxΛx,

where fj := esj and Λj are the concatenated paths (and cycles) in between
iterations of γ, see Figure 5. To reiterate, we know that all configurations that
occur in the run over this path segment have at least |Q| unary counter value
and γ is a short cycle.

Fig. 5. The decomposition of the path segment into Λ0γ
f1Λ1 · · ·Λx−1γ

fxΛx, as above.
Notice that the unary counter is always at least |Q| as no configurations indexed by U
are present.

Reshuffling Procedure. In the rest of the proof we will modify the path segment
(above) of the path ρℓ with a procedure that we call reshuffling. At the end
of this procedure we will find a monotone cycle and satisfy case (ii) of this
lemma. We either find this cycle directly, or we obtain a linear form ℓ′′ such that
C(ℓ′′) ≺lex C(ℓ) contradicting the assumption that ℓ has minimal cost.

Note that x = 2(|Q|2 + 2) is even, and for every pair of consecutive cycles
γ2j−1 and γ2j (for 1 < 2j ≤ x), consider the subsegment γf2j−1Λ2j−1γ

f2j . There

Coverability in 2-VASS with One Unary Counter is in NP 209

are two scenarios depending on the variant of the non-monotone cycle γ. In the
scenario where γ is positive-negative, we move an iteration of γ from right to left
obtaining γf2j−1+1Λ2j−1γ

f2j−1. In the scenario where γ is negative-positive, we
move an iteration of γ in the opposite direction obtaining γf2j−1−1Λ2j−1γ

f2j+1.
We repeat this procedure until one of two conditions are met. The first is

when there are no iterations of γ on one side, so either f2j−1 or f2j becomes
0. The second is when there appears a configuration, in the run over the path
subsegment after reshuffling, with unary counter value less than |Q|. See Figure 6
for a pictorial presentation of reshuffling in the scenario where γ is positive-
negative.

Fig. 6. Reshuffling around a path Λ (blue) where γ (red) is positive-negative. Before
reshuffling, the path subsegment · · · γΛγ · · · all configurations have unary counter value
at least |Q| in the run (left). After reshuffling, the path subsegment · · · γγΛ · · · , there
is a configuration with unary counter value less than |Q| in the run (right).

We claim that after each reshuffling step, the corresponding run remains
executable, so we must check that both counters remain non-negative. Notice
that by only moving a cycle, the total effect of the path subsegment remains
the same. Therefore, if the run was executable before reshuffling, we can safely
assume that the prefix before the path subsegment and the suffix after the path
subsegment are still executable. For that reason, consider the counter values
of configurations occurring in the run over the reshuffled path subsegment. We
focus on a single step of the reshuffling procedure that concerns the subsegment
γf2j−1Λ2j−1γ

f2j .
Suppose γ is a positive-negative cycle. Then the reshuffling procedure moves

γ from right to left. We claim that since f2j−1 > 0 and Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1

is executable, the subsegment Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1+1 is executable from the
initial configuration. This is because one prerequisite of the reshuffling proce-
dure is that all configurations occurring in the run over the path subsegment
have at least |Q| unary counter value. Moreover, the cycle γ has length at most
|Q| so grdu(γ) ≥ −|Q| means the unary counter value remains non-negative.
As for the binary counter value, since a single execution of γ increases the
binary counter and an iteration of γ was already executed before reshuffling,
Λ0γ

f1Λ1 · · ·Λ2j−1γ
f2j−1+1 is executable. In the same way, from the initial con-

210 F. Mazowiecki et al.

figuration, Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1+1Λ2jγ
f2j−1
2j is executable. This is because

effu(γ) ≥ −|Q|, and again, all configurations occurring in the run over the path
subsegment have at least |Q| unary counter value, and also because of the mono-
tonicity on the binary counter.

The argument when γ is a negative-positive cycle is analogous. This concludes
the correctness analysis of the reshuffling procedure.

