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Abstract. The traffic from the large number of IoT devices connected
to the IoT is a source of congestion known as the Massive Access Problem
(MAP), that results in packet losses, delays and missed deadlines for real-
time data. This paper reviews the literature on MAP and summarizes
recent results on two approaches that have been designed to mitigate
MAP. One approach is based on randomizing the packet arrival instants
to IoT gateways within a given time interval that is chosen so that packet
arrivals do not exceed their deadlines, but also so that they do not consti-
tute bulk arrivals. The second approach is a novel traffic shaping policy
named the Quasi-Deterministic-Transmission-Policy (QDTP) which has
been proved to drastically reduce queue formation at the receiving gate-
way by delaying packet departures from the IoT devices in a judicious
manner. Both analytical and experimental results are summarized, that
describe the benefits of these techniques.

Keywords: Internet of Things (IoT) · IoT Gateways · Massive Access
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1 Introduction

The number of Internet of Things (IoT) devices is increasing rapidly with the
increasing needs of smart cities, healthcare applications, autonomous systems,
and smart vehicles [6,7,12,40], causing the overload of communication channels
and gateways [27]. This results in the Massive Access Problem (MAP) where
high latency and queue lengths can lead to packet loss and deadline violations.
In addition, congestion can lead to increased energy consumption at IoT devices
and gateways due to repeated requests for access and increased processing times
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[2,15], thus contributing to the worldwide increase in energy consumption for
ICT [14].

Thus, substantial work over the last several years [3,11,28–30,34,35,39,46–
51,55,56] attempts to solve MAP in various ways.

In this paper, we first briefly review methodologies and results with regard
to reactive or proactive (predictive) solutions that can mitigate MAP. Then, we
summarize two recent research avenues: Randomization of Transmission Times
[36] and a novel traffic shaping policy – the Quasi-Deterministic-Transmission-
Policy (QDTP) [18,19,25]. We illustrate the results these approaches offer via
analytical techniques and trace driven simulations using a publicly available
dataset of up to 6400 IoT devices [1] with different deadline constraints.

The remainder of this paper is organized as follows. Section 2 reviews recent
research focusing on MAP. Section 3 summarizes two recent studies on MAP
based on analytical and experimental results. Finally in Sect. 4 our main conclu-
sions are presented.

2 Review of Prior Work on MAP

This section reviews the prior work on MAP in two categories as reactive
solutions and predictive/proactive solutions. Early research addressed MAP by
reducing congestion through adaptive Random Re-Routing (RRR) [20–22] which
improves the QoS of a sensor network by dynamically changing packet routes
when congestion is detected. In related work [42], an information theoretic tech-
nique selectively reduces the amount of traffic by increasing transmission effi-
ciency, and improves the QoS in sensor networks.

More recent work has proposed solutions to MAP, assuming that IoT traffic
is generated at random, and using approaches mostly based on Access Class
Barring (ACB). In [35] ACB is enhanced by using Markov chains to model
the status of preambles and to forecast active devices, while other work [30]
developed the recursive ACB algorithm based on instantaneous detection of idle
preambles. Recent work [28] also developed recursive ACB which adapts the
probability that a device sends a preamble based on estimating the number of
active IoT devices. The performance of ACB has been analyzed under different
parameters for Machine-to-Machine (M2M) communications [55], and enhanced
by Reinforcement Learning (RL) to select its parameter (i.e. barring rate) with
respect to network conditions [56]. In [29] deep RL techniques are proposed to
maximize the number of devices that successfully access the medium without
collisions.

In [34] an access scheme for M2M communication that clusters machine-
type devices according to their requirements and locations is used. The Non-
Orthogonal Multiple Access (NOMA) based technique is presented for networks
with a massive number of devices in [51]. Moreover, in order to address MAP,
in [3] a collision detection based random access technique is developed, and in
[49] a hybrid technique that combines slotted-Carrier-Sense Multiple Access with
Collision Avoidance (CSMA/CA) and Time-Division Multiple Access (TDMA)
schemes are suggested.
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2.1 Proactive Solutions

IoT devices are quite simple and cannot easily be coordinated for timing or
scheduling [24] based on distributed control [8,10]. Thus recent experimental
results [37,38] show that machine learning techniques can be used to predict IoT
traffic generated by individual devices, and other work [11,39,46–48,50] designs
proactive/predictive access schemes that determine the transmission times from
IoT devices based on such predictions to mitigate the MAP.

