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Abstract. We formalize the simulation paradigm of cryptography in
terms of category theory and show that protocols secure against abstract
attacks form a symmetric monoidal category, thus giving an abstract
model of composable security definitions in cryptography. Our model
is able to incorporate computational security, set-up assumptions and
various attack models such as colluding or independently acting subsets
of adversaries in a modular, flexible fashion. We conclude by using string
diagrams to rederive the security of the one-time pad and no-go results
concerning the limits of bipartite and tripartite cryptography, ruling out
e.g., composable commitments and broadcasting.
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1 Introduction

Modern cryptographic protocols are complicated algorithmic entities, and their
security analyses are often no simpler than the protocols themselves. Given this
complexity, it would be highly desirable to be able to design protocols and reason
about them compositionally, i.e., by breaking them down into smaller constituent
parts. In particular, one would hope that combining protocols proven secure
results in a secure protocol without need for further security proofs. However, this
is not the case for stand-alone security notions that are common in cryptography.
To illustrate such failures of composability, let us consider the history of quantum
key distribution (QKD), as recounted in [60]: QKD was originally proposed in
the 80s [7]. The first security proofs against unbounded adversaries followed
a decade later [8, 49, 50, 64]. However, since composability was originally not a
concern, it was later realized that the original security definitions did not provide
a good enough level of security [42]—they didn’t guarantee security if the keys
were to be actually used, since even a partial leak of the key would compromise
the rest. The story ends on a positive note, as eventually a new security criterion
was proposed, together with stronger proofs [5, 62].

In this work we initiate a categorical study of composable security definitions
in cryptography. In the viewpoint developed here one thinks of cryptography
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as a resource theory: cryptographic functionalities (e.g. secure communication
channels) are viewed as resources and cryptographic protocols let one transform
some starting resources to others. For instance, one can view the one-time-pad as
a protocol that transforms an authenticated channel and a shared secret key into
a secure channel. For a given protocol, one can then study whether it is secure
against some (set of) attack model(s), and protocols secure against a fixed set
of models can always be composed sequentially and in parallel.

This is in fact the viewpoint taken in constructive cryptography [47], which
also develops the one-time-pad example above in more detail. However [47] does
not make a formal connection to resource theories as usually understood, whether
as in quantum physics [16,39], or more generally as defined in order theoretic [32]
or categorical [20] terms. Instead, constructive cryptography is usually combined
with abstract cryptography [48] which is formalized in terms of a novel algebraic
theory of systems [46].

Our work can be seen as a particular formalization of the ideas behind con-
structive cryptography, or alternatively as giving a categorical account of the
real-world-ideal-world paradigm (also known as the simulation paradigm [34]),
which underlies more concrete frameworks for composable security, such as uni-
versally composable cryptography [13] and others [2,3,38,43,44,51,58]. We will
discuss these approaches and abstract and constructive cryptography in more
detail in Section 1.1

Our long-term goal is to enable cryptographers to reason about composable
security at the same level of formality as stand-alone security, without having
to fix all the details of a machine model nor having to master category the-
ory. Indeed, our current results already let one define multipartite protocols
and security against arbitrary subsets of malicious adversaries in any symmetric
monoidal category C. Thus, as long as one’s model of interactive computation
results in a symmetric monoidal category, or more informally, one is willing to
use pictures such as fig. 1d to depict connections between computational pro-
cesses without further specifying the order in which the picture was drawn, one
can use the simulation paradigm to reason about multipartite security against
malicious participants composably—and specifying finer details of the compu-
tational model is only needed to the extent that it affects the validity of one’s
argument. Moreover, as our attack models and composition theorems are fairly
general, we hope that more refined models of adversaries can be incorporated.

We now highlight our contributions to cryptography: We show how to adapt
resource theories as categorically formulated [20] in order to reason abstractly
about secure transformations between resources. This is done in Section 3 by
formalizing the simulation paradigm in terms of an abstract attack model (Def-
inition 1), designed to be general enough to capture standard attack models
of interest (and more) while still structured enough to guarantee composabil-
ity. This section culminates in Corollary 1, which shows that for any fixed set
of attack models, the class of protocols secure against each of them results in a
symmetric monoidal category. In Theorem 3 we observe that under suitable con-
ditions, images of secure protocols under monoidal functors remain secure, which
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gives an abstract variant of the lifting theorem [68, Theorem 15] that states that
perfectly UC-secure protocols are quantum UC-secure. We adapt this framework
to model computational security in two ways: either by replacing equations with
an equivalence relation, abstracting the idea of computational indistinguishabil-
ity, as is done in section 4, or by working with a notion of distance, deferred to
a full version. In the case of a distance, one can then either explicitly bound the
distance between desired and actually achieved behavior, or work with sequences
of protocols that converge to the target in the limit: the former models working
in the finite-key regimen [67] and the latter models the kinds of asymptotic se-
curity and complexity statements that are common in cryptography.Finally, we
apply the framework developed to study bipartite and tripartite cryptography.
We first prove pictorially the security of the one-time pad. We then reprove the
no-go-theorems of [46, 48, 61] concerning two-party commitments (resp. three-
party broadcasting) in this setting, and reinterpret them as limits on what can
be achieved securely in any compact closed category (resp. symmetric monoidal
category). The key steps of the proof are done graphically, thus opening the door
for cryptographers to use such pictorial representations as rigorous tools rather
than merely as illustrations.