Finishing Reshuffling. We analyse what happens when reshuffling is finished.
Suppose that there exists a pair 2j − 1 and 2j such that the reshuffling finishes
under the first condition where all iterations of γ have been moved to one side of
Λ2j−1. In this case we obtain a new linear form ℓ′′ for ρ, where one collection of
the cycle γ has been removed (decrementing k). So (C(ℓ′′))2 = k − 1 < (C(ℓ))2
and the two adjacent path segments can be combined without changing the
summed length of paths so (C(ℓ′′))1 = (C(ℓ))1. Therefore, C(ℓ′′) ≺lex C(ℓ)
contradicting the assumption ℓ has the minimal cost.

Otherwise, for every 1 ≤ j ≤ x/2 the reshuffling of pair 2j−1 and 2j finishes
under condition the second condition. So there is a configuration with unary
counter value less than |Q| in the run induced from the path ρ for each pair 2j−1
and 2j (see Figure 7). Recall that x

2 = |Q|2+2, that is the number of pairs. Akin
to the first observation (in the beginning of this proof), we use the pigeonhole
principle on the number of such configurations to obtain two configurations with
matching states and equal unary counter values. The path segment inducing the
part of the run between these two configurations is a monotone cycle, regardless
of the binary effect. Again, it must be true that the length of this cycle is less
than the length of the whole path, so we obtain a monotone cycle decomposition
of ρ. Thus case (ii) of the lemma holds.

Fig. 7. After reshuffling is finished under condition the second condition, we can find a
zero unary effect cycle using the (sufficiently many) configurations with unary counter
less |Q|.

5.2 Applying Reshuffling

Lemma 3 does not necessarily return a narrow linear form for a path π witnessing
coverability. Instead it may return a monotone cycle decomposition (ρ, σ, τ) of π.

Coverability in 2-VASS with One Unary Counter is in NP 211

Our next goal is to show that there exists polynomial size certificates for ρ and σ
(Lemma 4), and then to show that there exists a polynomial size certificate for τ
(Lemma 5). Like linear forms, there can be many monotone cycle decompositions
for a path. Following, we will use the cost function assigning monotone cycle de-
compositions to pairs of natural numbers D((ρ, σ, τ)) := (len(ρσ), len(σ)). Note
that we can compare two decompositions using their cost, even if they are for
two different paths.

Lemma 4. Suppose p(u)
∗−→ q(v) yet there is no narrow linear form ℓ for any

path π such that p(u) π−→ q(w) and w ≥ v, then there exists a path π′ such that

(a) p(u)
π′

−→ q(w′) where w′ ≥ v,
(b) there is a monotone cycle decomposition (ρ, σ, τ) of π′ where eff(σ) > 0, and
(c) there are narrow linear forms for both ρ and σ.

Proof. We will again use the lexicographical order ≺lex to compare the cost
of monotone cycle decompositions. Let π be a path of minimum length such
that p(u)

π−→ q(w) where w ≥ v. Let c = (ρ, σ, τ) be the monotone cycle de-
composition of π that minimizes the cost D(c) under the ≺lex order. Such a
decomposition must exist, otherwise applying Lemma 3 would return a narrow
linear form ℓ′ for ρ such that p(u)

ρ−→ q(w′) and w′ ≥ w ≥ v, contradicting an
assumption of this lemma. Observe that eff(σ) > 0, otherwise one can remove σ
and consider the shorter path ρτ , contradicting the minimal length of π. Next,
we argue that ρ and σ do not have monotone cycle decompositions, we then
leverage Lemma 3 to obtain the narrow linear forms required.

Path ρ cannot be decomposed further. Towards a contradiction, assume that
there is a monotone cycle decomposition c′ = (ρ′, σ′, τ ′) of ρ. Observe that the
following monotone cycle decomposition c′ = (ρ′, σ′, τ ′στ) of π has lower cost
D(c′) ≺lex D(c) as (D(c′))1 = len(ρ′)+len(σ′) < len(ρ)+len(σ) = (D(c))1. This
contradicts the assumption that (ρ, σ, τ) has minimum cost.

Suppose p(u)
ρ−→ p′(x). Since there is no monotone cycle decomposition,

applying Lemma 3 to ρ returns a path ρ′ with a narrow linear form such that

p(u)
ρ′

−→ p′(x′) where x′ ≥ x and len(ρ′) ≤ len(ρ).

