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Abstract. We study efficient preprocessing for the undirected Feed-
back Vertex Set problem, a fundamental problem in graph theory
which asks for a minimum-sized vertex set whose removal yields an
acyclic graph. More precisely, we aim to determine for which parame-
terizations this problem admits a polynomial kernel. While a character-
ization is known for the related Vertex Cover problem based on the
recently introduced notion of bridge-depth, it remained an open prob-
lem whether this could be generalized to Feedback Vertex Set. The
answer turns out to be negative; the existence of polynomial kernels
for structural parameterizations for Feedback Vertex Set is governed
by the elimination distance to a forest. Under the standard assumption
NP �⊆ coNP/poly, we prove that for any minor-closed graph class G,
Feedback Vertex Set parameterized by the size of a modulator to G
has a polynomial kernel if and only if G has bounded elimination dis-
tance to a forest. This captures and generalizes all existing kernels for
structural parameterizations of the Feedback Vertex Set problem.

Keywords: Feedback Vertex Set · Kernelization · Elimination distance

1 Introduction

For NP-complete problems, a polynomial time algorithm solving any problem
instance exactly is unlikely to exist. However, as one is often interested in solving
specific instances, one can try to exploit characteristics of problem instances
and develop algorithms that are fast when the input has certain properties. We
therefore associate a parameter with each problem instance. In our context, a
problem instance is a graph for which we ask for the existence of a vertex set
of size at most � having certain properties. Such a parameterized instance can
be denoted with a triple (G, �, k), where we are asking for the existence of a
solution of size at most � for a graph G with parameter k. We say that an
algorithm is fixed parameter tractable (FPT) for such a parameterization if it
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solves any instance (G, �, k) of size n, as described above, in time bounded by
f(k)nO(1) for some computable function f : N → N.

A strongly related field is that of kernelization. This field focuses on reducing
a parameterized instance (G, �, k) in polynomial time to an equivalent instance
(G′, �′, k′) whose size is bounded by a computable function of the parameter. We
speak of a polynomial kernel when this function is a polynomial. It is known that
a decidable parameterized problem is fixed parameter tractable if and only if it
admits a kernelization (cf. [12, Proposition 4.7.1]). In our quest for determining
which parameterizations enable efficient algorithms, it is therefore interesting to
determine those that allow a polynomial kernel.

This paper focuses on polynomial kernels for the undirected Feedback Ver-
tex Set problem, which is an NP-complete problem in graph theory as originally
identified by Karp [21]. For an undirected graph G, a vertex set X ⊆ V (G) is
a feedback vertex set if the graph is acyclic after removal of X. We call a ver-
tex set whose removal yields a graph in some graph class G a G-modulator and
define the deletion distance to G as its minimum size. The Feedback Vertex
Set problem then asks for the minimum size of such a feedback vertex set, or
equivalently, the deletion distance to a forest. For a graph G, we let fvs(G) (the
feedback vertex number of G) denote that minimum size. Our main question
is for which parameterizations the Feedback Vertex Set problem admits a
polynomial kernel.

Before exploring the Feedback Vertex Set problem further, we should
mention the related Vertex Cover problem. It asks for a minimum set of
vertices hitting all edges in a graph. While a kernel in the solution size with a
linear number of vertices can be obtained using various techniques [1,7–9,24],
a polynomial kernel in a structurally smaller parameter was only discovered
in 2011, when Jansen and Bodlaender developed a polynomial kernel in the
feedback vertex number of a graph [18]. From there, many polynomial kernels for
Vertex Cover were discovered in modulators to even larger graph classes [4,13,
15,23]. In 2020, Bougeret, Jansen and Sau proved the following characterization
under common hardness assumptions: Vertex Cover admits a polynomial
kernel in the size of a modulator to a minor-closed graph family G if and only
if G has bounded bridge-depth [3]. With this result, they generalized all existing
work on kernels in the size of modulators to minor-closed graph families, and they
proved that their results cannot be improved further under common hardness
assumptions.

