
Finding k-Secluded Trees Faster

Huib Donkers , Bart M. P. Jansen(B) , and Jari J. H. de Kroon

Eindhoven University of Technology, Eindhoven, The Netherlands
{h.t.donkers,b.m.p.jansen,j.j.h.d.kroon}@tue.nl

Abstract. We revisit the k-Secluded Tree problem. Given a vertex-
weighted undirected graph G, its objective is to find a maximum-weight
induced subtree T whose open neighborhood has size at most k. We
present a fixed-parameter tractable algorithm that solves the problem
in time 2O(k log k) · nO(1), improving on a double-exponential running
time from earlier work by Golovach, Heggernes, Lima, and Montealegre.
Starting from a single vertex, our algorithm grows a k-secluded tree by
branching on vertices in the open neighborhood of the current tree T . To
bound the branching depth, we prove a structural result that can be used
to identify a vertex that belongs to the neighborhood of any k-secluded
supertree T ′ ⊇ T once the open neighborhood of T becomes sufficiently
large. We extend the algorithm to enumerate compact descriptions of all
maximum-weight k-secluded trees, which allows us to count the number
of such trees containing a specified vertex in the same running time.

Keywords: Secluded tree · FPT · Enumeration algorithm

1 Introduction

Background. We revisit a problem from the field of parameterized complexity:
Given a graph G with positive weights on the vertices, find a connected induced
acyclic subgraph H of maximum weight such that the open neighborhood of H
in G has size at most k.

A parameterized problem is fixed parameter tractable (FPT) [4,6] if there is
an algorithm that, given an instance I with parameter k, solves the problem in
time f(k) · |I|O(1) for some computable function f . For problems that are FPT,
such algorithms allow NP-hard problems to be solved efficiently on instances
whose parameter is small. It is therefore desirable for the function f to grow
slowly in terms of k, both out of theoretical interest as well as improving the
practical relevance of these algorithms.

We say that a vertex set S ⊆ V (G) is k-secluded in G if the open neighbor-
hood of S in G has size at most k. An induced subgraph H of G is k-secluded
in G if V (H) is. If H is also a tree, we say that H is a k-secluded tree in G.
Formally, the problem we study in this work is defined as follows.

B. M. P. Jansen—Supported by NWO Gravitation grant “Networks”.
J. J. H. de Kroon—Supported by ERC Starting grant 803421, “ReduceSearch”.

c© The Author(s) 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 173–186, 2022.
https://doi.org/10.1007/978-3-031-15914-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_13&domain=pdf
http://orcid.org/0000-0002-2767-8140
http://orcid.org/0000-0001-8204-1268
http://orcid.org/0000-0003-3328-9712
https://doi.org/10.1007/978-3-031-15914-5_13

174 H. Donkers et al.

Large Secluded Tree (LST) Parameter: k
Input: An undirected graph G, a non-negative integer k, and a weight func-
tion w : V (G) → N

+.
Task: Find a k-secluded tree H of G of maximum weight, or report that no
such H exists.

Golovach et al. [11] consider the more general Connected Secluded Π-

Subgraph, where the k-secluded induced subgraph of G should belong to some
target graph class Π. They mention that (Large) Secluded Tree is FPT
and can be solved in time 22

O(k log k) · nO(1) using the recursive understanding
technique, the details of which can be found in the arXiv version [10]. For the case
where Π is characterized by a finite set of forbidden induced subgraphs F , they
show that the problem is FPT with a triple-exponential dependency. They pose
the question whether it is possible to avoid these double- and triple-exponential
dependencies on the parameter. They give some examples of Π for which this is
the case, namely for Π being a clique, a star, a d-regular graph, or an induced
path.

Results. Our main result is an algorithm for Large Secluded Tree that takes
2O(k log k) ·n4 time. This answers the question of Golovach et al. [11] affirmatively
for the case of trees. We solve a more general version of the problem, where a set
of vertices is given that should be part of the k-secluded tree. Our algorithm goes
one step further by allowing us to find all maximum-weight solutions. As we will
later argue, it is not possible to output all such solutions directly in the promised
running time. Instead, the output consists of a bounded number of solution
descriptions such that each maximum-weight solution can be constructed from
one such description. This is similar in spirit to the work of Guo et al. [12], who
enumerate all minimal solutions to the Feedback Vertex Set problem in
O(ck ·m) time. They do so by giving a list of compact representations, a set C of
pairwise disjoint vertex subsets such that choosing exactly one vertex from every
set results in a minimal feedback vertex set. Our descriptions are non-redundant
(no two descriptions describe the same secluded tree), which allows us to count
the number of maximum-weight k-secluded trees containing a specified vertex in
the same running time.