Cycle σ cannot be decomposed further. Towards a contradiction, assume that
there is a monotone cycle decomposition (ρ′, σ′, τ ′) of σ. Observe that the fol-
lowing monotone cycle decomposition c′ = (ρρ′, σ′, τ ′τ) of π has lower cost
D(c′) ≺lex D(c) as (D(c′))1 = len(ρ) + len(ρ′) + len(σ′) ≤ len(ρ) + len(σ) =
(D(c))1 and (D(c′))2 = len(σ′) < len(σ) = (D(c))2. This contradicts the as-
sumption that (ρ, σ, τ) has minimum cost.

Suppose p′(x)
σ−→ p′(y). Since there is no monotone cycle decomposition,

applying Lemma 3 to σ returns a path σ′ with a narrow linear form such that
p′(x)

σ′

−→ p′(y′) where y′ ≥ y and len(σ′) ≤ len(σ). In particular, it is also true
that eff(σ′) ≥ eff(σ) > 0.

212 F. Mazowiecki et al.

Replacing ρ′ for ρ and σ′ for σ in π yields a path π′. Clearly if p(u) π−→ q(w)

where w ≥ v, then p(u)
π′

−→ q(w′) where w′ ≥ w ≥ v. Finally, (ρ′, σ′, τ) is
monotone cycle decomposition of π′ such that eff(σ′) > 0 and ρ′ and σ′ have
narrow linear forms, as required.

We now aim to obtain a narrow linear form for τ . Note that Lemma 4 gives
us a monotone cycle σ with positive effect on at least one counter, i.e. eff(σ) > 0.
By pumping σ we can force one of the counters to take an arbitrarily large value
(following, the vector x reflects this large value for Lemma 5). Then, loosely
speaking, the problem reduces to coverability in 1-VASS. However, proving the
existence of a polynomial size compressed linear form path in Theorem 1 requires
more care. Note that Lemma 5 is stated for 2-VASS (not necessarily with one
unary counter). First we need to recall the following bound on counter values
observed throughout runs. Recall that |V |max := |Q|+ |T | · |T |max is the pseudo-
polynomial size of the input.

Theorem 2 (Corollary from Theorem 3.2 in [4]). Consider a 2-VASS
(with both counters in binary) V = (Q,T) and let p(u) ∗−→ q(v), then there exists
a run p(u) = q0(v0), q1(v1), . . . , qm(vm) = q(v) such that |v0|max, |v1|max, . . . ,
|vm|max ≤ (|V |max + |u|max + |v|max)

O(1).

In the following lemma, that is proved in the appendix, given a 2-VASS V , the
initial configuration p(u), and target configuration q(v), we write B in place of
(|V |max+|u|max+|v|max)

O(1) from Theorem 2 and we fix x = (4B|Q|2|V |2max, 0).

Lemma 5. Consider a 2-VASS (with both counters in binary) V = (Q,T)

and let p(u)
∗−→ q(v), then there exists a narrow linear form path π′ such that

p(u+ x)
π′

−→ q(v′) for some v′ ≥ v.

6 Proof of Theorem 1

Before proving Theorem 1, we employ the fact that for a general 2-VASS, not
necessarily with one unary counter, the exponents of cycles in linear forms can
be pseudo-polynomially bounded.

Lemma 6 (Corollary from Lemma 18 in [5]). Let π be path in a 2-VASS
with a linear form π = τ0γ

f1
1 τ1 . . . γ

fk
k τk such that p(u) π−→ q(v). Then there exist

a path π′ = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk such that p(u)

π′

−→ q(v′) where v′ ≥ v and
bitsize(e1), . . . , bitsize(ek) are all bounded by a polynomial in |V |+ bitsize(u) +
bitsize(v).