For Feedback Vertex Set, the first polynomial kernel with size bound
O(k11) was obtained in 2006 and it was subsequently improved to a quadratic
kernel [2,6,26]. After the improvements for Vertex Cover, researchers also
tried to develop polynomial kernels in smaller parameters for Feedback Ver-
tex Set [17,20,22]. It remained an open problem whether these results could
be generalized further or whether there exists some parameter that characterizes
Feedback Vertex Set similarly to how bridge-depth characterizes Vertex
Cover. In particular, Bougeret, Jansen and Sau suggested in their paper on
Vertex Cover that the deletion distance to constant bridge-depth might also
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be an interesting parameter to consider for problems such as Feedback Ver-
tex Set. We therefore aim to answer the question for which graph families G
the Feedback Vertex Set problem admits a polynomial kernel when param-
eterized by the size of a G-modulator.

Our Results. To our initial surprise, the results for Vertex Cover cannot be
generalized to Feedback Vertex Set. It turns out that a minor-closed graph
family G must have bounded elimination distance to a forest (Definition 1), in
order to allow a polynomial kernel in a G-modulator. This concept was introduced
by Bulian and Dawar [5] and is another generalization of the more common
parameter treedepth [25]. The elimination distance to a forest is the minimum
number of rounds needed to transform the graph into a forest when removing one
vertex from each connected component in each round. Our result is described in
Theorem 1. Proofs of statements marked (�) are deferred to the full version [10].

Theorem 1 (�). Assume NP �⊆ coNP/poly and let G be a minor-closed graph
family. Then Feedback Vertex Set admits a polynomial kernel in the size of
a G-modulator if and only if G has bounded elimination distance to a forest.

The minor-closed and hardness assumptions are only needed for the lower
bound. To the best of our knowledge, our kernel generalizes all known polyno-
mial kernels for the Feedback Vertex Set problem. Both the kernel and its
correctness proof follow the structure of the kernel for F-Minor Free Dele-
tion in the deletion distance to a graph of constant treedepth by Jansen and
Pieterse [20]. The correctness proof of their kernel crucially relies on their Lemma
3 whose technical proof spans thirty pages. We require a variation of this lemma.
On the one hand, our variation is more involved since it deals with elimination
distance to a forest rather than treedepth; on the other hand, it is simpler since
it concerns only Feedback Vertex Set rather than F-Minor Free Dele-
tion. As a result of this simplification, we can formulate the lemma without
the use of minors. Roughly speaking, the lemma says that in a graph G of
bounded elimination distance to a forest, if no minimum feedback vertex set
exists which simultaneously hits a prescribed set of partial cycles (single vertices
in a set S or paths between two terminals in a set T ), then the same holds for
some sets S∗ ⊆ S and T ∗ ⊆ T of constant size. As shown in previous work,
this limited sensitivity with respect to whether optimal solutions can break all
partial forbidden structures is crucial for the kernelization complexity. As one
of our main contributions, we prove this lemma using a strategy that differs
significantly from the one followed in earlier work [20].

Lemma 1 (�). Let G be a connected graph with disjoint vertex sets S, T ⊆
V (G). Suppose that any minimum feedback vertex set X of G misses some vertex
from S or leaves two vertices from T connected in G − X. Then there exist sets
S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on the elimination distance to a
forest of G, such that any minimum feedback vertex set X of G misses some
vertex from S∗ or leaves two vertices from T ∗ connected in G − X.
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Once Lemma 1 is proven, the kernelization upper bounds follow similarly
to earlier work [20]. As for the lower bound in Theorem 1, we are also able to
generalize our proof for other F-Minor Free Deletion problems as described
in Theorem 2.

Theorem 2 (�). Let G be a minor-closed family of graphs and let F be a finite
set of biconnected planar graphs on at least three vertices. If G has unbounded
elimination distance to an F-minor free graph, then F-Minor Free Deletion
does not admit a polynomial kernel in the size of a G-modulator, unless NP ⊆
coNP/poly.

Organization. Section 2 introduces all relevant terminology. Section 3 presents
our kernel and thereby proves the ‘if’ direction of Theorem 1. Then Sect. 4 con-
tains the proof of Theorem 2, thereby also proving the ‘only if’ direction of
Theorem 1. Lastly, Sect. 5 contains our conclusions and discusses future work.