Moreover, we discuss some categorical constructions capturing aspects of
resource theories appearing in the physics literature. These contributions may be
of independent interest for further categorical studies on resource theories. In [20]
it is observed that many resource theories arise from an inclusion CF ↪→ C of free
transformations into a larger monoidal category, by taking the resource theory
of states. We observe that this amounts to applying the monoidal Grothendieck

construction [53] to the functor CF → C
hom(I,−)−−−−−−→ Set. This suggests applying

this construction more generally to the composite of monoidal functors F : D →
C and R : C → Set. In Example 1 we note that choosing F to be the n-fold
monoidal product Cn → C captures resources shared by n parties and n-partite
transformations between them. In the extended version, we model categorically
situations where there is a notion of distance between resources, and instead
of exact resource conversions one either studies approximate transformations or
sequences of transformations that succeed in the limit. In the extended version,
we discuss a variant of a construction on monoidal categories, used in special
cases in [31] and discussed in more detail in [23, 33], that allows one to declare
some resources free and thus enlarge the set of possible resource conversions.

1.1 Related work

We have already mentioned that cryptographers have developed a plethora of
frameworks for composable security, such as universally composable cryptogra-
phy [13], reactive simulatability [2, 3, 58] and others [38, 43, 44, 51]. Moreover,
some of these frameworks have been adapted to the quantum setting [6, 54, 68].
One might hence be tempted to think that the problem of composability in
cryptography has been solved. However, it is fair to say that most mainstream
cryptography is not formulated composably and that composable cryptography
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has yet to realize its full potential. Moreover, this proliferation of frameworks
should be taken as evidence of the continued importance of the issue, and is in
fact reflected by the existence of a recent Dagstuhl seminar on this matter [12].
Indeed, the aforementioned frameworks mostly consist of setting up fairly de-
tailed models of interacting machines, which as an approach suffers from two
drawbacks: Firstly, in order to be more realistic, the detailed models are often
complicated, both to reason in terms of and to define, thus making practicing
cryptographers less willing to use them. Perhaps more importantly it is not al-
ways clear whether the results proven in a particular model apply more generally
for other kinds of machines, whether those of a competing framework or those in
the real world. It is true that the choice of a concrete machine model does affect
what can be securely achieved—for instance, quantum cryptography differs from
classical cryptography and similarly classical cryptography behaves differently
in synchronous and asynchronous settings [4, 40]. Nevertheless, one might hope
that composable cryptography could be done at a similar level of formality as
complexity theory, where one rarely worries about the number of tapes in a Tur-
ing machine or of other low-level details of machine models. Second, changing
the model slightly (to e.g., model different kinds of adversaries or to incorporate
a different notion of efficiency) often requires reproving “composition theorems”
of the framework or at least checking that the existing proof is not broken by
the modification.

In contrast to frameworks based on detailed machine models, there are two
closely related top-down approaches to cryptography: constructive cryptogra-
phy [47] and its cousin abstract cryptography [48]. We are indebted to both
of these approaches, and indeed our framework could be seen as formalizing
the key idea of constructive cryptography—namely, cryptography as a resource
theory—and thus occupying a similar space as abstract cryptography. A key
difference is that constructive cryptography is usually instantiated in terms of
abstract cryptography [48], which in turn is based on a novel algebraic theory of
systems [46]. However, our work is not merely a translation from this theory to
categorical language, as there are important differences and benefits that stem
from formalizing cryptography in terms of a well-established and well-studied
algebraic theory of systems—that of (symmetric) monoidal categories:

The fact that cryptographers wish to compose their protocols sequentially and
in parallel strongly suggests using monoidal categories, that have these composi-
tion operations as primitives. In our framework, protocols secure against a fixed
set of attack models results in a symmetric monoidal category. In contrast, the
algebraic theory of systems [46] on which abstract cryptography is based takes
parallel composition and internal wiring as its primitives. This design choice re-
sults in some technical kinks and tangles that are natural with any novel theory
but have already been smoothed out in the case of category theory. For instance,
in the algebraic theory of systems of [46] the parallel composition is a partial
operation and in particular the parallel composite of a system with itself is never
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defined1 and the set of wires coming out of a system is fixed once and for all2.
In contrast, in a monoidal category parallel composition is a total operation and
whether one draws a box with n output wires of types A1, . . . An or single output
wire of type

⊗n
i=1 Ai is a matter of convenience. Technical differences such as

these make a direct formal comparison or translation between the frameworks
difficult, even if informally and superficially there are similarities.

We do not abstract away from an attacker model, but rather make it an
explicit part of the formalism that can be modified without worrying about
composability. This makes it possible to consider and combine very easily dif-
ferent security properties, and in particular paves the way to model attackers
with limited powers such as honest-but-curious adversaries. In our framework,
one can first fix a protocol transforming some resource to another one, and then
discuss whether this transformation is secure against different attack models. In
contrast, in abstract cryptography a cryptographic resource is a tuple of func-
tionalities, one for each set of dishonest parties, and thus has no prior existence
before fixing the attack model. This makes the question “what attack models is
this protocol secure against?” difficult to formalize.

As category theory is de facto the lingua franca between several subfields of
mathematics and computer science, elucidating the categorical structures present
in cryptography opens up the door to further connections between cryptography
and other fields. For instance, game semantics readily gives models of interactive,
asynchronous and probabilistic (or quantum) computation [18, 19, 69] in which
our theory can be instantiated, and thus further paves the way for programming
language theory to inform cryptographic models of concurrency.