Other work [31,45,48] has developed proactive access schemes for Machine-
to-Human (M2H) or Human-to-Machine (H2M) traffic, while earlier research
[43,44] has focused on Human-to-Human (H2H) traffic. In [43] a schedule-based
protocol an expert system is used to determine schedules that minimize delay and
maximize channel utilization. In [44], forecasts of data rates of individual appli-
cations are used to schedule channel scheduling, and network load has also been
balanced based on the forecast of the total load of all machine-type devices [31].
To mitigate the latency bottleneck due to the contention in optical or wireless
networks [48], the proactive allocation of bandwidth to transmissions of packet
bursts based on Artificial Neural Network (ANN) forecasts is studied, while in
[45] the prediction of network throughput for better Quality of Experience (QoE)
is investigated.

Fast Uplink Grant (FUG) is one of the predictive access schemes presented in
3GPP Release 14 to provide predetermined uplink allocations for IoT devices [4,
5,52]. In [50], IoT packet transmissions have been modelled with a binary Markov
process, while in [11] a FUG allocation technique was developed by combining
Support Vector Machines (SVM) and Long-Short Term Memory (LSTM) neural
networks.

Another trend [39,46,47] on predictive access schemes addresses MAP by
using Joint Forecasting Scheduling (JFS), and in [39] JFS was proposed to sched-
ule transmissions based on forecasts of generation times and sizes of bursts. JFS
can be recursively enhanced with a Multi-Scale Algorithm (MSA), where the per-
formance of JFS and the length of scheduling horizon, are significantly increased
[46] (over 96% throughput) for 6400 devices with variable latency constraints.
However, the computational requirements of MSA are very high and in [47] a
scheduling heuristic is used to determine JFS transmission times for using mul-
tiple frequency channels.

Most recently the Randomization of Generation Times (RGT) preprocessing
algorithm [36] is shown to significantly improve the performance of scheduling
heuristics with very low computational cost for large numbers of IoT devices.
Also, the Quasi-Deterministic Transmission Policy (QDTP) traffic shaping app-
roach [19,25] has been shown, using queueing theory, diffusion approximations
[16] and trace driven simulations, to mitigate the MAP by drastically reducing
the waiting time at gateways. This research has shown that RGT and QDTP
can mitigate MAP with very low computational requirements for up to 6400 IoT
devices. In the remainder of this article, we shall outline how these two avenues
of recent research can alleviate MAP.
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3 Mitigating MAP Using Queueing Theory and Diffusion
Approximations

We will summarize together the results of two recent articles [19,36], which offer
solutions to reduce MAP. To this end, we first present the analysis in [19] of
the probability that the deadline of an IoT packet is met, providing a basis for
access policies in IoT networks. Then we review the RGT [36] and QDTP [19]
algorithms and their performance.

In [19], the collection of IoT devices that generate packets, the communication
channel, and the receiving gateway are represented as two cascaded queues [9,
32,41,53]:

– The first queue translates the generation instant at the IoT device for the
j-th packet rj , into its transmission instant tj , and

– The second queue starts with the transmission instants tj that feeds directly
into the IoT gateway where the j-th packet is served in FIFO (First-In-First-
Out) order with a service duration pj .

– Note that in this case, the transmission delay within the communication chan-
nel is taken to be zero, i.e. it is assumed to be small enough to be as compared
to pj and to the durations between the other successive instants, so that the
packet leaving the IoT device at time tj arrives at the gateway at the same
time instant.

Let the IoT device generats traffic in bursts of bits that are sent at the same time
instant, where burst j is generated at discrete time slot rj and should be recieved
by dj . That is, we assume that there is a deadline Δj for each burst j beyond
which j is of “no value”. Thus, the burst j (which can also be considered as a
packet) must arrive at the receiver gateway by dj = rj + Δj . Furthermore, the
packets of various IoT devices are processed in time ordered fashion in First-In-
First-Out (FIFO) order, and pj be the “service time” during which the receiving
gateway is occupied by packet j.