2 Preliminaries

For a positive integer n, we use the shorthand [n] for the set of all natural
numbers i with 1 ≤ i ≤ n. All graphs we consider are finite, undirected and
simple. When G is a graph, we let V (G) denote the vertex set of G and E(G)
the edge set. For S ⊆ V (G), the graph G − S is the graph where all vertices in
S and all incident edges are removed, and the graph G[S] is the subgraph of G
induced by the vertices in S. When an edge exists between two vertices in G,
we say that these vertices are adjacent. The neighbors of v in G, denoted with
NG(v), are the vertices adjacent to a vertex v ∈ V (G) in G. For S ⊆ V (G), we
say that v ∈ V (G − S) is adjacent to S if there exists some edge between v and
a vertex in S. The set NG(S) contains all vertices v ∈ V (G − S) for which this
holds. We will sometimes slightly abuse notation and speak of a vertex being
adjacent to some subgraph, rather than to the vertices in that subgraph. We
say that two vertices are connected in G when they are in the same connected
component. The set cc(G) denotes the set of connected components (or shortly
components) of G. For sets S, T ⊆ V (G), we say that S separates T if each
component of G − S contains at most one vertex from T . Notice that we do not
require S and T to be disjoint. Such a set S is a vertex multiway cut of T in G.
We use the notation Oη(f(n)) to describe the functions in η and n which can be
bounded by g(η) · f(n) for some computable function g.

A concept that will be used extensively is the concept of graph minors. This
uses the notion of edge contraction. When uv is an edge in a graph G, contracting
this edge replaces vertices u and v by a new vertex whose set of neighbors is
NG({u, v}). Now H is a minor of G if H can be obtained from G by removing
vertices, removing edges and contracting edges. Alternatively, one can define H
to be a minor of G if there exists a minor model φ : V (H) → 2V (G), such that
for any v ∈ V (H) the graph G[φ(u)] is connected, for any distinct u, v ∈ V (H)
we have φ(u) ∩ φ(v) = ∅, and for any edge uv in H there exists an edge between
a vertex in φ(u) and a vertex in φ(v) in G.
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A graph G has an H-minor for a set of graphs H if G contains some graph
H ∈ H as a minor. For a minor model φ of H in G and a set S ⊆ V (H), we
use the shorthand notation φ(S) :=

⋃
v∈S φ(v). We say that a minor model φ

of H in G is minimal, if there does not exist a minor model φ′ of H in G with
φ′(V (H)) � φ(V (H)). A minor model φ of H in G and a minor model φ′ of H ′

in G intersect if φ(V (H)) ∩ φ′(V (H ′)) �= ∅.

2.1 Elimination Distance

Our work relies crucially on the concept of elimination distance as introduced
by Bulian and Dawar [5].

Definition 1 (Elimination distance). Let G be a graph and G a graph family.
Then the elimination distance of G to G is

edG(G) =

⎧
⎪⎨

⎪⎩

0 if G ∈ G,
maxG′∈cc(G) edG(G′) if |cc(G)| > 1,
minv∈V (G) edG(G − {v}) + 1 otherwise.

We only consider graph families G that are minor-closed. We use the shorthand
GF for the graph family containing precisely all forests. We say that a graph
family G has bounded elimination distance to some graph class H if there is a
constant c ∈ N such that all graphs G ∈ G satisfy edH(G) ≤ c. The elimination
distance of a graph G to the empty graph is called the treedepth of G and is
denoted with td(G). More intuitively, the elimination distance to a graph class
G can be interpreted as the minimum number of ‘elimination iterations’ that are
necessary to obtain a graph where every connected component is in G. In such an
iteration, one is allowed to remove one vertex from each connected component.
This interpretation leads to the notion of an elimination forest.

Definition 2 (G-elimination forest). Let G be a graph and G a graph family.
A G-elimination forest of G is a tuple

(
F, (Bu)u∈V (F )

)
where F is a rooted forest

and where each vertex v ∈ V (F ) has a bag Bv ⊆ V (G) such that:

– The bags define a partition of V (G), i.e. for any vertex v ∈ V (G) there is a
unique vertex u ∈ V (F ) with v ∈ Bu.