Category theory comes with existing theory, results and tools that can readily
be applied to questions of cryptographic interest. In particular, the graphical
calculi of symmetric monoidal and compact closed categories [63] enables one
to rederive impossibility results shown in [46, 48, 61] purely pictorially. In fact,
such pictures were already often used as heuristic devices that illuminate the
official proofs, and viewing these pictures categorically lets us promote them
from mere illustrations to rigorous yet intuitive proofs. Indeed, in [48, Footnote
27] the authors suggest moving from a 1-dimensional symbolic presentation to a
2-dimensional one, and this is exactly what the graphical calculus achieves.

The approaches above result in a framework where security is defined so as
to guarantee composability. In contrast, approaches based on various protocol
logics [25–30] aim to characterize situations where composition can be done
securely, even if one does not use composable security definitions throughout.
As these approaches are based on process calculi, they are categorical under the
hood [52,55] even if not overtly so. There is also earlier work explicitly discussing

1 While the suggested fix is to assume that one has “copies” of the same system with
disjoint wire labels, it is unclear how one recognizes or even defines in terms of the
system algebra that two distinct systems are copies of each other.

2 Indeed, while [59] manages to bundle and unbundle ports along isomorphism when
convenient, it seems like the chosen technical foundation makes this more of a strug-
gle than it should be.
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category theory in the context of cryptography [9,10,21,22,35–37,41,56,57,65,
66], but they concern stand-alone security of particular cryptographic protocols,
rather than categorical aspects of composable security definitions.

2 Resource theories

We briefly review the categorical viewpoint on resource theories of [20]. Roughly
speaking, a resource theory can be seen as a SMC but the change in termi-
nology corresponds to a change in viewpoint: usually in category theory one
studies global properties of a category, such as the existence of (co)limits, re-
lationships to other categories, etc. In contrast, when one views a particular
SMC C as resource theory, one is interested in local questions. One thinks of
objects of C as resources, and morphisms as processes that transform a resource
to another. From this point of view, one mostly wishes to understand whether
homC(X,Y ) is empty or not for resources X and Y of interest. Thus from the
resource-theoretic point of view, most of the interesting information in C is al-
ready present in its preorder collapse. As concrete examples of resource-theoretic
questions, one might wonder if (i) some noisy channels can simulate a (almost)
noiseless channel [20, Example 3.13.], (ii) there is a protocol that uses only local
quantum operations and classical communication and transforms a particular
quantum state to another one [17], (iii) some non-classical statistical behavior
can be used to simulate other such behavior [1]. In [20] the authors show how
many familiar resource theories arise in a uniform fashion: starting from an SMC
C of processes equipped with a wide sub-SMC CF , the morphisms of which cor-
respond to “free” processes, they build several resource theories (=SMCs). Per-
haps the most important of these constructions is the resource theory of states:
given CF ↪→ C, the corresponding resource theory of states can be explicitly
constructed by taking the objects of this resource theory to be states of C, i.e.,
maps r : I → A for some A, and maps r → s are maps f : A → B in CF that
transform r to s as in fig. 1a.

We now turn our attention towards cryptography. As contemporary cryptog-
raphy is both broad and complex in scope, any faithful model of it is likely to be
complicated as well. A benefit of the categorical idiom is that we can build up to
more complicated models in stages, which is what we will do in the sequel. We
phrase our constructions in terms of an arbitrary SMC C, but in order to model
actual cryptographic protocols, the morphisms of C should represent interactive
computational machines with open “ports”, with composition then amounting
to connecting such machines together. Different choices of C set the background
for different kinds of cryptography, so that quantum cryptographers want C to
include quantum systems whereas in classical cryptography it is sufficient that
these computational machines are probabilistic. Constructing such categories C
in detail is not trivial but is outside our scope—we will discuss this in more
detail in section 6.

Our first observation is that there is no reason to restrict to inclusions
CF ↪→ C in order to construct a resource theory of states. Indeed, while it
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is straightforward to verify explicitly that the resource theory of states is a sym-
metric monoidal category, it is instructive to understand more abstractly why
this is so: in effect, the constructed category is the category of elements of the

composite functor CF → C
hom(I,−)−−−−−−→ Set. As this composite is a (lax) symmet-

ric monoidal functor, the resulting category is automatically symmetric monoidal
as observed in [53]. Thus this construction goes through for any symmetric (lax)

monoidal functors D
F−→ C

R−→ Set. Here we may think of F as interpreting
free processes into an ambient category of all processes, and R : C → Set as an
operation that gives for each object A of C the set R(A) of resources of type A.

Explicitly, given symmetric monoidal functors D
F−→ C

R−→ Set, the category
of elements

∫
RF has as its objects pairs (r,A) where A is an object of D and

r ∈ RF (A), the intuition being that r is a resource of type F (A). A morphism
(r,A) → (s,B) is given by a morphism f : A → B in D that takes r to s,
i.e., satisfies RF (f)(r) = s. The symmetric monoidal structure comes from the
symmetric monoidal structures of D,Set and RF . Somewhat more explicitly,
(r,A) ⊗ (s,B) is defined by (r ⊗ s,A ⊗ B) where r ⊗ s is the image of (r, s)
under the function RF (A)×RF (B) → RF (A⊗B) that is part of the monoidal
structure on RF , and on morphisms of

∫
RF the monoidal product is defined

from that of D.

From now on we will assume that F is strong monoidal, and while R =
hom(I,−) captures our main examples of interest, we will phrase our results for
an arbitrary lax monoidal R. This relaxation allows us to capture the n-partite
structure often used when studying cryptography, as shown next.

