
An Empirical Evaluation of the Usefulness
of Word Embedding Techniques in Deep
Learning-Based Vulnerability Prediction

Ilias Kalouptsoglou1,2(B) , Miltiadis Siavvas1 , Dionysios Kehagias1 ,
Alexandros Chatzigeorgiou2 , and Apostolos Ampatzoglou2

1 Centre for Research and Technology Hellas, Thessaloniki, Greece
{iliaskaloup,siavvasm,diok}@iti.gr

2 University of Macedonia, Thessaloniki, Greece
achata.ampatzoglou@uom.edu.gr

Abstract. Software security is a critical consideration for software
development companies that want to provide their customers with high-
quality and dependable software. The automated detection of software
vulnerabilities is a critical aspect in software security. Vulnerability pre-
diction is a mechanism that enables the detection and mitigation of soft-
ware vulnerabilities early enough in the development cycle. Recently the
scientific community has dedicated a lot of effort on the design of Deep
learning models based on text mining techniques. Initially, Bag-of-Words
was the most promising method but recently more complex models have
been proposed focusing on the sequences of instructions in the source
code. Recent research endeavors have started utilizing word embedding
vectors, which are widely used in text classification tasks like semantic
analysis, for representing the words (i.e., code instructions) in vector for-
mat. These vectors could be trained either jointly with the other layers
of the neural network, or they can be pre-trained using popular algo-
rithms like word2vec and fast-text. In this paper, we empirically examine
whether the utilization of word embedding vectors that are pre-trained
separately from the vulnerability predictor could lead to more accurate
vulnerability prediction models. For the purposes of the present study,
a popular vulnerability dataset maintained by NIST was utilized. The
results of the analysis suggest that pre-training the embedding vectors
separately from the neural network leads to better vulnerability predic-
tors with respect to their effectiveness and performance.

Keywords: Software security · Vulnerability prediction · Deep
learning · Natural language processing · Word embedding vectors

1 Introduction

Vulnerability Prediction (VP) techniques aim to identify the software compo-
nents that are more likely to contain vulnerabilities. Vulnerability prediction

c© The Author(s) 2022
E. Gelenbe et al. (Eds.): EuroCybersec 2021, CCIS 1596, pp. 23–37, 2022.
https://doi.org/10.1007/978-3-031-09357-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09357-9_3&domain=pdf
http://orcid.org/0000-0002-5118-2508
http://orcid.org/0000-0002-3251-8723
http://orcid.org/0000-0002-6912-3493
http://orcid.org/0000-0002-5381-8418
http://orcid.org/0000-0002-5764-7302
https://doi.org/10.1007/978-3-031-09357-9_3


24 I. Kalouptsoglou et al.

models (VPMs) are typically built using machine learning (ML) techniques that
use software attributes as input to differentiate between vulnerable and clean (or
neutral) software components. Several VPMs have been proposed over the years,
each of which uses different software factors as inputs to predict the presence
of vulnerable components [1]. Text mining-based techniques have been found
to be the most reliable, according to the bibliography [2] and have attracted
the most of the recent research interest [3–10]. The first attempts in the field
of vulnerability prediction using text mining, have focused on the concept of
Bag-of-Words (BoW) as a method for predicting software vulnerabilities using
the text terms and their respective appearance frequencies in the source code.
Recently, researchers have shifted their focus from simple BoW to more com-
plex approaches, investigating whether more complex textual patterns in the
source code could lead to more accurate vulnerability prediction. In particular,
the authors in [4,5,8] transformed the source code into sequences of word tokens
and trained deep neural networks capable of learning sequences of data

When using sequences of tokens to identify software components with vul-
nerabilities, vulnerability prediction has a lot in common with text classification
tasks such as sentiment analysis [11]. The word embedding vectors are com-
monly used in the field of text classification. Word embedding is a term used to
describe the representation of words for text analysis, typically in the form of
a real-valued vector that encodes the meaning of the word in such a way that
words that are close in the vector space are expected to have similar meanings.
Most of the studies about VP make use of the word embeddings [4–6,12].

Tokens can be embedded into vectors in a variety of ways. One option is to
use an embedding layer that is jointly trained with the vulnerability prediction
task [13]. Another method is to use an external word embedding tool, such as
word2vec [14], to generate vector representations of each token. One can also use
the vectors that are already generated from these tools (e.g. word2vec, Glove [15],
Fast-text [16]) based on natural language documents of billions of words. Finally,
there is also the option to produce custom embedding representations.