– For any non-leaf u of F , its bag Bu contains precisely one vertex.
– For any leaf u of F , the graph G[Bu] is connected and G[Bu] ∈ G.
– For any edge uv in G, let s, t ∈ V (F ) be the vertices such that u ∈ Bs and

v ∈ Bt. Then s is an ancestor of t, or t is an ancestor of s in F .

We define the height of an elimination forest F to be the maximum number
of edges on a path from the root to a leaf in F . One can prove with induction
that this height is equal to the elimination distance we defined earlier.

We will use these elimination forests extensively for our kernel and therefore
introduce some shorthand notation. Let (F, (Bu)u∈V (F )) be a G-elimination for-
est. Let v be a vertex in F . The tail of v, denoted with tail(v), is defined as the
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union of Bu over all proper ancestors u of v. The closed tail tail[v] also includes
Bv. Similarly, tree(v) denotes the union of Bu over all proper descendants u
of v and tree[v] also includes Bv. The subgraph of G induced by all vertices in
tree[v] is denoted with Gv. We will sometimes slightly abuse notation and use
Gv as a vertex set. We use the shorthand G+

v to describe the induced subgraph
on the vertices in tree[v] ∪ tail[v].

We will also introduce the notion of bridge-depth as introduced by Bougeret,
Jansen and Sau [3]. A bridge in a graph G is an edge whose removal increases the
number of connected components of G. The concept of bridge-depth now allows
us to delete a set of vertices S as long as G[S] is connected and each edge in
G[S] is a bridge in G. Such a structure G[S] is called a tree of bridges. Observe
that a single vertex is always a tree of bridges.

Definition 3 (Bridge-depth). Let G be a graph. The bridge-depth of G is
defined as

bd(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if G is the empty graph,
max

G′∈cc(G)
bd(G′) if |cc(G)| > 1,

min
S⊆V (G):

G[S] is a tree of bridges

bd(G − S) + 1 otherwise.

Cf. [3] for equivalent definitions. Lastly, we sometimes use the more common
concept of treewidth. The treewidth of a graph G is denoted with tw(G). We
mention some useful properties of these concepts in Proposition 1.

Proposition 1 (�). Let G be a graph with GF -elimination forest(
F, (Bu)u∈V (F )

)
and let η be an integer such that edGF

(G) ≤ η. Let X be a
minimum feedback vertex set in G and let v be a leaf in F . Then the following
claims hold.

1. tw(G) ≤ bd(G) ≤ edGF
(G) + 1.

2. X contains at most η vertices from Bv.
3. If there exists a path in G from a vertex in Bv to a vertex outside Bv, then

this path contains a vertex in tail(v).
4. Let u ∈ V (F ), then u has at most η children c where X ∩ Gc is not a minimum

feedback vertex set in Gc.

3 Kernelization Upper Bounds

Our kernel follows the structure of the polynomial kernel for F-Minor Free
Deletion when parameterized by a treedepth-η modulator for some integer
η [20]. Our kernel relies crucially on the reduction rule specified in Lemma 2.

Lemma 2 ( � Cf. [20], Lemma 6). There is a polynomial-time algorithm that,
given a graph G with modulator X ⊆ V (G) such that edGF

(G − X) ≤ η for a
constant η, outputs an induced subgraph G′ of G together with an integer Δ such
that fvs(G) = fvs(G′) + Δ and G′ − X has at most |X|Oη(1) components.



164 D. Dekker and B. M. P. Jansen

We can use this reduction rule to obtain a graph G′ where G′ − X has
a bounded number of connected components. We can then identify a set of
vertices Y ⊆ V (G′ − X) with |Y | ≤ |X|Oη(1) such that edGF

(G′ − X − Y ) < η.
By definition of elimination distance, every connected component C of G′ − X
contains a vertex whose removal decreases edGF

(C). As we limited the number of
connected components by applying Lemma 2, these vertices constitute a suitable
set Y . Now observe that X ∪ Y is a modulator to a graph with elimination
distance to a forest η−1 and that |X∪Y | is bounded by a polynomial in |X|. One
can therefore provide an inductive argument which repeatedly applies Lemma 2
and increases the modulator such that the elimination distance to a forest of
the remaining graph decreases every iteration. Once we obtain a modulator to
a graph with elimination distance to a forest 1 (which is a forest), we can apply
a known polynomial kernel in the size of a feedback vertex set [16].