3.1 The Probability of Meeting Deadlines

Let the j-th packet sent from any of the IoT devices, enumerated in time order
(i.e. the j − th packet is generated before the j + 1-th packet), be transmitted
from its IoT device exactly at the instant rj when it is generated. Then the
time spent between the generation time rj and the time when it starts being
processed at the gateway, i.e. its total waiting time, is denoted by Wj , and is
given by Lindley’s recursive equation [32,53]:

Wj+1 = [Wj + pj − rj+1 + rj ]+ , j = 0, 1, 2, . (1)

where r0 = 0. Note that the conventional notation [X]+, for a real number X,
means that [X]+ = 0 when X < 0, and [X]+ = X if X ≥ 0.

Assuming that the generation times coincide with the transmission times,
if the sequence generation and service times, and deadlines {rj , pj , Δj}j≥0
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constitute a stationary random process, the probability Πj that the packet j
does not meet its deadline is given by:

Πj = Prob[Rj = Wj + pj > rj + Δj ], and Π = lim
j→∞

Πj , (2)

where Rj is known as the response time.
Since the focus of the work in [19,36] is on selecting the transmission instant

of each packet j, denoted by tj , to minimize Πj under each traffic load of the
network, Wj will be replaced by a total end-to-end delay Vj to each packet, where
Dj is a scheduling delay imposed to each successive packet, and Vj includes the
delay at the IoT device plus the delay at the gateway:

Vj = W a
j + W b

j , j ≥ 0, V0 = W a
0 = W b

0 = 0, and (3)

W a
j+1 = [W a

j + Dj − (rj+1 − rj)]+, tj = rj + W a
j , (4)

W b
j+1 = [W b

j + pj − (tj+1 − tj)]+. (5)

In other words, we impose an initial scheduling delay Dj to each successive
packet, and then consider the resulting effect on the transmission instant tj and
on the resulting delay at the IoT device W a

j followed by the delay at the gateway
W b

j . These matters are analyzed in detail in [25], wth a resulting effect on the
probability of missing the deadlines:

Π∗
j = Prob[R∗

j = Vj + pj > rj + Δj ], and Π∗ = lim
j→∞

Πj , (6)

when {rj , pj , Dj , Δj}j≥0 constitute a stationary random process.

3.2 Interarrival and Service Time Statistics

Next, in order to compute the interarrival and service time statistics, the app-
roach in [19] assumes that the pj ’s of all packets are independent random vari-
ables with the same distribution whose mean is E[P ] and its SCV is C2

B . More-
over, λ denotes the interarrival rate of packets, such that λ = E[rj+1 − rj ])−1.
It has also been assumed that the value of λ increases with the number of IoT
devices M that are connected to the IoT gateway, and the system will oper-
ate under variable λ (or M) but under stable conditions, i.e. λE[P ] < 1. Also,
let C2

A denote the SCV of interarrival times of packets. Then, C2
B and C2

A are
respectively defined as

C2
B =

E[P 2]
(E[P ])2

− 1, and C2
A =

E[(rj+1 − rj)2]
(E[rj+1 − rj ])2

− 1. (7)

3.3 Using the Diffusion Approximation:

Last, the diffusion approximation [13,33] has been used in order to determine
the probability that Rj ≤ Δj , denoted by FR(Δ), where Δj = Δ which is
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constant for all packets of all IoT devices. Then, the probability of missing
deadline Π = 1 − FR(Δ).

Subsequently, using the diffusion approximations [19] one obtains the proba-
bility density function of the response time and the probability of missing dead-
line as

fR(t) =
∫ ∞

0

x√
2παt3

e− (x+βt)2

2αt f(x)dx, then Π = 1 −
∫ Δ

0

fR(τ)dτ, (8)

where β = λ − μ, α = λC2
A + μC2

B , μ = 1/E[P ], and f(x) is yielded by the
diffusion model [13].