Proof of Theorem 1. Let p(u)
π−→ q(v) for some path π. If there is a narrow

linear form ℓ for π then by Lemma 6 we obtain π′ = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk such

that p(u) π′

−→ q(v′) where v′ ≥ v and bitsize(e1), . . . , bitsize(ek) are all bounded

Coverability in 2-VASS with One Unary Counter is in NP 213

above by a polynomial in |V |+bitsize(u)+ bitsize(v). Since ℓ is a narrow linear
form, we know that k ≤ P (|Q|) so

∑k
i=1 len(γi) ≤ k|Q| ≤ |Q|P (|Q|) and we also

know that
∑k

i=0 len(τi) ≤ |Q|(P (|Q|)+1). Together, this implies the linear form
path π′ is of polynomial size.

It remains to consider the case when there is no narrow linear form ℓ for π.
By Lemma 4 (via Lemma 3) there exists a path π′ such that p(u)

π′

−→ q(v′) and
v′ ≥ v. Moreover, there is a monotone cycle decomposition (ρ, σ, τ) of π′ such
that eff(σ) > 0 and there are narrow linear forms for both ρ and σ.

Assume that (eff(σ))1 > 0. This is without loss of generality because if
(eff(σ))1 = 0 then one can flip the coordinates in V , u and v (for the remainder
of the proof it will not matter that one counter is unary). Let p′(m) be the
configuration such that p(u)

ρ−→ p′(m)
στ−−→ q(v′). Observe that since eff(σ) > 0

for every i ∈ N the path ρσi induces the run p(u)
ρσi

−−→ p′(m + i · eff(σ)). Con-
sider x = (x)1 = 4B|Q|2|V |2max (for Lemma 5), clearly x is large enough so that

p(u)
ρσx

−−→ p′(m′) and m′ ≥ m + x. By Lemma 5 there exists a narrow linear

form for a path τ ′ such that p′(m′)
τ ′

−→ q(v′′) and v′′ ≥ v′.
We conclude by considering the compressed linear form path ρσxτ ′ such that

p(u)
ρσxτ ′

−−−−→ q(v′′) and v′′ ≥ v′ ≥ v. Since ρ, σ, and τ ′ have narrow linear
forms, we can also bound the exponents using Lemma 6 as in the beginning of
this proof. Finally, bitsize(x) is polynomial in |V |+bitsize(u)+ bitsize(v) much
like the exponents of the cycles in the linear forms. Therefore, the size of the
compressed linear form ρσxτ ′ is polynomial in |V |+ bitsize(u) + bitsize(v).

7 Conclusion and Future Work

In this paper we proved that coverability in 2-VASS with one unary counter is in
NP, a drop in complexity from PSPACE for general 2-VASS. We achieve this by
using our new techniques. Most notably, we polynomially bounded the number
of short cycles that need to be used (Section 4). Then, we attempt to find a
polynomial linear form path by replacing short cycles and reshuffling the path
(Section 5).

A natural extension is to consider whether coverability in 3-VASS with one
binary counter and two unary counters is also in NP. More generally, there
is the problem of determining the complexity of coverability in k-VASS with
one binary counter and k − 1 unary counters. The technique for polynomially
bounding the number of short cycles that need be used can easily be generalised
to these higher dimension VASS with only one binary counter. However, it is not
clear how to modify and use our reshuffling technique. Another open problem is
whether reachability in 2-VASS with one unary counter is also in NP. Note that
completeness would immediately follow from the fact that reachability in binary
encoded 1-VASS is NP-hard [22].

214 F. Mazowiecki et al.

References

1. Shaull Almagor, Udi Boker, Piotr Hofman, and Patrick Totzke. Parametrized
Universality Problems for One-Counter Nets. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs,
pages 47:1–47:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CONCUR.2020.47.

2. Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and
James Worrell. Coverability in 1-VASS with Disequality Tests. In Igor Konnov
and Laura Kovács, editors, 31st International Conference on Concurrency The-
ory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference),
volume 171 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.38.

3. Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

4. Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase,
Ranko Lazić, Pierre McKenzie, and Patrick Totzke. The Reachability Problem for
Two-Dimensional Vector Addition Systems with States. J. ACM, 68(5):34:1–34:43,
2021. doi:10.1145/3464794.

5. Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKen-
zie. Reachability in Two-Dimensional Vector Addition Systems with States Is
PSPACE-Complete. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 32–43. IEEE Computer
Society, 2015. doi:10.1109/LICS.2015.14.

6. Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachabil-
ity for infinite-state systems. In Jan Friso Groote and Kim Guldstrand Larsen,
editors, Tools and Algorithms for the Construction and Analysis of Systems
- 27th International Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxem-
bourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, vol-
ume 12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.
doi:10.1007/978-3-030-72013-1_1.

7. Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–
27:26, 2011. doi:10.1145/1970398.1970403.

8. Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and
presburger arithmetic. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided
Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer
Science, pages 268–279. Springer, 1998. doi:10.1007/BFb0028751.

9. Wojciech Czerwiński, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Ma-
zowiecki. Reachability in Fixed Dimension Vector Addition Systems with States.
In Igor Konnov and Laura Kovács, editors, 31st International Conference on Con-
currency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference), volume 171 of LIPIcs, pages 48:1–48:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.48.

10. Wojciech Czerwiński, Sławomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip
Mazowiecki. The Reachability Problem for Petri Nets Is Not Elementary. J.
ACM, 68(1):7:1–7:28, 2021. doi:10.1145/3422822.

https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.38
https://doi.org/10.1145/3464794
https://doi.org/10.1109/LICS.2015.14
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/BFb0028751
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1145/3422822

Coverability in 2-VASS with One Unary Counter is in NP 215

11. Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radoslaw Piórkowski.
New Pumping Technique for 2-Dimensional VASS. In Peter Rossmanith, Pinar
Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019,
Aachen, Germany, volume 138 of LIPIcs, pages 62:1–62:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.62.

12. Wojciech Czerwiński and Łukasz Orlikowski. Reachability in Vector Addition Sys-
tems is Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
1229–1240. IEEE, 2021. doi:10.1109/FOCS52979.2021.00120.

13. Wojciech Czerwiński and Łukasz Orlikowski. Lower Bounds for the Reachabil-
ity Problem in Fixed Dimensional VASSes. In Christel Baier and Dana Fis-
man, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, Haifa, Israel, August 2 - 5, 2022, pages 40:1–40:12. ACM, 2022.
doi:10.1145/3531130.3533357.

14. Alex Dixon and Ranko Lazic. KReach: A Tool for Reachability in Petri Nets.
In Armin Biere and David Parker, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, vol-
ume 12078 of Lecture Notes in Computer Science, pages 405–412. Springer, 2020.
doi:10.1007/978-3-030-45190-5_22.

15. Matthias Englert, Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux,
and Juliusz Straszyński. A lower bound for the coverability problem in acyclic
pushdown VAS. Inf. Process. Lett., 167:106079, 2021. doi:10.1016/j.ipl.2020.
106079.

16. Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in Two-
Dimensional Unary Vector Addition Systems with States is NL-complete. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 477–484. ACM, 2016. doi:
10.1145/2933575.2933577.

17. Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and
Filip Niksic. An SMT-Based Approach to Coverability Analysis. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lec-
ture Notes in Computer Science, pages 603–619. Springer, 2014. doi:10.1007/
978-3-319-08867-9_40.

18. John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata
is pspace-complete. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, Automata, Languages, and Programming - 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, volume 7966 of Lecture Notes in Computer Science, pages 212–223. Springer,
2013. doi:10.1007/978-3-642-39212-2_21.

19. Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for Two-Counter
Machines with One Test and One Reset. In Sumit Ganguly and Paritosh K.
Pandya, editors, 38th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018,

https://doi.org/10.4230/LIPIcs.MFCS.2019.62
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/3531130.3533357
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-39212-2_21

216 F. Mazowiecki et al.

Ahmedabad, India, volume 122 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.31.

20. Alain Finkel and Arnaud Sangnier. Mixing coverability and reachability to an-
alyze VASS with one zero-test. In Jan van Leeuwen, Anca Muscholl, David Pe-
leg, Jaroslav Pokorný, and Bernhard Rumpe, editors, SOFSEM 2010: Theory and
Practice of Computer Science, 36th Conference on Current Trends in Theory and
Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29,
2010. Proceedings, volume 5901 of Lecture Notes in Computer Science, pages 394–
406. Springer, 2010. doi:10.1007/978-3-642-11266-9_33.

21. Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous
programs. ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012. doi:10.1145/
2160910.2160915.

22. Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reacha-
bility in Succinct and Parametric One-Counter Automata. In Mario Bravetti and
Gianluigi Zavattaro, editors, CONCUR 2009 - Concurrency Theory, 20th Interna-
tional Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceed-
ings, volume 5710 of Lecture Notes in Computer Science, pages 369–383. Springer,
2009. doi:10.1007/978-3-642-04081-8_25.

23. John E. Hopcroft and Jean-Jacques Pansiot. On the Reachability Problem for
5-Dimensional Vector Addition Systems. Theor. Comput. Sci., 8:135–159, 1979.
doi:10.1016/0304-3975(79)90041-0.

24. S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Prelim-
inary Version). In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium
on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages
267–281. ACM, 1982. doi:10.1145/800070.802201.

25. Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor.
Comput. Sci., 99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

26. Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Re-
cursive. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1241–1252. IEEE,
2021. doi:10.1109/FOCS52979.2021.00121.

27. Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is
Primitive-Recursive in Fixed Dimension. In 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785796.

28. Jérôme Leroux and Grégoire Sutre. On Flatness for 2-Dimensional Vector Addition
Systems with States. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August
31 - September 3, 2004, Proceedings, volume 3170 of Lecture Notes in Computer
Science, pages 402–416. Springer, 2004. doi:10.1007/978-3-540-28644-8_26.

29. Jérôme Leroux and Grégoire Sutre. Reachability in Two-Dimensional Vector Ad-
dition Systems with States: One Test Is for Free. In Igor Konnov and Laura
Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of
LIPIcs, pages 37:1–37:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CONCUR.2020.37.

30. Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the Coverability Prob-
lem for Pushdown Vector Addition Systems in One Dimension. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.31
https://doi.org/10.1007/978-3-642-11266-9_33
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.4230/LIPIcs.CONCUR.2020.37

Coverability in 2-VASS with One Unary Counter is in NP 217

Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lec-
ture Notes in Computer Science, pages 324–336. Springer, 2015. doi:10.1007/
978-3-662-47666-6_26.

31. Richard Lipton. The Reachability Problem Requires Exponential Space. Depart-
ment of Computer Science. Yale University, 62, 1976.

32. Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem.
SIAM J. Comput., 13(3):441–460, 1984. doi:10.1137/0213029.

33. Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
1967.

34. C. Petri. Kommunikation mit Automaten, Ph. D. dissertation. University of Bonn,
1962.

35. Charles Rackoff. The Covering and Boundedness Problems for Vector Addition
Systems. Theor. Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)
90036-1.

36. Klaus Reinhardt. Reachability in Petri Nets with Inhibitor Arcs. Electron. Notes
Theor. Comput. Sci., 223:239–264, 2008. doi:10.1016/j.entcs.2008.12.042.

37. Sylvain Schmitz. The Complexity of Reachability in Vector Addition Systems.
ACM SIGLOG News, 3(1):4–21, 2016. URL: https://dl.acm.org/citation.cfm?
id=2893585.

38. Leslie G. Valiant and Mike Paterson. Deterministic One-Counter Automata. J.
Comput. Syst. Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1137/0213029
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/j.entcs.2008.12.042
https://dl.acm.org/citation.cfm?id=2893585
https://dl.acm.org/citation.cfm?id=2893585
https://doi.org/10.1016/S0022-0000(75)80005-5
http://creativecommons.org/licenses/by/4.0/

	Coverability in 2-VASS with One Unary Counteris in NP ⋆
	1 Introduction
	2 Preliminaries
	3 Coverability in 2-VASS with One Unary Counter
	4 Replacing Short Cycles
	5 Reshuffling Linear Form Paths
	5.1 Reshuffling Procedure
	5.2 Applying Reshuffling

	6 Proof of Theorem 1
	7 Conclusion and Future Work
	References