The reduction rule of Lemma 2 follows from the following key lemma using
known techniques. We therefore focus our attention on the proof of Lemma 1.

Lemma 1 (�). Let G be a connected graph with disjoint vertex sets S, T ⊆
V (G). Suppose that any minimum feedback vertex set X of G misses some vertex
from S or leaves two vertices from T connected in G − X. Then there exist sets
S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on the elimination distance to a
forest of G, such that any minimum feedback vertex set X of G misses some
vertex from S∗ or leaves two vertices from T ∗ connected in G − X.

We can split up Lemma 1 into two parts. Lemma 3 will bound the number
of vertices in the GF -elimination tree that contain a vertex in S or T . This
part corresponds to the original treedepth formulation in [20, Lemma 3], but is
significantly simplified for our restricted setting. Lemma 4 bounds the number of
vertices in S and T in a bag of the elimination tree. This covers the generalization
to elimination distance to a forest and concludes the proof of Lemma 1. In the
full version [10], we show how these lemmas imply Lemma 1.

Lemma 3. Let G be a connected graph with disjoint vertex sets S, T ⊆ V (G).
Let

(
R, (Bu)u∈V (R)

)
be a GF -elimination tree of G of height η. Suppose that

any minimum feedback vertex set X of G misses a vertex from S or leaves two
vertices from T connected. Then this also holds for some subsets S∗ ⊆ S and
T ∗ ⊆ T , such that any vertex in the elimination tree has at most 3η · 2η children
u for which Gu contains a vertex from S∗ or T ∗.

Proof. In analogy to the original formulation in [20], a labeled vertex is a vertex
in S or T . When we remove a label from a vertex, we remove the vertex from
S and T while the vertex remains in the graph. Suppose that we pick S∗ and
T ∗ such that no minimum feedback vertex set contains S∗ and separates T ∗,
while the latter property does not hold for any other pair of sets S′, T ′ with
S′ ⊆ S∗ and T ′ ⊆ T ∗. We claim that for such sets S∗ and T ∗, any vertex in the
elimination tree R has at most 3η ·2η children u for which Gu contains a labeled
vertex. We will also refer to the set T ∗ as the set of terminals.
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Assume towards a contradiction that vertex v has more child subtrees with
labels. Let these children be c1, . . . , c�. For each of these children ci, there exists
a minimum feedback vertex set Xi in G that witnesses the fact that the labels
cannot be removed from Gci

. This set Xi will therefore miss a vertex in S∗ ∩Gci

or leave a vertex in T ∗ ∩ Gci
connected to some other vertex in T ∗, while Xi

contains all vertices in S∗\Gci
and separates all vertices in T ∗\Gci

. Define Zi :=
tail[v]\Xi.

Now fix a set Z ⊆ tail[v]. We will bound the number of children ci for which
Zi = Z by 3η. Suppose towards a contradiction that there are 3η + 1 of these
children. Let C be the set containing these vertices. Pick some child cj ∈ C and
observe the following.

– By Proposition 1.4, there are at most η children ci ∈ C where Xj ∩Gci
is not

a minimum feedback vertex set in Gci
.

– There are at most η children ci ∈ C with i �= j such that a terminal in Gci
is

connected to a vertex in Z in G+
ci

− Xj , i.e. (recall the notation in Sect. 2.1)
in the induced subgraph on the remaining vertices in the subtree and tail of
ci. Otherwise, two children other than cj have a terminal connected to the
same vertex in Z, while Xj separates all terminals outside Gcj

.
– There are at most η − 1 children ci ∈ C such that in G+

ci
− Xj , there exists a

path between distinct vertices in Z that uses some vertex in Gci
. Otherwise,

we claim that we can directly construct a cycle in G − Xj . Consider for
example the auxiliary (multi)graph on vertex set Z which contains, for each
child ci ∈ C for which G+

ci
−Xj contains such a path, say between z1, z2 ∈ Z,

one edge z1z2. This auxiliary graph contains a cycle since it has too many
edges to be acyclic, which implies that there exists a cycle in G − Xj .