Techniques. Rather than using recursive understanding, our algorithm is based
on bounded-depth branching with a non-trivial progress measure. Similarly to
existing algorithms to compute spanning trees with many leaves [13], our algo-
rithm iteratively grows the vertex set of a k-secluded tree T . If we select a vertex v
in the neighborhood of the current tree T , then for any k-secluded supertree T ′

of T there are two possibilities: either v belongs to the neighborhood of T ′, or
it is contained in T ′; the latter case can only happen if v has exactly one neigh-
bor in T . Solutions of the first kind can be found by deleting v from the graph
and searching for a (k − 1)-secluded supertree of T . To find solutions of the
second kind we can include v in T , but since the parameter does not decrease in
this case we have to be careful that the recursion depth stays bounded. Using a

Finding k-Secluded Trees Faster 175

reduction rule to deal with degree-1 vertices, we can essentially ensure that v has
at least three neighbors (exactly one of which belongs to T), so that adding v
to T strictly increases the open neighborhood size |N(T)|. Our main insight to
obtain an FPT algorithm is a structural lemma showing that, whenever |N(T)|
becomes sufficiently large in terms of k, we can identify a vertex u that belongs
to the open neighborhood of any k-secluded supertree T ′ ⊇ T . At that point, we
can remove u and decrease k to make progress.

Related Work. Secluded versions of several classic optimization problems have
been studied intensively in recent years [1–3,8,14], many of which are discussed in
Till Fluschnik’s PhD thesis [7]. Marx [15] considers a related problem Cutting

k (connected) vertices, where the aim is to find a (connected) set S of size
exactly k with at most � neighbors. Without the connectivity requirement, the
problem is W[1]-hard by k + �. The problem becomes FPT when S is required
to be connected, but remains W[1]-hard by k and � seperately. Fomin et al. [9]
consider the variant where |S| ≤ k and show that it is FPT parameterized by �.

Organization. We introduce our enumeration framework in Sect. 2. We present
our algorithm that enumerates maximum-weight k-secluded trees in Sect. 3 and
present its correctness and running time analyses. We give some conclusions in
Sect. 4. Proofs marked with � are deferred to the full version [5].

2 Framework for Enumerating Secluded Trees

We consider simple undirected graphs with vertex set V (G) and edge set E(G).
We use standard notation pertaining to graph algorithms, such as presented by
Cygan et al. [4]. When the graph G is clear from context, we denote |V (G)| and
|E(G)| by n and m respectively. The open neighborhood of a vertex set X in a
graph G is denoted by NG(X), where the subscript may be omitted if G is clear
from context. For a subgraph H of G we may write N(H) to denote N(V (H)).
If w : V (G) → N

+ is a weight function, then for any S ⊆ V (G) let w(S) :=∑
v∈S w(s) and for any subgraph H of G we may denote w(V (H)) by w(H).
It is not possible to enumerate all maximum-weight k-secluded trees in FPT

time; consider the graph with n vertices of weight 1 and two vertices of weight n
which are connected by k + 1 vertex-disjoint paths on n/(k + 1) vertices each,
then there are O(k · (n/k)k) maximum-weight k-secluded trees which consist of
all vertices except one vertex out of exactly k paths. However, it is possible to
give one short description for such an exponential number of k-secluded trees.

Definition 1. For a graph G, a description is a pair (r,X) consisting of a
vertex r ∈ V (G) and a set X of pairwise disjoint subsets of V (G − r) such
that for any set S consisting of exactly one vertex from each set X ∈ X , the
connected component H of G−S containing r is acyclic and N(H) = S, i.e., H
is a |X |-secluded tree in G. The order of a description is equal to |X |. We say
that a k-secluded tree H is described by a description (r,X) if N(H) consists of
exactly one vertex of each X ∈ X and r ∈ V (H).

176 H. Donkers et al.

Note that a single k-secluded tree H can be described by multiple descrip-
tions. For example, for a path on v1, . . . , v4 the 1-secluded tree induced
by {v1, v2} is described by (v1, {{v3, v4}}), (v1, {{v3}}), and (v2, {{v3}}). We
define the concept of redundancy in a set of descriptions.

Definition 2. For a graph G, a set of descriptions X of maximum order k is
called redundant for G if there is a k-secluded tree H in G such that H is
described by two distinct descriptions in X. We say X is non-redundant for G
otherwise.

Definition 3. For a graph G and a set of descriptions X of maximum order k,
let TG(X) denote the set of all k-secluded trees in G described by a description
in X.

Note 1. For a graph G we have TG(X1)∪TG(X2) = TG(X1 ∪X2) for any two sets
of descriptions X1,X2.

Note 2. For a graph G, a set of descriptions X, and non-empty vertex sets X1,X2

disjoint from
⋃

(r,X)∈X({r}∪
⋃

X∈X X), the set TG({(r,X ∪{X1∪X2}) | (r,X) ∈
X)} equals TG({(r,X ∪ {X1}) | (r,X) ∈ X)} ∪ (r,X ∪ {X2}) | (r,X) ∈ X)}).

For an induced subgraph H of G and a set F ⊆ V (G), we say that H is a
supertree of F if H induces a tree and F ⊆ V (H). Let Sk

G(F) be the set of all k-
secluded supertrees of F in G. For a set X of subgraphs of G let maxsetw(X) :=
{H ∈ X | w(H) ≥ w(H ′) for all H ′ ∈ X}. We focus our attention to the
following version of the problem, where some parts of the tree are already given.