The purpose of this study is to emerge the worth of the sophisticated embed-
ding algorithms (e.g., word2vec, fast-text) in text mining-based vulnerability
prediction showing their contribution to the effectiveness and the efficiency of
the VPMs and to compare them with the use of a trainable embedding layer that
updates its values during the training of the VP classifier. A dataset has been
collected and an experimental analysis has been conducted by comparing the
use of a simple embedding layer with the utilization of word2vec and fast-text
algorithms. We also compare the word2vec and fast-text algorithms with each
other. Finally, we compare our best model with a state-of-the-art model.

The remainder of the paper is organized as follows. Section 2 discusses related
work regarding the utilization of word embeddings in the field of vulnerability
prediction. Section 3 provides the theoretical background in order to familiarize
the reader with the main concepts of the present work. Section 4 discusses the
methodology that we followed, while Sect. 5 presents the results of our analysis.
Finally, Sect. 6 wraps up the paper and discusses future research directions.



An Empirical Evaluation of the Usefulness of Word Embedding Techniques 25

2 Related Work

Vulnerability prediction using text mining is very popular and has demonstrated
promising results in the related literature [2,4,9,10]. Initial research endeav-
ors focused on the concept of BoW (i.e., occurrences of tokens) [2,9]. Recent
attempts focus on predicting the existence of vulnerabilities through learning
more complex patterns from the source code. They consider the software com-
ponents as sequences of tokens and train deep learning models capable of learning
sequences, such as the Recurrent Neural Networks (RNNs) [4,5]. The challeng-
ing part of these recent studies is to add syntactic and semantic meaning to
the sequences of code tokens. Word embeddings are one of the most promising
solutions.

The word embedding vectors have evolved into an integral part of the text
classification tasks since Mikolov et al. [17] proposed two architectures for learn-
ing distributed representations of words. The authors in [18], conducted a com-
parative study between different ML algorithms including fast-text, Glove and
word2vec, while in [19] a deep learning method is proposed utilizing the semantic
knowledge provided by the word embeddings.

Word embeddings have already been used in the field of text mining-based
vulnerability prediction. Dam et al. [8] mapped every code token with an index
of their vocabulary and then they constructed an embedding matrix which con-
tained a unique vector representation for every token of the vocabulary in the
position that corresponds to the vocabulary index. In other words, the embed-
ding matrix worked as a look-up table.

The authors in [5,6] used the word2vec tool to generate embedding vectors
for their vocabulary, while Zhou et al. [4] used the pre-trained word2vec vectors.
Russel et al. in [12] created a vulnerability detection tool based on deep learning
and capable of interpreting lexical source code. They conducted a compara-
tive study between simple source code embedding using Bag-of-Words and more
advanced code representations learned automatically by deep learning models
inside the embedding layer. Fang et al. [20] proposed the fastEmbed model which
is an extension of the fast-text algorithm. This way they developed a model for
predicting the exploitability of software vulnerabilities on imbalanced datasets
by understanding key features of vulnerability-related text.

To this end, it is quite clear that a lot of studies make use of word embed-
ding vectors as a representative format for the source code’s tokens (i.e., words).
There are papers that refer the use of simple vector representations just in order
to replace the text features [8], other papers that use the BoW methodology to
represent the text in the source code [9], other studies that utilize the pre-trained
embedding vectors produced by the pre-trained word2vec model [4], but most
of them choose to encode the code tokens into embedding vectors trained on
their own data [5,6]. However, to the best of our knowledge, there is no study
examining the difference between the internal embeddings that are trained in
the embedding layer together with the classifier, and the external embeddings
that are trained alone prior to the model’s training. The former are part of the
supervised learning of the model and update their weights through the Back-



26 I. Kalouptsoglou et al.

propagation process [21], while the latter are trained once, using an advanced
unsupervised algorithm, and then they can be saved for future use. Moreover,
there is a need for an experimental analysis examining the improvement in terms
of accuracy and performance that these word embeddings provide to the DL-
based vulnerability predictors. In the present work, we attempt to address these
open issues through an empirical analysis on a popular dataset. Furthermore,
the present paper includes a comparison between two popular types of word
embedding tools (i.e., word2vec, fast-text) as well as a comparison with a state-
of-the-art BoW model.