Example 1. Consider the resource theory induced by Cn ⊗−→ C
hom(I,−)−−−−−−→ Set,

where we write ⊗ for the n-fold monoidal product3. The resulting resource
theory has a natural interpretation in terms of n agents trying to transform
resources to others: an object of this resource theory corresponds to a pair
((Ai)

n
i=1, r : I →

⊗
Ai), and can be thought of as an n-partite state, depicted

in fig. 1b, where the ith agent has access to a port of type Ai. A morphism f̄ =
(f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) between such resources then amounts to

a protocol that prescribes, for each agent i a process fi that they should perform
so that r gets transformed to s as in fig. 1c.

In this resource theory, all of the agents are equally powerful and can perform
all processes allowed by C, and this might be unrealistic: first of all, C might
include computational processes that are too powerful/expensive for us to use
in our cryptographic protocols. Moreover, having agents with different computa-
tional powers is important to model e.g., blind quantum computing [11] where a
client with access only to limited, if any, quantum computation tries to securely
delegate computations to a server with a powerful quantum computer. This lim-
itation is easily remedied: we could take the ith agent to be able to implement
computations in some sub-SMC Ci of C, and then consider

∏n
i=1 Ci → C.

3 As C is symmetric, the functor ⊗ is strong monoidal.
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f1 fn
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s

. . .

B1 Bn

(c) An n-partite
transformation

g′ f′

h′

(d) Factorization of
an attack on f ⊗ g

Fig. 1: Some resource transformations

A more serious limitation is that such transformations have no security
guarantees—they only work if each agent performs fi as prescribed by the pro-
tocol. We fix this next.

3 Cryptography as a resource theory

r

. . .

f1 fk a

or
r

[k] (k, n]

f̄ |[k] a

(a) Attack by the par-
ties k + 1, . . . , n

r

[k] (k, n]

f̄ |[k] a

=
s

[k] (k, n]

b

(b) Security against the
parties k + 1, . . . , n

r

[k] (k, n]

f̄ |[k]

=
s

[k] (k, n]

b

(c) Security against the
initial attack

Fig. 2: Attacks and security constraints

In order for a protocol f̄ = (f1, . . . , fn) : ((Ai)
n
i=1, r) → ((Bi)

n
i=1, s) to be

secure, we should have some guarantees about what happens if, as a result of an
attack on the protocol, something else than (f1, . . . , fn) happens. For instance,
some subset of the parties might deviate from the protocol and do something
else instead. In the simulation paradigm [34], security is then defined by saying
that, anything that could happen when running the real protocol, i.e., f̄ with
r, could also happen in the ideal world, i.e., with s. A given protocol might be
secure against some kinds of attacks and insecure against others, so we define
security against an abstract attack model. This abstract notion of an attack
model is one of the main definitions of our paper. It isolates conditions needed
for the composition theorem (Theorem 1). It also captures our key examples
that we use to illustrate the definition after giving it. Note that most proofs are
deferred to an extended version.

Definition 1. An attack model A on an SMC C consists of giving for each
morphism f of C a class A(f) of morphisms of C such that
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(i) f ∈ A(f) for every f .

(ii) For any f : A → B and g : B → C and composable g′ ∈ A(g), f ′ ∈ A(f)
we have g′ ◦ f ′ ∈ A(g ◦ f). Moreover, any h ∈ A(g ◦ f) factorizes as g′ ◦ f ′

with g′ ∈ A(g) and f ′ ∈ A(f).

(iii) For any f : A → B, g : C → D in C and f ′ ∈ A(f), g′ ∈ A(g) we have
f ′ ⊗ g′ ∈ A(f ⊗ g). Moreover, any h ∈ A(f ⊗ g) factorizes as h′ ◦ (f ′ ⊗ g′)
with f ′ ∈ A(f), g′ ∈ A(g) and h′ ∈ A(idB⊗D).

Let f : (A, r) → (B, s) define a morphism in the resource theory
∫
RF induced by

F : D → C and R : C → Set. We say that f is secure against an attack model
A on C (or A-secure) if for any f ′ ∈ A(F (f)) with dom(f ′) = F (A) there is
b ∈ A(idF (B)) with dom(b) = F (B) such that R(f ′)r = R(b)s.

The above definition of security asks for perfect equality and corresponds to
information-theoretic security in cryptography. This is often too much to hope
for, and we will replace this by an equivalence relation in section 4 and by a
notion of distance in an extended version.

The intuition is that A gives, for each process in C, the set of behaviors that
the attackers could force to happen instead of honest behavior. In particular,
A(idB) give the set of behaviors that is available to attackers given access to
a system of type B. Then property (i) amounts to the assumption that the
adversaries could behave honestly. The first halves of properties (ii) and (iii)
say that, given an attack on g and one on f , both attacks could happen when
composing g and f sequentially or in parallel. The second parts of these say
that attacks on composite processes can be understood as composites of attacks.
However, note that (iii) does not say that an attack on a product has to be
a product of attacks: the factorization says that any h ∈ A(g ⊗ f) factorizes
as in fig. 1d with g′ ∈ A(g), f ′ ∈ A(f) and h′ ∈ A(idB⊗D). The intuition is
that an attacker does not have to attack two parallel protocols independently
of each other, but might play the protocols against each other in complicated
ways. This intuition also explains why we do not require that all morphisms in
A(f) have F (A) as their domain, despite the definition of A-security quantifying
only against those: when factoring h ∈ A(g ◦ f) as g′ ◦ f ′ with g′ ∈ A(g) and
f ′ ∈ A(f), we can no longer guarantee that F (B) is the domain of g′—perhaps
the attackers take us elsewhere when they perform f ′.