Enumerate Large Secluded Supertrees (ELSS) Parameter: k
Input: A graph G, a non-negative integer k, non-empty vertex sets T ⊆ F ⊆
V (G) such that G[T] is connected, and a weight function w : V (G) → N

+.
Output: A non-redundant set X of descriptions such that TG(X) =
maxsetw(Sk

G(F)).

Note that if G[T], or even G[F], contains a cycle, then the answer is trivially
the empty set. In the end we solve the general enumeration problem by solving
ELSS with F = T = {v} for each v ∈ V (G) and reporting only those k-secluded
trees of maximum weight. Intuitively, our algorithm for ELSS finds k-secluded
trees that “grow” out of T . In order to derive some properties of the types of
descriptions we compute, we may at certain points demand that certain vertices
non-adjacent to T need to end up in the k-secluded tree. For this reason the
input additionally has a set F , rather than just T .

Our algorithm solves smaller instances recursively. We use the following abuse
of notation: in an instance with graph G and weight function w : V (G) → N

+,
when solving the problem recursively for an instance with induced subgraph G′

of G, we keep the weight function w instead of restricting the domain of w
to V (G′).

Finding k-Secluded Trees Faster 177

Note 3. For a graph G, a vertex v ∈ V (G), and an integer k ≥ 1, if H is a (k−1)-
secluded tree in G−v, then H is a k-secluded tree in G. Consequently, Sk−1

G−v(F) ⊆
Sk

G(F) for any F ⊆ V (G).

Note 4. For a graph G, a vertex v ∈ V (G), and an integer k ≥ 1, if H is a
k-secluded tree in G with v ∈ NG(H), then H is a (k−1)-secluded tree in G−v.
Consequently, {H ∈ Sk

G(F) | v ∈ NG(H)} ⊆ Sk−1
G−v(F) for any F ⊆ V (G).

3 Enumerate Large Secluded Supertrees

Section 3.1 proves the correctness of a few subroutines used by the algorithm.
Section 3.2 describes the algorithm to solve ELSS. In Sect. 3.3 we prove its cor-
rectness and in Sect. 3.4 we analyze its time complexity. In Sect. 3.5 we show how
the algorithm for ELSS can be used to count and enumerate maximum-weight
k-secluded trees containing a specified vertex.

3.1 Subroutines for the Algorithm

Similar to the Feedback Vertex Set algorithm given by Guo et al. [12], we
aim to get rid of degree-1 vertices. In our setting there is one edge case however.
The reduction rule is formalized as follows.

Reduction Rule 1. For an ELSS instance (G, k, F, T, w) with a degree-1 ver-
tex v in G such that F 	= {v}, contracting v into its neighbor u yields the ELSS

instance (G − v, k, F ′, T ′, w′) where the weight of u is increased by w(v) and:

F ′ =

{
(F\{v}) ∪ {u} if v ∈ F

F otherwise
T ′ =

{
(T\{v}) ∪ {u} if v ∈ T

T otherwise.

We prove the correctness of the reduction rule, that is, the descriptions of the
reduced instance form the desired output for the original instance.

Lemma 1 (�). Let I = (G, k, F, T, w) be an ELSS instance. Suppose G con-
tains a degree-1 vertex v such that {v} 	= F . Let I ′ = (G− v, k, F ′, T ′, w′) be the
instance obtained by contracting v into its neighbor u. If X is a non-redundant
set of descriptions for G−v such that TG−v(X) = maxsetw′(Sk

G−v(F ′)), then X is
a non-redundant set of descriptions for G such that TG(X) = maxsetw(Sk

G(F)).

We say an instance is almost leafless if the lemma above cannot be applied,
that is, if G contains a vertex v of degree 1, then F = {v}.

Lemma 2. There is an algorithm that, given an almost leafless ELSS instance
(G, k, F, T, w) such that k > 0 and |NG(T)| > k(k + 1), runs in time O(k · n3)
and either:

1. finds a vertex v ∈ V (G)\F such that any k-secluded supertree H of F in G
satisfies v ∈ NG(H), or

2. concludes that G does not contain a k-secluded supertree of F .

178 H. Donkers et al.

Proof. We aim to find a vertex v ∈ V (G)\F with k+2 distinct paths P1, . . . , Pk+2

from NG(T) to v that intersect only in v and do not contain vertices from T . We
first argue that such a vertex v satisfies the first condition, if it exists. Consider
some k-secluded supertree H of F . Since the paths P1, . . . , Pk+2 are disjoint apart
from their common endpoint v while |NG(H)| ≤ k, there are two paths Pi, Pj

with i 	= j ∈ [k+2] for which Pi\{v} and Pj\{v} do not intersect NG(H). These
paths are contained in H since they contain a neighbor of T ⊆ F ⊆ H. As Pi

and Pj form a cycle together with a path through the connected set T , which
cannot be contained in the acyclic graph H, this implies v ∈ NG(H).