3 Theoretical Background

3.1 Vulnerability Prediction Based on Text-Mining

Vulnerability Prediction purpose is to identify software hotspots that are more
likely to contain software vulnerabilities. These hotspots are actually parts of the
source code that require more attention by the software developers and engineers
from a security viewpoint. When the VPMs are based on text-mining they are
trained on datasets constructed by the words (i.e., tokens) that appear in the
source code. BoW constitutes the simplest text-mining method. In BoW, the
code is divided into text tokens, each one of which is accompanied by the num-
ber of its occurrences in the source code. So each word corresponds to a feature,
and the frequency of that feature in a component adds up to the value of that
feature for that component. Aside from BoW, text-mining includes the process of
converting the source code into a list of token sequences for use as input to Deep
Learning (DL) models capable of parsing sequential data (e.g., recurrent neural
networks). The sequences of tokens constitute the input of the DL models that,
during the training phase, try to capture the syntactic information included in
the source code, and in the execution phase to predict the existence of vulner-
abilities in the software components. Text-mining also uses Natural Language
Processing (NLP) methodologies such as word2vec pre-trained embedding vec-
tors to extract semantic information from tokens.

3.2 Word Embedding Vectors

Word embedding methods use a corpus of text to learn a real-valued vector rep-
resentation for a predefined fixed-sized vocabulary [17]. The learning process is
either collaborative with the neural network model on a task, or unsupervised,
using document statistics. An embedding layer is a word embedding learned in
conjunction with a neural network model on a specific natural language process-
ing task, such as document classification. It necessitates cleaning and preparing
the document text so that each word can be one-hot encoded. The model specifies
the size of the vector space. The vectors are seeded with small random numbers.
The embedding layer is used at the front end of a neural network and is fitted in
a supervised manner using the Backpropagation algorithm. However, it can be



An Empirical Evaluation of the Usefulness of Word Embedding Techniques 27

selected to be non-trainable. In this case, it has to be seeded with a pre-trained
embedding matrix which has been trained using an external algorithm.

Mikolov et al. [17] proposed two model architectures for computing continu-
ous vector representations of words. They showed that these representations were
able to capture syntactic and semantic word similarities. Both architectures are
neural network-based ones for learning the underlying word representations for
every word. The first proposed model, called Continuous Bag-of-Words Model
(CBOW), tends to find the probability of a word occurring in a context. Thus,
it generalizes over all the different contexts in which a word can be used. The
second architecture, called continuous skip-gram model, instead of predicting the
current word based on context, attempts to maximize classification of a word
based on another word in the same sentence. To be more specific, every current
word is fed into a log-linear classifier with a continuous projection layer, which
predicts words within a certain range before and after the current word.

Two of the most popular algorithms that can generate embedding vectors
are the word2vec1 and fast-text2 models. Both of them are based on the two
aforementioned architectures (i.e., CBOW, skip-gram). The difference between
these tools lies in the fact that the word2vec considers each individual word to
be the smallest unit for which a vector representation must be found, whereas
fast-text considers a word to be formed by n-grams of character.

4 Methodology

4.1 Dataset

As part of the current work, we created several VPMs for two widely-used pro-
gramming languages, C and C++ combined. We used a vulnerability dataset
derived from two National Institute of Standards and Technology (NIST) data
sources: the National Vulnerability Database (NVD3 and the Software Assur-
ance Reference Dataset (SARD)4. This dataset contains 7651 class files, 3438 of
which are classified as vulnerable and the remaining 4213 as clean. The dataset
has been presented by Li et al. [5].

4.2 Pre-processing

Before the construction of vulnerability prediction models, appropriate pre-
processing is required in order to bring the dataset in a form appropriate to
be used by the investigated techniques. To this end, we gathered the source code
files written in the C and C++ programming languages and used a variety of
pre-processing techniques to convert the datasets into a series of words-tokens.
All comments, as well as the header/import instructions that declare the use

1 https://radimrehurek.com/gensim/models/word2vec.html.
2 https://radimrehurek.com/gensim/models/fasttext.html.
3 https://nvd.nist.gov/.
4 https://samate.nist.gov/SRD/index.php.