If one thinks of F : D → C as representing the inclusion of free processes
into general processes, one also gets an explanation why we do not insist that
free processes and attacks live in the same category, i.e., that F = idC. This is
simply because we might wish to prove that some protocols are secure against
attackers that can use more resources than we wish or can use in the protocols.

Example 2. For any SMC C there are two trivial attack models: the minimal
one defined by A(f) = {f} and the maximal one sending f to the class of all
morphisms of C. We interpret the minimal attack model as representing honest
behavior, and the maximal one as representing arbitrary malicious behavior.
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Proposition 1. If A1, . . . ,An are attack models on SMCs C1, . . . ,Cn respec-
tively, then there is a product

∏n
i=1 Ai attack model on

∏n
i=1 Ci defined by

(
∏n

i=1 Ai)(f1, . . . , fn) =
∏n

i=1 Ai(fi).

This proposition, together with the minimal and maximal attack models, is
already expressive enough to model multi-party computation where some subset
of the parties might do arbitrary malicious behavior. Indeed, consider the n-

partite resource theory induced by Cn ⊗−→ C
hom(I,−)−−−−−−→ Set. Let us first model a

situation where the first n − 1 participants are honest and the last participant
is dishonest. In this case we can set A =

∏n
i=1 Ai where each of A1, . . . ,An−1

is the minimal attack model on C and An is the maximal attack model. Then,
an attack on f̄ = (f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) can be represented

by the first n − 1 parties obeying the protocol and the n-th party doing an
arbitrary computation a, as depicted in the two pictures of fig. 2a, where [n] :=

{1, . . . , n}, (k, n] := {k+1, . . . n}, f̄ |[k] :=
⊗k

i=1 fi, and here k = n−1. The latter
representation will be used when we do not need to emphasize pictorially the fact
that the honest parties are each performing their own individual computations.

If instead of just one attacker, there are several independently acting adver-
saries, we can take A =

∏n
i=1 Ai where Ai is the minimal or maximal attack

structure depending on whether the ith participant is honest or not. If the set
of dishonest parties can collude and communicate arbitrarily during the process,
we need the flexibility given in Definition 1 and have the attack structure live
in a different category than where our protocols live. For simplicity of notation,
assume that the first k agents are honest but the remaining parties are mali-
cious and might do arbitrary (joint) processes in C. In particular, the action
done by the dishonest parties k + 1, . . . , n need not be describable as a product⊗n

i=k+1(ai) of individual actions. In that case we define A as follows: we first con-

sider our resource theory as arising from Cn idk×⊗−−−−→ Ck×C
⊗−→ C

hom(I,−)−−−−−−→ Set,
and define A on Ck ×C as the product of the minimal attack model on Ck and
the maximal one on C. Concretely, this means that the first k agents always
obey the protocol, but the remaining agents can choose to perform arbitrary
joint behaviors in C. Then a generic attack on a protocol f̄ can be represented
exactly as before in fig. 2a, except we no longer insist that k = n − 1. Now a
protocol f̄ is A-secure if for any a with dom(a) = (Ai)

n
i=k+1 there is a b with

dom(b) = (Bi)
n
i=k+1 satisfying the equation of fig. 2b.

If one is willing to draw more wire crossings, one can easily depict and de-
fine security against an arbitrary subset of the parties behaving maliciously, and
henceforward this is the attack model we have in mind when we say that some
n-partite protocol is secure against some subset of the parties. Moreover, for any
subset J of dishonest agents, one could consider more limited kinds of attacks:
for instance, the agents might have limited computational power or limited abil-
ities to perform joint computations—as long as the attack model satisfies the
conditions of Definition 1 one automatically gets a composable notion of secure
protocols by Theorem 1 below.

170 A. Broadbent and M. Karvonen



Theorem 1. Given symmetric monoidal functors F : D → C, R : C → Set
with F strong monoidal and R lax monoidal, and an attack model A on C,
the class of A-secure maps forms a wide sub-SMC of the resource theory

∫
RF

induced by RF .

So far we have discussed security only against a single, fixed subset of dishon-
est parties, while in multi-party computation it is common to consider security
against any subset containing e.g., at most n/3 or n/2 of the parties. However,
as monoidal subcategories are closed under intersection, we immediately obtain
composability against multiple attack models.

Corollary 1. Given a non-empty family of functors (D
Fi−→ Ci

Ri−−→ Set)i∈I

with RiFi = RjFj =: R for all i, j ∈ I and attack models Ai on Ci for each i,
the class of maps in

∫
R that is secure against each Ai is a sub-SMC of

∫
R.

Using Corollary 1 one readily obtains composability of protocols that are simul-
taneously secure against different attack models Ai. Thus one could, in principle,
consider composable cryptography in an n-party setting where some subsets are
honest-but-curious, some might be outright malicious but have limited compu-
tational power, and some subsets might be outright malicious but not willing or
able to coordinate with each other, without reproving any composition theorems.

While the security definition of f quantifies over A(f), which may be infinite,
under suitable conditions it is sufficient to check security only on a subset of
A(f), so that whether f is A-secure often reduces to finitely many equations.

Definition 2. Given f : A → B, a subset X of A(f) is said to be initial if
any f ′ ∈ A(f) with dom(f ′) = A can be factorized as b ◦ a with a ∈ X and
b ∈ A(idB).