Next we argue that if G has a k-secluded supertree H of F ⊇ T , then there
exists such a vertex v. Consider an arbitrary such H and root it at a vertex t ∈ T .
For each vertex u ∈ NG(T), we construct a path Pu disjoint from T that starts
in u and ends in NG(H), as follows.

– If u /∈ H, then u ∈ NG(H) and we take Pu = (u).
– If u ∈ H, then let �u be an arbitrary leaf in the subtree of H rooted at u;

possibly u = �u. Since T is connected and H ⊇ T is acyclic and rooted in t ∈
T , the subtree rooted at u ∈ NG(T) ∩ H is disjoint from T . Hence �u /∈ T , so
that F 	= {�u}. As the instance is almost leafless we therefore have degG(�u) >
1. Because �u is a leaf of H this implies that NG(�u) contains a vertex y other
than the parent of �u in H, so that y ∈ NG(H). We let Pu be the path from u
to �u through H, followed by the vertex y ∈ NG(H).

The paths we construct are distinct since their startpoints are. Two constructed
paths cannot intersect in any vertex other than their endpoints, since they were
extracted from different subtrees of H. Since we construct |NG(T)| > k(k + 1)
paths, each of which ends in NG(H) which has size at most k, some vertex v ∈
NG(H) is the endpoint of k + 2 of the constructed paths. As shown in the
beginning the proof, this establishes that v belongs to the neighborhood of any
k-secluded supertree of F . Since F ⊆ V (H) we have v /∈ F .

All that is left to show is that we can find such a vertex v in the promised
time bound. After contracting T into a source vertex s, for each v ∈ V (G)\F ,
do k + 2 iterations of the Ford-Fulkerson algorithm in order to check if there
are k + 2 internally vertex-disjoint sv-paths. If so, then return v. If for none of
the choices of v this holds, then output that there is no k-secluded supertree of
F in G. In order to see that this satisfies the claimed running time bound, note
that there are O(n) choices for v, and k + 2 iterations of Ford-Fulkerson runs
can be implemented to run in O(k · (n + m)) time. ��

3.2 The Algorithm

Consider an input instance (G, k, F, T, w) of ELSS. If G[F] contains a cycle,
return ∅. Otherwise we remove all connected components of G that do not contain
a vertex of F . If more than one connected component remains, return ∅. Then,
while there is a degree-1 vertex v such that F 	= {v}, contract v into its neighbor
as per Rule 1. While NG(T) contains a vertex v ∈ F , add v to T . Finally,
if NG(F) = ∅, return {(r, ∅)} for some r ∈ F . Otherwise if k = 0, return ∅.

Finding k-Secluded Trees Faster 179

We proceed by considering the neighborhood of T as follows:

1. If any vertex v ∈ NG(T) has two neighbors in T , then recursively run this
algorithm to obtain a set of descriptions X′ for (G − v, k − 1, F, T, w) and
return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

2. If |NG(T)| > k(k + 1), apply Lemma 2. If it concludes that G does not
contain a k-secluded supertree of F , return ∅. Otherwise let v ∈ V (G)\F be
the vertex it finds, obtain a set of descriptions X′ for (G − v, k − 1, F, T, w)
and return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

3. Pick some v ∈ NG(T) and let P = (v = v1, v2, . . . , v�) be the unique1 maximal
path disjoint from T satisfying degG(vi) = 2 for each 1 ≤ i < � and (v� ∈
NG(T) or degG(v�) > 2).
(a) If v� 	∈ F , obtain a set of descriptions X1 by recursively solving (G −

v�, k − 1, F, T, w). Otherwise take X1 = ∅. (We find the k-secluded trees
avoiding v� but containing P − v�.)

(b) If P−F−v� 	= ∅, obtain a set of descriptions X2 by recursively solving (G−
V (P −v�), k−1, (F\V (P))∪{v�}, T, w). Otherwise take X2 = ∅. (We find
the k-secluded trees containing both endpoints of P which have one vertex
in P as a neighbor.)

(c) If G[F ∪ V (P)] is acyclic, obtain a set of descriptions X3 by recursively
solving (G, k, F ∪ V (P), T ∪ V (P), w). Otherwise take X3 = ∅. (We find
the k-secluded trees containing the entire path P .)

Let M be the set of minimum weight vertices in P − F − v� and define:

X′
1 := {(r,X ∪ {{v�}}) | (r,X) ∈ X1}

X′
2 := {(r,X ∪ {M}) | (r,X) ∈ X2}

X′
3 := X3.

For each i ∈ [3] let wi be the weight of an arbitrary H ∈ TG(X′
i), or 0 if X′

i = ∅.
Return the set X′ defined as

⋃
{i∈[3]|wi=max{w1,w2,w3}} X

′
i.