Pick a child ck ∈ C which is neither cj nor in the list of 3η − 1 children above.
As |C| > 3η, such a vertex exists. By the first item above, we can deduce that
Xj ∩ Gck

is a minimum feedback vertex set in Gck
. Besides, this set contains

S∗ ∩ Gck
, it separates all terminals in T ∗ ∩ Gck

, and it separates T ∗ ∩ Gck
from

Z. Furthermore, no path exists in G+
ck

− Xj that connects two vertices in Z and
also contains some vertex in Gck

.

Claim 1 (�). The set X ′ := (Xk\Gck
)∪(Xj ∩Gck

) is a minimum feedback vertex
set in G which contains S∗ and separates T ∗.

Claim 1 contradicts that any minimum feedback vertex set in G misses a
vertex in S∗ or leaves two vertices in T ∗ connected. We conclude that there are
at most 3η children ci of v for which a witnessing minimum feedback vertex set
has Zi = Z. As there are at most 2η subsets of tail[v] for any non-leaf v, this
leads to the bound of at most 3η · 2η children for which the labels cannot be
removed. 
�
Lemma 4. Let G be a connected graph with disjoint vertex sets S, T ⊆ V (G).
Let

(
R, (Bu)u∈V (R)

)
be a GF -elimination tree of G of height η. Suppose that

any minimum feedback vertex set X of G misses a vertex from S or leaves two
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vertices from T connected. Then this also holds for some subsets S∗ ⊆ S and
T ∗ ⊆ T , such that for any leaf u in the elimination tree, the set Bu contains at
most η vertices from S∗ and at most O(η2) from T ∗.

Proof. Pick some leaf v of elimination tree R, for which we want to ensure
that there are O(η2) vertices with labels among vertices in Y := Bv. Define
SY := S ∩ Y and TY := T ∩ Y . Our goal is to obtain subsets S∗

Y ⊆ SY and
T ∗

Y ⊆ TY whose sizes are O(η2), such that every minimum feedback vertex set
misses a vertex from S∗

Y ∪ (S\Y ) or leaves a pair of terminals in T ∗
Y ∪ (T\Y )

connected. By applying this operation to all leaves of the elimination tree, we
obtain the sets promised by Lemma 4.

The construction of S∗
Y is straightforward. If |SY | > η + 1, we let S∗

Y be an
arbitrary subset of SY of size η + 1. Otherwise, S∗

Y = SY .

Claim 2. Let X be a minimum feedback vertex set in G. If X misses a vertex
in S, then it also misses a vertex in S∗

Y ∪ (S\Y ).

Proof. If X misses a vertex in S\Y , then the implication is trivial. Therefore
assume X misses a vertex in SY . If this vertex is not in S∗

Y , then |S∗
Y | = η + 1

by construction. By Proposition 1.2, we know that |X ∩ S∗
Y | ≤ η so X misses a

vertex in S∗
Y . �

For the construction of T ∗
Y we distinguish two cases. First, we assume that TY

cannot be separated with η vertices in G[Y ] and make the following observation.

Proposition 2 (�). Let G be a tree and T ⊆ V (G). If T cannot be separated
with η vertices, then there exist η + 1 vertex-disjoint paths whose endpoints are
distinct vertices in T .

We define T ∗
Y by taking the 2η + 2 endpoints of the paths guaranteed by

Proposition 2. Observe that these vertices are all in TY .

Claim 3. Suppose that TY cannot be separated with η vertices in G[Y ]. Let
X be a minimum feedback vertex set in G. Then X leaves two vertices in T ∗

Y

connected.