3.4 Numerical Results Concerning the Diffusion Analysis

Now, the results concerning a publicly available IoT traffic dataset [1] present
how Π varies with C2

A and Δ.
First, Fig. 1 displays log10(Π) for λ = 0.8 and C2

B = 1 and different values of
Δ and C2

A. Note that the minimum and maximum values of C2
A for the traffic in

the dataset [1] which are 1.6 and 2.18, and the approximate value of C2
A for the

uniform distribution which will be used for the randomization policy in Sect. 3.5,
are shown as vertical bars. The results in this figure show that Π increases with
C2

A and decreases with Δ when λ remains constant.
Then, Fig. 2 presents the values of Π against increasing number of devices

M as well as the corresponding λ and C2
A. The results show that the measured

value of Π, which is the fraction of packets that do not meet their deadlines,
increases as M or corresponding λ increases.

In summary, the results in Fig. 1 and Fig. 2 from [19] show that reducing
C2

A significantly increases the probability that any IoT traffic packet meets its
deadline.

3.5 Randomization of Data Generation Times (RGT)

While the results in Sect. 2 show that fast and computationally inexpensive
heuristic algorithms are promising for MAP, the work in [36] develops the RGT
preprocessing algorithm which relieves the traffic load by distributing the gen-
eration times of packets over a scheduling window of duration of Tsch.

In RGT, rj is updated by adding to it an offset which is a uniformly dis-
tributed random variable (Recall that C2

A = 1/3 for uniform distribution which
is shown to be significantly lower than the minimum value in the dataset) as

rnew
j ← rj + U [Δj − Sj ] (9)

where Sj is a safety delay that limits the upper bound of rnew
j such that 0 ≤

Sj ≤ Δj which indicates the maximum randomization and Sj = Δj indicates
that there is no randomization.
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Fig. 1. We show the probability of missing the deadline (y-axis) in logarithmic scale
(to the base ten), estimated with the diffusion approximation. We see that it increases
significantly as C2

A increases and when the deadline Δ measured in slots decreases, for
a fixed but high value of the arrival rate λ = 0.8. The average service rate μ and the
SCV of service time C2

B are both fixed to 1.

Then, in [36] the value of Sj was selected by using queueing theory [17,23]
as:

Sj ≈ min[ pj +
E[P ]
1
ρ − 1

, Δj ], (10)

where E[P ] is the average processing time, and ρ = λE[P ].

3.6 Experimental Results Concerning RGT

We now review the performance evaluation of RGT for two known heuristic
scheduling algorithms, Priority based on Average Load (PAL) [39] and non-
preemptive version of Earliest Deadline First (EDF) [26], where PAL enhanced
with RGT is called R-PAL and EDF enhanced with RGT is called R-EDF. The
performance evaluation is performed on the publicly available dataset [1] with
respect to each of throughput η and fraction of successfully delivered bursts ζ
metrics. Also, the performances of R-PAL and R-EDF are compared with the
upper bound performances, where Sj = γΔj and exhaustively search for the
value of γ in the range [0, 1] with increments of 0.05 to maximize each of η and
ζ.

Accordingly, Fig. 3 displays the comparison of R-PAL and R-EDF with the
upper bounds of those as well as PAL and EDF heuristics for η and ζ. The results
in this figure show that RGT preprocessing significantly improves the throughput
performance of each heuristic while the fraction of successfully delivered bursts
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Fig. 2. The probability of missing the deadline (y-axis) in logarithmic scale (to the
base ten) estimated with the diffusion approximation, using the traffic statistics of the
real dataset of [1], is plotted against the number of IoT devices M (x-axis) that are
being used. Note that each value of M corresponds to specific measured values of λ
and C2

A shown along the x − axis.

remains the same. Furthermore, the results in Fig. 3 (top) show that the R-PAL
and R-EDF significantly outperform the original versions of the heuristics PAL
and EDF for a higher number of devices while both R-PAL and R-EDF are able
to achieve almost the same throughput with their upper bounds. On the other
hand, in Fig. 3 (bottom), one sees that ζ is almost the same for the enhanced
heuristics (R-PAL and R-EDF) and the original heuristics (PAL and EDF).