3.3 Proof of Correctness

In this section we argue that the algorithm described in Sect. 3.2 solves the ELSS
problem. In various steps we identify a vertex v such that the neighborhood of
any (maximum-weight) k-secluded supertree must include v. We argue that for
these steps, the descriptions of the current instance can be found by adding {v}
to every description of the supertrees of T in G − v if some preconditions are
satisfied.

Lemma 3 (�). Let (G, k, F, T, w) be an ELSS instance and let v ∈ V (G)\F .
Let X be a set of descriptions for G−v such that TG−v(X) = maxsetw(Sk−1

G−v(F))
and v ∈ NG(H) for all H ∈ TG−v(X). Then we have:

TG ({(r,X ∪ {{v}}) | (r,X) ∈ X}) = maxsetw{H ∈ Sk
G(F) | v ∈ NG(H)}.

1 To construct P , initialize P := (v = v1); then while degG(v|V (P)|) = 2 and
NG(v|V (P)|)\(V (P) ∪ T) consists of a single vertex, append that vertex to P .

180 H. Donkers et al.

The following lemma is used to argue that the branches of Step 3 are disjoint.

Lemma 4. Let (G, k, F, T, w) be an almost leafless ELSS instance such that
G is connected and NG(F) 	= ∅. Fix some v ∈ NG(T) and let P = (v =
v1, v2, . . . , v�) be the unique maximal path disjoint from T satisfying degG(vi) = 2
for each 1 ≤ i < � and (v� ∈ NG(T) or degG(v�) > 2). Then for any maximum-
weight k-secluded supertree H of F , exactly one of the following holds:

1. v� ∈ N(H) (so v� /∈ F),
2. |N(H) ∩ V (P − F − v�)| = 1 and v� ∈ V (H), or
3. V (P) ⊆ V (H).

Proof. First note that such a vertex v exists since NG(F) 	= ∅ and G is connected,
so NG(T) 	= ∅. Furthermore since the instance is almost leafless, the path P is
well defined. If there is no k-secluded supertree of F , then there is nothing
to show. So suppose H is a maximum-weight k-secluded supertree of F . We
have v ∈ V (P) is a neighbor of T ⊆ F ⊆ V (H), so either V (P) ⊆ V (H) or V (P)
contains a vertex from N(H). In the first case Item 3 holds, in the second case
we have |N(H) ∩ V (P)| ≥ 1. First suppose that |N(H) ∩ V (P)| ≥ 2. Let i ∈ [�]
be the smallest index such that vi ∈ N(H) ∩ V (P). Similarly let j ∈ [�] be
the largest such index. We show that in this case we can contradict the fact
that H is a maximum-weight k-secluded supertree of F . Observe that H ′ =
V (H) ∪ {vi, . . . , vj−1} induces a tree since (vi, . . . , vj−1) forms a path of degree-
2 vertices and the neighbor vj of vj−1 is not in H. Furthermore H ′ has a strictly
smaller neighborhood than H and it has larger weight as vertices have positive
weight. Since F ⊆ V (H ′), this contradicts that H is a maximum-weight k-
secluded supertree of F .

We conclude that |N(H) ∩ V (P)| = 1. Let i ∈ [�] be the unique index such
that N(H) ∩ V (P) = {vi}. Clearly vi /∈ F . In the case that i = �, then Item 1
holds. Otherwise if i < �, the first condition of Item 2 holds. In order to argue that
the second condition also holds, suppose that v� /∈ V (H). Then H∪{vi, . . . , v�−1}
is a k-secluded supertree of F in G and it has larger weight than H as vertices
have positive weight. This contradicts the fact that H has maximum weight,
hence the second condition of Item 2 holds as well. ��

Armed with Lemma 4 we are now ready to prove correctness of the algorithm.

Lemma 5. The algorithm described in Sect. 3.2 is correct.

Proof. Let I = (G, k, F, T, w) be an ELSS instance. We prove correct-
ness by induction on |V (G)\F |. Assume the algorithm is correct for any
input (Ĝ, k̂, F̂ , T̂ , ŵ) with |V (Ĝ)\F̂ | < |V (G)\F |. We prove correctness of the
algorithm up to Step 3. The correctness of Step 3 is proven in the full version [5].

Before Step 1. We first prove correctness when the algorithm terminates before
Step 1, which includes the base case of the induction. Note that if G[F] contains
a cycle, then no induced subgraph H of G with F ⊆ V (H) can be acyclic.
Therefore the set of maximum-weight k-secluded trees containing F is the empty

Finding k-Secluded Trees Faster 181

set, so we correctly return ∅. Otherwise G[F] is acyclic. Clearly any connected
component of G that has no vertices of F can be removed. If there are two
connected components of G containing vertices of F , then no induced subgraph
of G containing all of F can be connected, again we correctly return the empty
set. In the remainder we have that G is connected.

By iteratively applying Lemma 1 we conclude that a solution to the instance
obtained after iteratively contracting (most) degree-1 vertices is also a solution
to the original instance. Hence we can proceed to solve the new instance, which
we know is almost leafless. In addition, observe that the contraction of degree-1
vertices maintains the property that G is connected and G[F] is acyclic.