Proof. By Proposition 1.2, X can only intersect η of the η + 1 vertex-disjoint
paths that were obtained through Proposition 2. Therefore, at least one path is
disjoint from X, so its endpoints in T ∗

Y are connected in G − X. �

It remains to consider the case where TY can be separated with η vertices. Let
Z be a vertex multiway cut of TY in G[Y ] with |Z| ≤ η and let C := cc(G[Y ]−Z).
Observe that each of these connected components is a tree with at most one
vertex in TY . Let CT ⊆ C be the set of components that contain a vertex in TY .
We are now going to mark components. For each z ∈ Z, mark η +2 components
in CT that are adjacent to z in G[Y ], or all if there are fewer. Similarly, for each
u ∈ tail(v) we mark up to η+2 components in CT that are adjacent to v in G+

v .
Then we define T ∗

Y to be the union of all vertices in TY in the marked components,
together with Z ∩ TY . These are at most η(η + 2) + η(η + 2) + η = O(η2)
vertices.
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Claim 4. Suppose that TY can be separated with η vertices in G[Y ]. Let X be
a minimum feedback vertex set in G and suppose that X leaves two vertices in
T connected. Then X also leaves two vertices in T ∗

Y ∪ (T\Y ) connected.

Proof. Let Z be the vertex multiway cut used in the construction of T ∗
Y and let

t1, t2 ∈ T be two terminals that are connected in G − X. If they are both in
T ∗

Y ∪ (T\Y ), then the implication is trivial, so assume that t1 ∈ TY but not in
T ∗

Y . Observe that therefore t1 �∈ Z. Let P be a path from t1 to t2 in G − X and
let z be the first vertex on this path that is not in G[Y ]−Z. We now distinguish
two cases. If z ∈ Z, then observe that t1 was in a component in CT that was not
marked. Then there are η + 2 marked components in CT adjacent to z in G[Y ]
of which the terminals are in T ∗

Y . Only η of these components can be intersected
by X by Proposition 1.2, so there exists a path between two terminals in T ∗

Y in
G[Y ]. If z �∈ Z, then we obtain that z ∈ tail(v) by Proposition 1.3 and the case
follows analogously. �

This concludes the construction of the sets S∗
Y and T ∗

Y . If any minimum
feedback vertex set in G misses a vertex in S or leaves a pair of terminals in
T connected, then it also misses a vertex in S∗

Y ∪ (S\Y ) or leaves a pair of
terminals in T ∗

Y ∪ (T\Y ) connected. By applying this operation to all leaves of
the elimination tree, we obtain the promised sets S∗ and T ∗ which concludes
the proof of Lemma 4. 
�

With Lemma 3 and Lemma 4 proven, we conclude the proof of Lemma 1:
if any minimum feedback vertex set in a graph G misses a vertex from a set
S ⊆ V (G) or leaves two terminals in a set T ⊆ V (G) connected, then this
property also holds for sets S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on
edGF

(G). This is the key ingredient for the proof of Lemma 2, which leads to
the kernel upper bound.

4 Kernelization Lower Bounds

In this section we summarize the main ideas behind the lower bound. We first
introduce the notion of a necklace, which turns out to be a crucial structure.

Definition 4. Let G be a graph and let F be a collection of connected graphs.
G is an F-necklace of length t if there exists a partition of V (G) into S1, . . . , St

such that

– G[Si] ∈ F for each i ∈ [t] (these subgraphs are the beads of the necklace),
– G has precisely one edge between Si and Si+1 for each i ∈ [t − 1],
– G has no edges between any other pair of sets Si and Sj.

When the length of the necklace is not relevant, we simply speak of an F-
necklace. The following definition specifies a special type of necklace.

Definition 5. Let F be a collection of connected graphs. Let G be an F-necklace
of length t. We say that G is a uniform necklace if it satisfies two additional
conditions.
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– There exists a graph H ∈ F such that each bead G[Si] is isomorphic to H.
– There exist x, y ∈ V (H) and graph isomorphisms fi : V (H) → V (G[Si]) for

each bead G[Si], such that for each i ∈ [t − 1], the edge between G[Si] and
G[Si+1] has precisely the endpoints fi(x) and fi+1(y).

These concepts are used to derive the following characterization. We say that
a set contains arbitrarily long necklaces if there does not exist a constant c such
that each necklace in the set has length at most c.

Lemma 5 (�). Let F be a finite collection of connected planar graphs. Any
minor-closed graph family G with unbounded elimination distance to an F-minor
free graph contains arbitrarily long uniform F-necklaces.

Then we will prove the following lemma by giving a reduction from CNF
Satisfiability parameterized by the number of variables [11].