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/fasttext.html
https://nvd.nist.gov/
https://samate.nist.gov/SRD/index.php


28 I. Kalouptsoglou et al.

of specific libraries in the class, were removed from the dataset. Subsequently,
we removed the code-specific constants (i.e., numbers, literals, etc.), in order to
make the produced sequences more generalizable. In particular, the numeric val-
ues (i.e., integers, floats, etc.) were then replaced by a unique identifier “numId$”,
while the string values and characters were replaced by a different unique identi-
fier “strId$”. All blank lines are also removed, and the text is finally transformed
into a list of code tokens (i.e., new, char, strlen, etc.) in the order they appear
in the source code. After data cleansing, these produced tokens are replaced by
a unique integer (integer encoding process5) and these integers are mapped to
one-hot vectors (one-hot encoding6).

4.3 Word Embedding Vectors Training

In this study, in order to embed the text representations to numerical vectors
different from the one-hot vectors, the word2vec and fast-text tools were utilized.
The two models provide both the CBOW and skip-gram architecture. We train
these models with our dataset. Each software component constitutes a sequence
of tokens and all the sequences of the dataset are used as the corpus for the train-
ing of the word2vec and fast-test models. These algorithms learn the syntactic
and semantic relations between the code tokens and place them at the vector
space. After training these embedding vectors for the words of the vocabulary
then one can save them for future use, saving time of the training process. For
the training of the embedding vectors, the parameters that were selected after
tuning are listed in Table 1.

Table 1. The selected parameters for the training of word2vec and fast-text embedding
vectors.

Parameters Word2vec Fast-text

Size 300 300

Window 40 40

min count 1 1

Epochs 1 2

In Table 1, the parameter “size” is the dimension of the embedding vectors,
the “window” refers to the maximum distance between a target word and words
surrounding the target word while the term “min count” refers to the minimum
count of words to consider during training. The algorithm ignores the words with

5 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
LabelEncoder.html.

6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html


An Empirical Evaluation of the Usefulness of Word Embedding Techniques 29

occurrence less than the “min count”. The parameter epochs is just the number
of iterations that the model parses the data.

In Fig. 1, there is a depiction of word2vec vectors trained at the dataset
used in the present study, generated by the t-distributed stochastic neighbor
embedding (TSNE) algorithm [22]. Vectors that are in close proximity in the
depicted figure, correspond to words that are in close proximity in the actual
source code. For instance, in Fig. 1 we can see that the tokens “for” and “i”
which actually are used together in a lot of circumstances, are indeed placed
one next to the other. The same applies also for the tokens “free” and “malloc”,
which is another very representative example.

Fig. 1. The word2vec embedding vectors placed in the vector space by the TSNE
algorithm.



30 I. Kalouptsoglou et al.

4.4 Model Selection

In this analysis, various DL algorithms are used to create models that can dis-
tinguish between vulnerable and neutral source code files. As the input to the
models consists of sequential data (i.e., series of tokens) we chose DL algorithms
capable of handling sequences. The RNNs are the most suitable ones as language
models [23]. Convolutional Neural Networks (CNNs) are used on code classifi-
cation tasks, as well [4,24]. Regarding the RNNs, there are several improved
versions such as the Long-Short Term Memory networks (LSTMs) [25], the
Gate Recurrent Units (GRUs) [26] and the Bidirectional LSTMs (BiLSTMs)
[27], which can solve the vanishing gradient problem [28] that the original RNNs
face. The hyper-parameters chosen for our RNN and CNN models are presented
in Table 2. Their values were selected after consecutive tuning and re-evaluation.

Table 2. The selected hyper-parameters of the models.

Hyper-parameter name Value for RNNs Value for CNN

Number of layers 3 (Embedding-
Recurrent-Dense)

3 (Embedding-Conv-
Dense)

Number of hidden layers 1
(LSTM/GRU/BiLSTM)

1 (1D CNN)

Embedding size 300 300

Number of hidden units 300 128 filters

Kernel size – 5

Weight initialization
technique

Glorot Uniform (Xavier) Glorot Uniform
(Xavier)