After exhaustively adding vertices v ∈ NG(T) ∩ F to T we have that G[T]
is a connected component of G[F]. In the case that NG(F) = ∅, then since G is
connected it follows that F = T = V (G) and therefore T is the only maximum-
weight k-secluded tree. For any r ∈ V (G), the description (r, ∅) describes this
k-secluded tree, so we return {(r, ∅)}. In the remainder we have NG(F) 	= ∅.

Since NG(F) 	= ∅ and G is almost leafless, we argue that there is no 0-
secluded supertree of F . Suppose G contains a 0-secluded supertree H of F ,
so |NG(H)| = 0 and since H ⊇ F is non-empty and G is connected we must
have H = G, hence G is a tree with at least two vertices (since F and NG(F) are
both non-empty) so G contains at least two vertices of degree-1, contradicting
that G is almost leafless. So there is no k-secluded supertree of F in G and the
algorithm correctly returns ∅ if k = 0.

Observe that the value |V (G)\F | cannot have increased since the start of
the algorithm since we never add vertices to G and any time we remove a
vertex from F it is also removed from G. Hence we can still assume in the
remainder of the proof that the algorithm is correct for any input (Ĝ, k̂, F̂ , T̂ , ŵ)
with |V (Ĝ)\F̂ | < |V (G)\F |. To conclude this part of the proof, we have estab-
lished that if the algorithm terminates before reaching Step 1, then its output
is correct. On the other hand, if the algorithm continues we can make use of the
following properties of the instance just before reaching Step 1:

Property 1. If the algorithm does not terminate before reaching Step 1 then
(i) the ELSS instance (G, k, F, T, w) is almost leafless, (ii) G[F] is acyclic, (iii)
G[T] is a connected component of G[F], (iv) G is connected, (v) k > 0, and (vi)
NG(F) 	= ∅.

Step 1. Before arguing that the return value in Step 1 is correct, we observe the
following.

Claim 1. If H is an induced subtree of G that contains T and v ∈ NG(T) has
at least two neighbors in T , then v ∈ NG(H).

Proof. Suppose v 	∈ NG(H), then since v ∈ NG(T) and T ⊆ V (H) we have
that v ∈ V (H). But then since T is connected, subgraph H contains a cycle.
This contradicts that H is a tree and confirms that v ∈ NG(H). �

Now consider the case that in Step 1 we find a vertex v ∈ NG(T) with two
neighbors in T , and let X′ be the set of descriptions as obtained by the algorithm

182 H. Donkers et al.

through recursively solving the instance (G − v, k − 1, F, T, w). Since |V (G −
v)\F | < |V (G)\F | (as v 	∈ F) we know by induction that TG−v(X′) is the set of
all maximum-weight (k−1)-secluded supertrees of F in G−v. Any H ∈ TG−v(X′)
is an induced subtree of G with T ⊆ V (H), so by Claim 1 we have v ∈ NG(H)
for all H ∈ TG−v(X′). We can now apply Lemma 3 to conclude that TG({(r,X ∪
{{v}}) | (r,X) ∈ X′}) is the set of all maximum-weight k-secluded supertrees H
of F in G for which v ∈ NG(H). Again by Claim 1 we have that v ∈ NG(H)
for all such k-secluded supertrees of F , hence TG({(r,X ∪ {{v}}) | (r,X) ∈ X′})
is the set of all maximum-weight k-secluded supertrees of F in G. We argue
non-redundancy of the output. Suppose that two descriptions (r,X ∪{{v}}) and
(r′,X ′ ∪ {{v}}) describe the same supertree H of F in G. Note that then (r,X)
and (r′,X) describe the same supertree H of F in G − v, which contradicts
the induction hypothesis that the output of the recursive call was correct and
therefore non-redundant.

Concluding this part of the proof, we showed that if the algorithm terminates
during Step 1, then its output is correct. On the other hand, if the algorithm
continues after Step 1 we can make use of the following in addition to Property 1.

Property 2. If the algorithm does not terminate before reaching Step 2 then no
vertex v ∈ NG(T) has two neighbors in T .

Step 2. In Step 2 we use Lemma 2 if |NG(T)| > k(k + 1). The preconditions of
the lemma are satisfied since k > 0 and the instance is almost leafless by Prop-
erty 1. If it concludes that G does not contain a k-secluded supertree of F , then
the algorithm correctly outputs ∅. Otherwise it finds a vertex v ∈ V (G)\F such
that any k-secluded supertree H of F in G satisfies v ∈ NG(H). We argue
that the algorithm’s output is correct. Let X′ be the set of descriptions as
obtained through recursively solving (G − v, k − 1, F, T, w). Since v 	∈ F we
have |(V (G − v)\F | < |V (G)\F |, so by induction we have that TG−v(X′) is
the set of all maximum-weight (k − 1)-secluded supertrees of F in G − v. Fur-
thermore by Note 3 for any H ∈ TG−v(X′) = Sk−1

G−v(F) we have H ∈ Sk
G(F),

and therefore v ∈ NG(H). It follows that Lemma 3 applies to X′ so we can
conclude that TG({(r,X ∪ {{v}}) | (r,X) ∈ X′}) is the set of maximum-weight
k-secluded supertrees H of F in G for which v ∈ NG(H). Since we know there
are no k-secluded supertrees H of F in G for which v 	∈ NG(H), it follows
that TG({(r,X ∪ {{v}}) | (r,X) ∈ X}) is the set of maximum-weight k-secluded
supertrees of F in G as required. Non-redundancy of the output follows as in
Step 1.