Theorem 2. Let f : (A, r) → (B, s) define a morphism in the resource theory
induced by F : D → C and R : C → Set and let A be an attack model on C. If
X ⊂ A(F (f)) is initial, then f is A-secure if, and only if the security condition
holds against attacks in X, i.e., if for any f ′ ∈ X with dom(f ′) = F (A) there is
b ∈ A(idF (B)) such that R(f ′)r = R(b)s.

Let us return to the example of Cn → C with the first k agents being honest and
the final n− k dishonest and collaborating. Then we can take a singleton as our
initial subset of attacks on f̄ , and this is given by f̄ |[k]⊗(

⊗n
i=k+1 id). Intuitively,

this represents a situation where the dishonest parties k+1, . . . , n merely stand
by and forward messages between the environment and the functionality, so that
initiality can be seen as explaining “completeness of the dummy adversary” [13,
Claim 11] in UC-security. In this case the security condition can be equivalently
phrased by saying that there exists b ∈ A([idb]) satisfying the equation of fig. 2c,
which reproduces the pictures of [51]. Similarly, for classical honest-but-curious
adversaries one usually only considers the initial such adversary, who follows the
protocol otherwise except that they keep track of the protocol transcript.

Theorem 3. In the resource theory of n-partite states, if (f1, . . . fn) is secure
against some subset J of [n] and F is a strong monoidal, then (Ff1, . . . , Ffn) is
secure against J as well.
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For instance, if the inclusion of classical interactive computations into quantum
ones is strong monoidal, i.e., respects sequential and parallel composition (up to
isomorphism), then unconditionally secure classical protocols are also secure in
the quantum setting, as shown in the context of UC-security in [68, Theorem
15]. More generally, this result implies that the construction of the category of
n-partite transformations secure against any fixed subset of [n] is functorial in
C, and this is in fact also true for any family of subsets of [n] by Corollary 1.

4 Computational security

The discussion above has been focused on perfect security, so that the equations
defining security hold exactly. This is often too high a standard for security to
hope for, and consequently cryptographers routinely work with computational
or approximate security. We model this in two ways. The first approach replaces
equations with an equivalence relation abstracting from the idea that the end
results are “computationally indistinguishable” rather than strictly equal. The
latter approach amounts to working in terms of a (pseudo)metric quantifying how
close we are to the ideal resource and is needed to model statements in finite-key
cryptography [67]. The typical metric is given by “distinguisher advantage for
polynomial-time environments”, enabling one to use computational complexity
theory. In a nutshell, this amounts to working with sequences of protocols and
defining security by saying “for any ϵ > 0, for sufficiently large n, for any attack
on the nth protocol there is an attack on the target resource such that the end
results are within ϵ”. The first approach is mathematically straightforward and
we discuss it next, while the second approach is relegated to an extended version.

Replacing strict equations with equivalence relations is easy to describe on
an abstract level as an instance of the theory so far: one just assumes that C has
a monoidal congruence ≈ and then works with the resource theory induced by

Cn → C/≈ hom(I,−)−−−−−−→ Set with similar attack models as above. More explicitly,
as long as each hom-set of C is equipped with an equivalence relation ≈ that
respects ⊗ and ◦ in that f ≈ f ′ and g ≈ g′ imply gf ≈ g′f ′ (whenever de-

fined) and g ⊗ f ≈ g′ ⊗ f ′, then working with Cn → C/≈ hom(I,−)−−−−−−→ Set results
in security conditions that replace = in C with ≈ throughout. If C describes
(interactive) computational processes and ≈ represents computational indistin-
guishability (inability for any “efficient” process to distinguish between the two),
one might need to replace C (and consequently functionalities, protocols and at-
tacks on them) with the subcategory of C of efficient processes so that ≈ indeed
results in a congruence.

5 Applications

We will now explore how the one-time pad (OTP) fits into our framework, paral-
leling the discussion of OTP in [47]. We will start from the category FinStoch of
finite sets and stochastic maps between them, with ⊗ given by cartesian product
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of sets. This is sufficient for OTP, even if more complicated and interactive cryp-
tographic protocols will need a different starting category. However, the actual
category C we work in is built from FinStoch, essentially by a tripartite variant
of the “resource theory of universally-combinable processes” of [20, Section 3.4].
We will defer the detailed construction of C to an extended version and work in
it more heuristically, allowing us to focus on the OTP.

Roughly speaking, a “basic object” of C consists of finite sets Ai,Bi, Ei for
i = 1, 2, and of a map f : A1 ⊗B1 ⊗E1 → A2 ⊗B2 ⊗E2 in FinStoch, depicted
in fig. 3a. The intuition is that ⟨(Ai, Bi, Ei)i∈{1,2}, f⟩ represents a box shared

A1

A2

B1

B2

E1

E2

f

(a) Box shared by
Alice, Bob and Eve

A

B

B

i

A

E B

(b) The OTP proto-
col

short

BA

PRNGPRNG

≈
long

BA

(c) A secure PRNG

A

B

(d) Secure channel

Fig. 3: Some resources and protocols

by Alice, Bob and Eve, with Alice’s inputs and outputs ranging over A1 and
A2 respectively, and similarly for Bob and Eve. We will often label the ports
just by the party who controls it, and omit labeling trivial ports. For example,
if fig. 4a depicts the copy map X → X ⊗X for some set X in FinStoch, then

(a) The copy map

A

AA

(b) Alice’s copy
map

A

BE

(c) Alice broadcast-
ing to Bob and Eve

BA

(d) Random shared
key

Fig. 4: Variants of the copy map

fig. 4b denotes an object of C representing Alice copying data privately, whereas
fig. 4c denotes an object C that sends Alice’s input unchanged to Bob and to
Eve—which we view as an insecure (but authenticated) channel from Alice to
Bob.