Learning rate 0.01 0.01

Gradient descent optimizer Adam Adam

Batch size 64 64

Activation function Relu Relu

Output activation function Sigmoid Sigmoid

Loss function Binnary Cross-entropy Binnary Cross-entropy

Over-fitting prevention Dropout = 0.3 –

Maximum epochs 100 100

Early stopping patience 10 10

4.5 Evaluation Metrics

Several evaluation metrics are available in the literature and are commonly used
to assess the predictive effectiveness of the ML models. In the vulnerability pre-
diction case, a special emphasis is placed on the Recall of the produced models,



An Empirical Evaluation of the Usefulness of Word Embedding Techniques 31

because the higher the Recall of the model is, the more real vulnerabilities it
predicts. Apart from the capability of the produced models to identify the great
majority of vulnerable files contained in a software project, the volume of the
produced False Positives (FP) (i.e., clean files marked as vulnerable) is impor-
tant to consider because it is known to affect the models’ utilization in practice.
The number of FP is closely related to the amount of manual effort required
by developers to identify files that contain actual vulnerabilities. The lower the
number of FP is, the higher the precision of the model. This fact emphasizes the
significance of the f1-score, which represents the balance of precision and recall.
However, because identifying vulnerable files at the expense of producing FP is
more important in VP, we chose f2-score as our evaluation metric. The f2-score
is a weighted average of precision and recall, with recall being more important
than precision. It is equal to:

F2 =
5 × precision× recall

4 × precision + recall

5 Results and Discussion

In this section, we present the results of our analysis and discuss the outcome
of the experiments. Table 3 reports the evaluation results of the DL models
that were built based on the sequences of tokens in the source code. This table
sums up the results regarding the f2-score for all the RNN variations and CNN
using word2vec or fast-text embeddings in contrast with the joint training of the
embeddings with the neural network’s training. During the evaluation process,
the ten-fold cross-validation process was employed eliminating the possibility of
biased results.

Table 3. The f2-score of all the utilized methods after 10 fold cross-validation.

Model S.E.L. W2V 0 W2V 1 FastText 0 FastText 1

LSTM 77.98 85.11 88.38 84.92 88.66

BiLSTM 80.28 85.86 88.01 82.33 86.04

GRU 72.22 89.15 87.94 84.28 89.10

CNN 81.46 86.36 89.43 86.36 84.54

Average 77.99 86.62 88.44 84.47 87.09

S.E.L. = Simple Embedding Layer.
W2V: Word2vec.
0: CBOW.
1: Skip-gram.

From Table 3, we can see that the use of sophisticated word embeddings
trained prior to the deep learning model is beneficial at each model case. The



32 I. Kalouptsoglou et al.

average f2-score of the four models when using an algorithm for the genera-
tion of the word embedding vector is significantly bigger. Furthermore, it is
clear that the skip-gram model is better than the CBOW in our dataset as it
achieves greater average f2-score both at the word2vec and the fast-text case.
Similarly, we notice that the word2vec method provides better f2-score, both at
the CBOW and the skip-gram variation, compared with the fast-text embed-
dings. All the aforementioned foundings lead to the conclusion that the skip-
gram variation of the word2vec embeddings is the best choice for embedding
the tokens of the source code of our dataset before giving them as input to the
sequential deep learning model. An 11% increase in terms of f2-score when using
word2vec embeddings compared with the trainable embedding layer is a signifi-
cant improvement and indicates to the initial hypothesis that these sophisticated
models are capable of capturing semantic and syntactic relationships between
the words of the source code.

Furthermore, the training of the embedding vectors outside from the embed-
ding layer (i.e., non-trainable embedding layer) is beneficial not only in accu-
racy but also in terms of performance. The training time of the DL models has
decreased significantly. Table 4 sums up the results about the training time.

Table 4. The training time in milliseconds (ms) both in case of trainable embedding
layer and in case of sophisticated embeddings trained independently of the neural
network.

Model S.E.L. W2V 1

LSTM 13078 9090

BiLSTM 22596 18011

GRU 12025 8330

CNN 9774 4276

From Table 4, it is clear that the training times when having ready the embed-
ding vectors are by far smaller compared with the case of joint training along
with the rest layers. Another interesting note derived from Table 3 and 4 is the
fact that the CNN model is more accurate than the RNNs and much faster as
well.