To summarize the progress so far, we have shown that if the algorithm ter-
minates before it reaches Step 3, then its output is correct. Alternatively, if we
proceed to Step 3 we can make use of the following property, in addition to
Properties 1 and 2, which we will use later in the running time analysis.

Property 3. If the algorithm does not terminate before reaching Step 3, then
|NG(T)| ≤ k(k + 1).

Finding k-Secluded Trees Faster 183

Step 3 (�). In the full version [5] we show using Properties 1 to 3 that if the
algorithm reaches Step 3, then its output is correct. For this we use Lemma 4
to argue that the k-secluded supertrees of F in G can be partitioned into three
sets T1, T2, T3. The three recursive calls in Step 3 correspond to the subproblems
of finding the secluded trees in T1, T2, and T3. Each call finds maximum-weight
k-secluded trees of one particular type. Since the latter restriction may cause
the tree to have smaller weight than maximum k-secluded trees in general, the
postprocessing step of the algorithm restricts the output to describe only those
types providing the maximum global weight. ��

3.4 Runtime Analysis

If all recursive calls in the algorithm would decrease k then, since for k = 0 it does
not make any further recursive calls, the maximum recursion depth is k. However
in Step 3(c) the recursive call does not decrease k. In order to bound the recursion
depth, we show the algorithm cannot make more than k(k + 1) consecutive
recursive calls in Step 3(c), that is, the recursion depth cannot increase by more
than k(k+1) since the last time k decreased. This follows from Lemma 6 together
with the fact that if NG(T) > k(k + 1) then the algorithm executes Step 2,
decreases k when it goes into recursion, and does not proceed to Step 3.

Lemma 6 (�). If the recursion tree generated by the algorithm contains a
path of i ≥ 1 consecutive recursive calls in Step 3(c), and (G, k, F, T, w) is the
instance considered in Step 3 where the i-th of these recursive calls is made,
then |NG(T)| ≥ i.

Using this bound on the number of consecutive recursive calls in Step 3(c),
we obtain a maximum recursion depth of O(k3). We argue that each recursive
call takes O(kn3) time and since we branch at most three ways, we obtain a
running time of 3O(k3) · kn3 = 3O(k3) · n3. However, with a more careful analysis
we can give a better bound on the number of nodes in the recursion tree. For this,
label each edge in the recursion tree with a label from the set {1, 2, 3a, 3b, 3c}
indicating where in the algorithm the recursive call took place. Now observe
that each node in the recursion tree can be uniquely identified by a sequence of
edge-labels corresponding to the path from the root of the tree to the relevant
node. We call such a sequence of labels a trace. To bound the number of nodes in
the recursion tree we give a bound on the number of valid traces. Since recursive
calls corresponding to labels 1, 2, 3a, and 3b each decrease k, they can occur at
most k times in a valid trace. All remaining labels in the trace are 3c. So the
total number of traces of length � is

(
�
k

)
· 4k ≤ �k · 4k = (4�)k. Considering valid

traces have a length of at most k2(k + 1) we derive the following bound on the
total number of valid traces using the fact that (kc)k = (2log(k

c))k = 2O(k log k):
∑

1≤�≤k2(k+1)

(4�)k ≤ k2(k + 1) · (4k2(k + 1))k = 2O(k log k).

We can conclude that the total number of nodes in the recursion tree is at
most 2O(k log k) which leads to the following lemma.

184 H. Donkers et al.

Lemma 7 (�). The algorithm described in Sect. 3.2 can be implemented to
run in time 2O(k log k) · n3.

3.5 Finding, Enumerating, and Counting Large Secluded Trees

With the algorithm of Sect. 3.2 at hand we argue that we are able to enumerate
k-secluded trees, count such trees containing a specified vertex, and solve LST.

Theorem 1 (�). There is an algorithm that, given a graph G, weight func-
tion w, and integer k, runs in time 2O(k log k) · n4 and outputs a set of descrip-
tions X such that TG(X) is exactly the set of maximum-weight k-secluded trees
in G. Each such tree H is described by |V (H)| distinct descriptions in X.

By returning an arbitrary maximum-weight k-secluded tree described by any
description in the output of Theorem 1, we have the following consequence.

Corollary 1. There is an algorithm that, given a graph G, weight function w,
and integer k, runs in time 2O(k log k) · n4 and outputs a maximum-weight k-
secluded tree in G if one exists.