Lemma 6 (�). Let F be a finite set of biconnected planar graphs on at least
three vertices and let G be a minor-closed graph family. If G contains arbitrarily
long uniform F-necklaces, then F-Minor Free Deletion does not admit a
polynomial kernel in the size of a G-modulator, unless NP ⊆ coNP/poly.

Lemma 5 and Lemma 6 together directly imply Theorem 2. We will explain
the main ideas of the proof of Lemma 5 here. Our proof follows the proof by
Bougeret et al. when they characterize graph families with unbounded bridge-
depth [3]. Similar to their work, we define nmF (G) to be the length of the
longest F-necklace that a graph G contains as a minor for a family of connected
graphs F . Our goal is now to prove the existence of a small set X such that
nmF (G − X) < nmF (G) as described in Lemma 7.

Lemma 7 (�). Let F be a collection of connected planar graphs. Then there
exists a polynomial function fF : N → N such that for any connected graph G
with nmF (G) = t, there exists a set X ⊆ V (G) with |X| ≤ fF (t) such that
nmF (G − X) < t.

Bougeret et al. showed that one can derive a bounding function when the
considered structures satisfy the Erdős-Pósa property [3]. This also is the case
for F-necklaces when the graphs in F are connected and planar, so this approach
would be suitable for our purposes as well. To derive a polynomial bound on the
size of X, we use a different argument that uses treewidth and grid minors. We
start with the following property of planar graphs.

Proposition 3 (�). Any planar graph G on n vertices is a minor of the 4n×4n
grid.

Together with the Excluded Grid Theorem, this leads to the following
treewidth bound.

Lemma 8 (�). Let F be a collection of connected planar graphs of at most n
vertices each. There exists a polynomial f : N → N with f(g) = O(g19poly log g)
such that for any graph G with nmF (G) = t, it holds that tw(G) < f(4n(t+1)).
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To use this treewidth bound, we need a property similar to [3, Lemma 4.6].

Proposition 4 (�). For any family of connected graphs F and connected graph
G with nmF (G) > 0, any pair of minor models of F-necklaces of length nmF (G)
in G must intersect.

Proposition 4 is a generalization of the idea that in any connected graph,
two paths of maximum length must intersect at a vertex. Given a graph G with
a tree decomposition, we can use this property to identify a vertex in the tree
decomposition such that the removal of all vertices in its bag decreases nmF (G).
This result is described in Lemma 9.

Lemma 9 (�). Let F be a collection of connected graphs. Let G be a connected
graph with tw(G) = w and nmF (G) = t. Then there exists a set Z ⊆ V (G) with
|Z| ≤ w + 1 such that nmF (G − Z) < t.

The proof of Lemma 7 follows directly by combining Lemma 8 and Lemma 9.
An inductive argument, analogous to [3, Theorem 4.8], remains to use this result
to prove Lemma 5.

5 Conclusion and Discussion

We conclude that the elimination distance to a forest characterizes the Feed-
back Vertex Set problem in terms of polynomial kernelization. For a minor-
closed graph family G, the problem admits a polynomial kernel in the size of
a G-modulator if and only if G has bounded elimination distance to a forest,
assuming NP �⊆ coNP/poly. In particular, this implies that Feedback Vertex
Set does not admit a polynomial kernel in the deletion distance to a graph of
constant bridge-depth under the mentioned hardness assumption. We also gen-
eralize the lower bound to other F-Minor Free Deletion problems where F
contains only biconnected planar graphs on at least three vertices. It remains
unknown whether such a lower bound also generalizes to collections of graphs F
that contain non-planar graphs.

An interesting open problem is whether similar polynomial kernels can be
obtained for other F-Minor Free Deletion problems. Regarding the field of
fixed parameter tractable algorithms, it was recently shown [19] that for any
set F of connected graphs, F-Minor Free Deletion admits an FPT algo-
rithm when parameterized by the elimination distance to an F-minor free graph
(or even H-treewidth when H is the class of F-minor free graphs). This gener-
alizes known FPT algorithms for the natural parameterization by solution size.
Regarding polynomial kernels, F-Minor Free Deletion problems admit a
polynomial kernel in the solution size when F contains a planar graph [14]. Do
polynomial kernels exist when the problem is parameterized by a modulator to
a graph of constant elimination distance to being F-minor free?
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