Finally, another interesting question would be to examine whether the adop-
tion of word embedding vectors lead to better vulnerability prediction models
compared to the traditional (and simpler) BoW approach. For this purpose,
we compare our best model that utilizes the word embedding concept to the
best model that uses BoW and is trained and evaluated on the same dataset.
In particular, in Table 5, we present the results of the comparison between the
state-of-the-art BoW method, versus the CNN model with skip-gram word2vec
vectors, which was found to be the best model in our previous analysis. In the
case of BoW, we chose Random Forest (composed of 100 trees) as a classifier,
based on bibliography [2,9]. From Table 5, it is observed that the f2-score is



An Empirical Evaluation of the Usefulness of Word Embedding Techniques 33

greater in the case of using sophisticated embeddings. Actually, these word2vec
vectors can be used only at token series models (i.e., CNN, RNN) and not in
BoW, constituting a major drawback of the method.

Table 5. BoW versus CNN that uses the skip-gram word2vec representations.

Model Accuracy Precision Recall F2-score

BoW 88.69 90.40 85.80 86.66

CNN-W2V 1 88.25 86.21 90.31 89.43

6 Conclusion and Future Work

In this paper, we investigated the usefulness of the numerical representations of
the source code words, with the aim of predicting vulnerabilities. We focused
on examining whether the utilization of sophisticated (i.e., external) embedding
vectors is beneficial in contrast with the training of the embedding vectors jointly
with the vulnerability predictor. Moreover, a comparison between the CBOW
and the continuous skip-gram architectures took place as well as a comparison
between the word2vec and fast-text algorithms.

We showed that either the word2vec or fast-text methodologies provide better
results than the trainable embedding layer which is trained along with the rest
layers of the neural network. These vector representations seem able to capture
semantic and syntactic relations between the words in the code and so they
can be proved beneficial when training models on sequences of code tokens.
The word2vec method proved to be superior to fast-text when applied in our
dataset. Furthermore, the skip-gram model demonstrated better scores compared
with the CBOW, both in cases of word2vec and fast-text. Another important
advantage of these sophisticated vectors is the time reduction during the model
training, as there is no need to train the embedding layer again. Last but not
least, the CNN with trained word2vec embeddings, which appeared to be our
best model, demonstrates higher f2-score than the BoW model.

There are several potential directions for future work. First of all, the present
study was based on a dataset containing exclusively C/C++ code. We intend
to replicate our study using software products written in other programming
languages (e.g., Java, Python, etc.) to investigate the generalizability of the
produced results. Furthermore, we aim to replicate our study by embedding the
text features in a higher level of granularity (e.g., line or function level).

Acknowledgements. This work is partially funded by the European Union’s Hori-
zon 2020 Research and Innovation Programme through IoTAC project under Grant
Agreement No. 952684.



34 I. Kalouptsoglou et al.

Appendix

In the Appendix Section we provide some extra Tables of the results produced
by our study, including values for accuracy, precision and recall aside from the
f2-score.

Simple Embedding Layer:

Model Accuracy Precision Recall F2-score

LSTM 75.61 74.69 79.60 77.98

BiLSTM 77.05 76.06 82.73 80.28

GRU 73.06 72.60 72.34 72.22

CNN 85.15 88.43 79.96 81.46

Word2vec Embeddings - CBOW:

Model Accuracy Precision Recall F2-score

LSTM 78.76 74.23 88.90 85.11

BiLSTM 80.62 75.79 88.99 58.86

GRU 84.55 79.52 92.02 89.15

CNN 86.60 86.16 86.52 86.39

Word2vec Embeddings - Skip-Gram:

Model Accuracy Precision Recall F2-score

LSTM 84.07 79.35 91.14 88.38

BiLSTM 84.51 80.26 90.31 88.01

GRU 83.44 78.51 90.74 87.94

CNN 88.25 86.21 90.31 89.43



An Empirical Evaluation of the Usefulness of Word Embedding Techniques 35

Fast-Text Embeddings - CBOW:

Model Accuracy Precision Recall F2-score

LSTM 79.79 75.11 88.07 84.92

BiLSTM 76.20 71.15 85.79 82.33

GRU 77.58 72.71 88.53 84.28

CNN 86.08 84.98 86.82 86.36

Fast-Text Embeddings - Skip-Gram:

Model Accuracy Precision Recall F2-score

LSTM 83.54 78.23 91.79 88.66

BiLSTM 79.20 73.49 90.01 86.04

GRU 82.38 76.57 93.11 89.10

CNN 85.15 84.87 84.58 84.57

References

1. Siavvas, M., Gelenbe, E., Kehagias, D., Tzovaras, D.: Static analysis-based
approaches for secure software development. In: Gelenbe, E., et al. (eds.) Euro-
CYBERSEC 2018. CCIS, vol. 821, pp. 142–157. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95189-8 13

2. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components: soft-
ware metrics vs text mining. In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE (2014)

3. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: are we there yet. IEEE Trans. Softw. Eng. (2021)

4. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
arXiv preprint arXiv:1909.03496 (2019)

5. Li, Z., et al.: Vuldeepecker: a deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681 (2018)

6. Cao, S., Sun, X., Bo, L., Wei, Y., Li, B.: BGNN4VD: constructing bidirectional
graph neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576
(2021)

7. Pang, Y., Xue, X., Wang, H.: Predicting vulnerable software components through
deep neural network. In: Proceedings of the 2017 International Conference on Deep
Learning Technologies, pp. 6–10 (2017)

https://doi.org/10.1007/978-3-319-95189-8_13
https://doi.org/10.1007/978-3-319-95189-8_13
http://arxiv.org/abs/1909.03496
http://arxiv.org/abs/1801.01681


36 I. Kalouptsoglou et al.

8. Dam, H.K., Tran, T., Pham, T.T.M., Ng, S.W., Grundy, J., Ghose, A.: Automatic
feature learning for predicting vulnerable software components. IEEE Trans. Softw.
Eng. 47, 67–85 (2018)

9. Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.: Predicting vulnerable
software components via text mining. IEEE Trans. Softw. Eng. 40, 993–1006 (2014)

10. Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J.: Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th International
Workshop on Security Measurements and Metrics, pp. 7–10 (2012)

11. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applica-
tions: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

12. Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757–762. IEEE (2018)

13. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pp. 384–394 (2010)

14. Rong, X.: word2vec parameter learning explained. arXiv (2014)
15. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-

sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

16. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

18. Stein, R.A., Jaques, P.A., Valiati, J.F.: An analysis of hierarchical text classification
using word embeddings. Inf. Sci. 471, 216–232 (2019)

19. Ma, Y., Peng, H., Cambria, E.: Targeted aspect-based sentiment analysis via
embedding commonsense knowledge into an attentive LSTM. In: Thirty-Second
AAAI Conference on Artificial Intelligence (2018)

20. Fang, Y., Liu, Y., Huang, C., Liu, L.: Fastembed: Predicting vulnerability exploita-
tion possibility based on ensemble machine learning algorithm. Plos One 15,
e0228439 (2020)

21. Goldberg, Y.: Neural network methods for natural language processing. Synth.
Lect. Hum. Lang. Technol. 10(1), 1–309 (2017)

22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

23. Sundermeyer, M., Oparin, I., Gauvain, J.L., Freiberg, B., Schlüter, R., Ney, H.:
Comparison of feedforward and recurrent neural network language models. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(2013)

24. Filus, K., Siavvas, M., Domańska, J., Gelenbe, E.: The random neural network
as a bonding model for software vulnerability prediction. In: Calzarossa, M.C.,
Gelenbe, E., Grochla, K., Lent, R., Czachórski, T. (eds.) MASCOTS 2020. LNCS,
vol. 12527, pp. 102–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-68110-4 7

25. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language mod-
eling. In: Thirteenth Annual Conference of the ISCA (2012)

http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-030-68110-4_7
https://doi.org/10.1007/978-3-030-68110-4_7


An Empirical Evaluation of the Usefulness of Word Embedding Techniques 37

26. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv (2014)

27. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

28. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Int. J. Uncertainty 6, 107–116 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	An Empirical Evaluation of the Usefulness of Word Embedding Techniques in Deep Learning-Based Vulnerability Prediction
	1 Introduction
	2 Related Work
	3 Theoretical Background
	3.1 Vulnerability Prediction Based on Text-Mining
	3.2 Word Embedding Vectors

	4 Methodology
	4.1 Dataset
	4.2 Pre-processing
	4.3 Word Embedding Vectors Training
	4.4 Model Selection
	4.5 Evaluation Metrics

	5 Results and Discussion
	6 Conclusion and Future Work
	References