A general object of C then consists of a list of such basic objects, representing
a list of such resources shared between Alice, Bob and Eve. A morphism of C is
roughly speaking a way of using the starting resources and local computation by
the three parties to produce the target resources: a more formal description will
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be given in an extended version. In our attack model Alice and Bob are honest
but Eve is dishonest, so she might do arbitrary local computation instead of
whatever our protocols might prescribe.

In the version of the OTP we discuss, our starting resources consist of an
insecure but authenticated channel4 from Alice to Bob as in fig. 4c and (i.e., ⊗)
of a random key over the same message space, shared by Alice and Bob (fig. 4d).
The goal is to build a secure channel from Alice to Bob (fig. 3d) from these.

The local ingredients of OTP and the axioms they obey are depicted in fig. 5
and correspond to a Hopf algebra with an integral in a SMC. Any finite group
gives rise to such a structure in FinStoch, with the integral given by the uniform
distribution. Concretely, this means that Alice and Bob must agree on a group
structure on the message space, and the fact that this multiplication forms a
group and that the key is random can be captured by the equations of fig. 5.

= = = = = =

= i = = i = =

Fig. 5: Local ingredients of OTP and the axioms they obey

The OTP protocol is then depicted in fig. 3b, i.e., Alice adds the key to her
message, broadcasts it to Eve and Bob. Eve deletes her part and Bob adds the
inverse of the key to the ciphertext to recover the message.

To show that the protocol is secure, note that Eve has an initial attack given
by just reading the ciphertext. The pictorial security proof is depicted in fig. 6.
The first equation is the interaction between multiplication and copying, the
second uses (co)associativity, the third one properties of inverses, the fourth and
last one use unitality, and the fifth one follows from the key being random. Taken
together, these show that Eve’s initial attack is equal to her just producing a
random message herself with Alice and Bob sharing the target resource. The
correctness of the protocol can be proven similarly. Thus OTP gives a map
shared key⊗authenticated channel → secure channel that is secure against Eve.

We now use this example to illustrate the use of the composition theorems.
A major drawback of OTP, despite its perfect security, is the fact that one needs
a key that is as long as the message. In practice, Alice and Bob might only
share a short key and wish to promote it a long key. If they agree on a pseudo-
random number generator (PRNG) with their key as the seed, they can map
the short key to a longer key. If the PRNG is computationally secure, then the
end-result is (computationally) indistinguishable from a long key, depicted in

4 If the insecure channel allows Eve to tamper with the message, the analysis changes.
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Fig. 6: Security proof of OTP

fig. 3c, where ≈ stands for computational indistinguishability. We envision the
computational security of the chosen PRNG to be proven “the usual way” and
not graphically—after all, we believe that our framework is there to supplement
ordinary cryptographic reasoning and not to replace it. The PRNG then results
in a (computationally) secure way of promoting a short shared key into a long
shared key, and then the composition theorems guarantee that these protocols
can be composed, resulting in the security of the stream cipher.

Composable security is a stronger constraint than stand-alone security, and
indeed many cryptographic functionalities are known to be impossible to achieve
“in the plain model”, i.e., without set-up assumptions. A case in point is bit
commitment, which was shown to be impossible in the UC-framework in [14].
This result was later generalized in [61] to show that any two-party functionality
that can be realized in the plain UC-framework is “splittable”. While the authors
of [61] remark that their result applies more generally than just to the UC-
framework, this wasn’t made precise until [48]5. We present a categorical proof
of this result in our framework, which promotes the pictures “illustrating the
proof” in [61] into a full proof—the main difference is that in [61] the pictures
explicitly keep track of an environment trying to distinguish between different
functionalities, whereas we prove our result in the case of perfect security and
then deduce the asymptotic claim.

We now assume that C, our ambient category of interactive computations is
compact closed6. As we are in the 2-party setting, we take our free computations

5 Except that in their framework the 2-party case seems to require security constraints
also when both parties cheat.

6 We do not view this as overtly restrictive, as many theoretical models of concurrent
interactive (probabilistic/quantum) computation are compact closed [18,19,69].
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to be given by C2, and we consider two attack models: one where Alice cheats
and Bob is honest, and one where Bob cheats and Alice is honest. We think of

as representing a two-way communication channel, but this interpretation is
not needed for the formal result.

Theorem 4. For Alice and Bob (one of whom might cheat), if a bipartite func-
tionality r can be securely realized from a communication channel between them,
i.e., from , then there is a g such that

r

A B

=
r r

g

. (∗)

Proof. If a protocol (fA, fB) achieves this, security constraints give us sA, sB

such that fA =
r

sB

and fB =
r

sA

so that r = fA fB = fA fB =
r r

sB sA

Corollary 2. Given a compact closed C modeling computation in which wires
model communication channels, (composable) bit commitment and oblivious trans-
fer are impossible in that model without setup, even asymptotically in terms of
distinguisher advantage.