The following theorem captures the consequences for counting.

Theorem 2 (�). There is an algorithm that, given a graph G, vertex v ∈
V (G), weight function w, and integer k, runs in time 2O(k log k) · n3 and counts
the number of k-secluded trees in G that contain v and have maximum weight
out of all k-secluded trees containing v.

4 Conclusion

We revisited the k-Secluded Tree problem first studied by Golovach et al. [11],
leading to improved FPT algorithms with the additional ability to count and enu-
merate solutions. The non-trivial progress measure of our branching algorithm
is based on a structural insight that allows a vertex that belongs to the neighbor-
hood of every solution subtree to be identified, once the solution under construc-
tion has a sufficiently large open neighborhood. As stated, the correctness of this
step crucially relies on the requirement that solution subgraphs are acyclic. It
would be interesting to determine whether similar branching strategies can be
developed to solve the more general k-Secluded Connected F-Minor-Free

Subgraph problem; the setting studied here corresponds to F = {K3}. While
any F-minor-free graph is known to be sparse, it may still contain large numbers
of internally vertex-disjoint paths between specific pairs of vertices, which stands
in the way of a direct extension of our techniques.

A second open problem concerns the optimal parameter dependence for k-
Secluded Tree. The parameter dependence of our algorithm is 2O(k log k). Can
it be improved to single-exponential, or shown to be optimal under the Expo-
nential Time Hypothesis?

Finding k-Secluded Trees Faster 185

References

1. van Bevern, R., Fluschnik, T., Mertzios, G.B., Molter, H., Sorge, M., Suchý, O.:
The parameterized complexity of finding secluded solutions to some classical opti-
mization problems on graphs. Discret. Optim. 30, 20–50 (2018). https://doi.org/
10.1016/j.disopt.2018.05.002

2. van Bevern, R., Fluschnik, T., Tsidulko, Y.O.: Parameterized algorithms and data
reduction for the short secluded s-t-path problem. Networks 75(1), 34–63 (2020).
https://doi.org/10.1002/net.21904

3. Chechik, S., Johnson, M.P., Parter, M., Peleg, D.: Secluded connectivity problems.
Algorithmica 79(3), 708–741 (2016). https://doi.org/10.1007/s00453-016-0222-z

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

5. Donkers, H., Jansen, B.M.P., de Kroon, J.J.H.: Finding k-secluded trees faster
(2022). https://doi.org/10.48550/ARXIV.2206.09884

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-
0515-9

7. Fluschnik, T.: Elements of efficient data reduction: fractals, diminishers, weights
and neighborhoods. Ph.D. thesis, Technische Universität Berlin (2020). https://
doi.org/10.14279/depositonce-10134

8. Fomin, F.V., Golovach, P.A., Karpov, N., Kulikov, A.S.: Parameterized complexity
of secluded connectivity problems. Theory Comput. Syst. 61(3), 795–819 (2016).
https://doi.org/10.1007/s00224-016-9717-x

9. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity
of cutting a few vertices from a graph. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 421–432. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40313-2 38

10. Golovach, P.A., Heggernes, P., Lima, P.T., Montealegre, P.: Finding connected
secluded subgraphs. CoRR, abs/1710.10979 (2017). arXiv:1710.10979

11. Golovach, P.A., Heggernes, P., Lima, P.T., Montealegre, P.: Finding connected
secluded subgraphs. J. Comput. Syst. Sci. 113, 101–124 (2020). https://doi.org/
10.1016/j.jcss.2020.05.006

12. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.
02.001

13. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many
leaves. Algorithmica 61(4), 882–897 (2010). https://doi.org/10.1007/s00453-010-
9454-5

14. Luckow, M.-J., Fluschnik, T.: On the computational complexity of length - and
neighborhood-constrained path problems. Inf. Process. Lett. 156, 105913 (2020).
https://doi.org/10.1016/j.ipl.2019.105913

15. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006). https://doi.org/10.1016/j.tcs.2005.10.007

https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1002/net.21904
https://doi.org/10.1007/s00453-016-0222-z
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.48550/ARXIV.2206.09884
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.14279/depositonce-10134
https://doi.org/10.14279/depositonce-10134
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.1007/978-3-642-40313-2_38
https://doi.org/10.1007/978-3-642-40313-2_38
http://arxiv.org/abs/1710.10979
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1007/s00453-010-9454-5
https://doi.org/10.1007/s00453-010-9454-5
https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1016/j.tcs.2005.10.007

186 H. Donkers et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Finding k-Secluded Trees Faster
	1 Introduction
	2 Framework for Enumerating Secluded Trees
	3 Enumerate Large Secluded Supertrees
	3.1 Subroutines for the Algorithm
	3.2 The Algorithm
	3.3 Proof of Correctness
	3.4 Runtime Analysis
	3.5 Finding, Enumerating, and Counting Large Secluded Trees

	4 Conclusion
	References