3.7 The Quasi-Deterministic Transmission Policy (QDTP)

As the diffusion analysis that is discussed in Sect. 3.4 suggests, minimizing the
SCV of interarrival times of traffic packets, C2

A, reduces the probability of missing
deadlines of those packets. Accordingly, in [19] a “Quasi-Deterministic Trans-
mission Policy” (QDTP) is developed to minimize the probability of missing
deadlines Π by setting almost all of the intertransmission times to a constant
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Fig. 3. Comparison of the upper bound R-PAL, R-PAL, PAL and the upper bound
R-EDF, R-EDF, EDF algorithms for 12 to 6400 devices with respect to η (top) and ζ
(bottom)

D so as to reduce the value of C2
A. In QDTP whose pseudo-code is presented in

Algorithm 1, D = 1
λ , where λ is the interarrival time of burst generation times.

Algorithm 1: Pseudo-code QDTP

n = 1;
tn = an;
for n ∈ {2, . . . , N} do

if an ≤ tn−1 + D then
tn = an−1 + D;

else
tn = an;

end
end

For the practical application of QDTP, the generation times of the packets
must be known in advance, similar to other predictive protocols. While advanced
knowledge of the λ value is required, it can be easily calculated based on the cre-
ation times of the packages. Also, each IoT device must be informed of the time
slot reserved for transmission of a packet created by that device before the start
of the reserved slot. For this purpose, information regarding channels reserved
for transmission permissions will be sent to devices via the downlink channel.
Therefore, the communication channel must be bidirectional or individual IoT
devices must also have the ability to detect the channel.
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3.8 Experimental Results Concerning QDTP

We now examine the performance evaluation of QDTP on the same dataset [1]
used for the evaluation of RGT. On the other hand, the bits are now packetized
as IP packets, where the 21 − Byte headers (similar to the header size in LoRa-
WAN) are followed by the payload, which is the bits in a burst. In addition,
considering the effective data transmission rate of LoRa-WAN in free space is
5400 bit/s [54], the transmission time for the average packet length in the dataset
is 33.33 ms.

Figure 4 presents the SCV of interarrival times of packets, C2
A, for both the

original generation times in the dataset and the transmission time determined
via QDTP. The results in this figure show that C2

A is significantly reduced for
all values of M when QDTP is used to schedule packet transmissions.

Figure 5 displays the comparison between the performance of QDTP and
that of original generation times in the dataset with respect to the base 10 of
the (empirically measured) probability Π that the deadline is missed for different
values of deadline Δ. In this figure, we see that Π is reduced to practically zero
for Δ ≥ 5 when QDTP is used. On the other hand, when QDTP is not used
(i.e. packets are transmitted when they are generated), Π increases with M and
approaches 1.

Fig. 4. Measurements of the SCV of interarrival times, both for the raw IoT data from
[1], and for the same data using QDTP, for a varying number of active IoT devices M .
We observe that QDTP has substantially reduced the empirically measured SCV C2

A,
reducing it to zero for all the distinct numbers of devices M in the dataset of [1].
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Fig. 5. We compare the logarithm to the base 10 of the (empirically measured) prob-
ability Π that the deadline is missed under both the raw dataset of [1] and under
the case where the QDTP is used with the same dataset for values of the deadline
Δ ∈ {2, 5, 10, 20}.

4 Conclusions

The MAP, which can occur when a massive number of devices attempt the access
a single gateway, is one of the most significant challenges for future IoT networks.
Due to a high latency during the transmissions of data packets caused by MAP,
the deadlines for delay-critical applications can be missed. Much work has been
conducted in recent years to address this problem.

This paper reviews the work on reactive and proactive approaches to MAP,
showing that methods based on proactive (i.e., predictive) techniques are a highly
promising avenue to mitigate MAP. The observations of the most recent research
results can be recapitulated with the following remarks:

1. The diffusion analysis proposed in [19] for the probability of missed dead-
lines in MAP shows that the latency requirements of IoT devices can be met
in networks with a massive number of devices by reducing the SCV of the
interarrival times of packets.

2. The Randomization of Generation Times (RGT) preprocessing algorithm
proposed by [36] significantly improves the performance of fast scheduling
heuristics by randomizing generation time of packets with uniform distribu-
tion yielding an inter-arrival time SCV of close to 1/3.

3. The Quasi-Deterministic Transmission Policy (QDTP) [25] meets the dead-
lines of almost all packets for up to 6400 IoT devices by reducing the queue
length at IoT gateways to nearly zero, and the SCV of packet inter-arival
times is also brought down to nearly zero.
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