Proof. If r represents bit commitment from Alice to Bob, it does not satisfy
the equation required by Theorem 4 for any g, and the two sides of (∗) can be
distinguished efficiently with at least probability 1/2. Indeed, take any f and
let us compare the two sides of (∗): if the distinguisher commits to a random
bit b, then Bob gets a notification of this on the left hand-side, so that f has to
commit to a bit on the right side of (∗) to avoid being distinguished from the
left side. But this bit coincides with b with probability at most 1/2, so that the
difference becomes apparent at the reveal stage. The case of OT is similar.

We now discuss a similar result in the tripartite case, which rules out building
a broadcasting channel from pairwise channels securely against any single party
cheating. In [46] comparable pictures are used to illustrate the official, symboli-
cally rather involved, proof, whereas in our framework the pictures are the proof.
Another key difference is that [46] rules out broadcasting directly, whereas we
show that any tripartite functionality realizable from pairwise channels satisfies
some equations, and then use these equations to rule out broadcasting.

Formally, we are working with the resource theory given byC3 ⊗−→ C
hom(I,−)−−−−−−→

Set whereC is an SMC, and reason about protocols that are secure against three
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kinds of attacks: one for each party behaving dishonestly while the rest obey the
protocol. Note that we do not need to assume compact closure for this result,
and the result goes through for any state on A⊗A shared between each pair of
parties: we will denote such a state by by convention.

Theorem 5. If a tripartite functionality r can be realized from each pair of par-
ties sharing a state , securely against any single party, then there are simulators
sA, sB , sC such that

r

sA

=
r

sB

=
r

sC

.

Proof. Any tripartite protocol building on top of each pair of parties sharing
can be drawn as in the left side of

fA fB fC fA fB fB fC

Consider now the morphism in C depicted on the right: it can be seen as the
result of three different attacks on the protocol (fA, fB , fC) in C3: one where
Alice cheats and performs fA and fB (and the wire connecting them), one where
Bob performs fB twice, and one where Charlie performs fB and fC . The security
of (fA, fB , fC) against each of these gives the required simulators.

Corollary 3. Given a SMC C modeling interactive computation, and a state
on A⊗A modeling pairwise communication, it is impossible to build broadcasting
channels securely (even asymptotically in terms of distinguisher advantage) from
pairwise channels.

Proof. We show that a channel r that enables Bob to broadcast an input bit to
Alice and Charlie never satisfies the required equations for any sA, sB , sC . In-
deed, assume otherwise and let the environment plug “broadcast 0” and “broad-
cast 1” to the two wires in the middle. The leftmost picture then says that Charlie
receives 1, the rightmost picture implies that Alice gets 0 and the middle picture
that Alice and Bob get the same output (if anything at all)—a contradiction. In-
deed, one cannot satisfy all of these simultaneously with high probability, which
rules out an asymptotic transformation.

6 Outlook

We have presented a categorical framework providing a general, flexible and
mathematically robust way of reasoning about composability in cryptography.
Besides contributing a further approach to composable cryptography and poten-
tially helping with cross-talk and comparisons between existing approaches [12],
we believe that the current work opens the door for several further questions.
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First, due to the generality of our approach we hope that one can, besides
honest and malicious participants, reason about more refined kinds of adversaries
composably. Indeed, we expect that Definition 1 is general enough to capture
e.g., honest-but-curious adversaries7. It would also be interesting to see if this
captures even more general attacks, e.g., situations where the sets of participants
and dishonest parties can change during the protocol. This might require un-
derstanding our axiomatization of attack models more structurally and perhaps
generalizing it. Does this structure (or a variant thereof) already arise in cate-
gory theory? While we define an attack model on a category, perhaps one could
define an attack model on a (strong) monoidal functor F , the current definition
being recovered when F = id.

Second, we expect that rephrasing cryptographic questions categorically would
enable more cross-talk between cryptography and other fields already using cate-
gory theory as an organizing principle. For instance, many existing approaches to
composable cryptography develop their own models of concurrent, asynchronous,
probabilistic and interactive computations. As categorical models of such com-
putation exist in the context of game semantics [18,19,69], one is left wondering
whether the models of the semanticists’ could be used to study and answer cryp-
tographic questions, or conversely if the models developed by cryptographers
contain valuable insights for programming language semantics.

Besides working inside concrete models—which ultimately blends into “just
doing composable cryptography”—one could study axiomatically how properties
of a category relate to cryptographic properties in it. As a specific conjecture in
this direction, one might hope to talk about honest-but-curious adversaries at
an abstract level using environment structures [21], that axiomatize the idea of
deleting a system. Similarly, having agents purify their actions is an important
tool in quantum cryptography [45]—can categorical accounts of purification [15,
21,24] elucidate this?

Finally, we hope to get more mileage out of the tools brought in with the cat-
egorical viewpoint. For instance, can one prove further no-go results pictorially?
More specifically, given the impossibility results for two and three parties, one
wonders if the “only topology matters” approach of string diagrams can be used
to derive general impossibility results for n parties sharing pairwise channels.
Similarly, while diagrammatic languages have been used to reason about posi-
tive cryptographic results in the stand-alone setting [9,10,41], can one push such
approaches further now that composable security definitions have a clear cate-
gorical meaning? Besides the graphical methods, thinking of cryptography as a
resource theory suggests using resource-theoretic tools such as monotones. While
monotones have already been applied in cryptography [70], a full understanding
of cryptographically relevant monotones is still lacking.

7 Heuristically speaking this is the case: an honest-but-curious attack on g◦f should be
factorizable as one on g and one on f , and similarly an honest-but-curious attack on
g⊗ f should be factorisable into ones on g and f that then forward their transcripts
to an attack on id ⊗ id.
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