
The Future of Software Engineering: Where
Will Machine Learning, Agile,

and Virtualization Take Us Next?

Dennis Mancl1(B) and Steven D. Fraser2

1 MSWX Software Experts, Bridgewater, NJ 08807, USA
dmancl@acm.org

2 Innoxec, Santa Clara, CA, USA

Abstract. Software has become the lifeblood of the 21st century, enabling a broad
range of commercial, medical, educational, agricultural, and government appli-
cations. These applications are designed and deployed through a variety of soft-
ware best practices. With the onset of the COVID-19 pandemic, developers have
embraced virtualization (remote working) and a variety of strategies to manage
the complexity of global development on multiple platforms. However, evolving
hazards such as network security, algorithm bias, and the combination of careless
developers and deliberate attacks continue to be a challenge. An XP2021 panel
organized and chaired by Steven Fraser debated the future of software engineer-
ing and related topics such education, ethics, and tools. The panel featured Anita
Carleton (CMU’s SEI), Priya Marsonia (Cognizant), Bertrand Meyer (SIT, Eiffel
Software), Landon Noll (Independent Consultant), and Kati Vilkki (Reaktor).

Keywords: Agile · AI · Applications · Collaboration · Education ·Machine
learning · Professionalism · Remote working · Societal needs · Software
engineering

1 Introduction: The Panelists Share Their Views of the Future

Software development has evolved over the past seventy-five years to meet the chang-
ing challenges of software product development. Software development has embraced
many innovations in technical and business practices: structured programming, waterfall
development processes, OO design, automated testing, outsourcing, open source, net-
working, offshoring, and Agile methods. New programming languages, SDKs (software
development toolkits), and code management tools have improved productivity. Today,
there is hope that emerging technologies such as machine learning, virtual communi-
cation, and remote working tools will improve the reliability and resilience of software
systems.

Technology needs to address a crisis of complexity. Yesterday’s batch-orientedmain-
frame systems were relatively simple, but today’s software developers face more com-
plexity. Developers work in a global environment targeting multiple platforms while

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 222–230, 2021.
https://doi.org/10.1007/978-3-030-88583-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_23&domain=pdf
http://orcid.org/0000-0002-4418-6324
http://orcid.org/0000-0002-3958-6585
https://doi.org/10.1007/978-3-030-88583-0_23


The Future of Software Engineering 223

managing ubiquitous networks, petabyte datasets, and emergent hazards. New tech-
nology could be useful in this complex environment. For example, some of work of
developers might be replaced by automated development and machine learning [1, 2].
In this panel session, the panelists expressed a wide spectrum of opinion on the future.

The panelists focused less on technology and more on the ongoing challenges of
the software industry. Software teams everywhere must face issues connected to quality,
education, outsourcing, ethics, a push to democratize development, and more connec-
tions between computing and non-technical fields. The panelists expressed their antici-
pation for the benefits of cloud technology, ubiquitous computing, smarter development
environments, and systems that leverage natural language processing. The panelists
expressed concern about two missing pieces in the software industry. First, there is a
need for better-trained software professionals who understand the discipline of product
development in light of the challenges of security, safety, and ethical economic viability.
Second, industry needs an incentive system that not only rewards innovation – but also
penalizes companies that knowingly deliver systems that fail or worse yet cause bodily
harm.

1.1 AI and Machine Learning

Twopanelists,AnitaCarleton (SoftwareEngineering Institute) andPriyaMarsonia (Cog-
nizant), embraced the adoption of new technologies, including artificial intelligence and
machine learning, to extend the capacity of software developers. Anita is Director of
SEI’s Software Solutions Division, and Priya is a Senior Client Partner at Cognizant.

Anita anticipated that AI will support the development of software systems. She
expected that the combination of human and machine intelligence will enable the
software industry to keep ahead of a dynamically changing environment. AI-based
development tools will help meet increasing quality requirements.

Priya was convinced that we will see more natural language programming and better
tool support for developers. She explained, “In the agile world, I see the infrastructure
as helping us more,” with humans collaborating with intelligent agents and machine-
identified “digital twins.” A future software development environment might be able
to analyze the programming styles of team members, then assign pair programming
partners based on similarity of programming style. In an agile environment of the future,
a developer may pair program with an intelligent agent-selected partner, or even an AI
instead of a human partner.

Priya anticipated that another fruitful area for automation is to provide support for
large multi-team projects. Systems could scan enormous volumes of complex subsys-
tems, assessing code similarities and offering suggestions of where teams may need to
collaborate. Inter-team communication can avoid duplication, discover useful lessons
from the past, or improve the testing process. Priya added, “The whole notion of getting
suggestions and spotting trends would be embedded in our environment, and we would
have to do fewer and fewer rudimentary operations.”



224 D. Mancl and S. D. Fraser

1.2 Conventional Technology with Better Failure Analysis

BertrandMeyer (Schaffhausen Institute of Technology and Eiffel Software), agreed with
the positive assessment of the future, but believed that more conventional technology
and processes will continue to advance.

Bertrand asserted that there are reasons to be proud of what software has done
(including virtual conferences). “Imagine the depth of the stack just to have this [this
panel session].” But we have also seen big failures. He referred to the 7-hour outage of
emergency services telephone service in France in the first week of June 2021 [3]. “This
was a software bug. Why don’t we have the same kind of analysis we have for airplane
accidents?” One of software engineering’s biggest challenge is “correctness” – and a
public airing of significant bugs will help developers to understand the root causes of
future software failures.

1.3 Need to Address Software Failures

Landon Noll (Landon Noll and Associates) was more pessimistic. He warned that we
are already in a software crisis, and we need major changes to improve the education
and management of software professionals to increase future “readiness.”

Landon explained his views – and why he believes that skills and best practices are
not improving. “So many companies and developers use the term software engineer –
yet [they] lack any formal training or certification to understand even basic engineering
principles.” This is a view shared by software engineering thought leaders, such as
David Parnas and Mary Shaw [4][5][6]. Landon complained that companies in non-
critical industries don’t care, and he blamed the limits on legal liability for software that
fails – and users accustomed to accepting poor quality software. Landon claimed that we
need to address these skill deficits and fix these economic incentives to make progress.

1.4 Less Outsourcing in Data-Driven Industries

Kati Vilkki (Reaktor) shared her consulting experience in digital transformations based
on her years as an agile technology leader at Nokia. Kati observed that many banks and
insurance companies have gradually “outsourced” many of their information technology
functions. At the time, company executives felt that IT was not part of the company’s
core business. But today, the pendulum is swinging the other way. These companies
have found that their businesses have evolved and that “data is king.” Kati reported: “I
see them desperately trying to in-source, to hire software developers.”

2 Democratization of the Software Industry?

Priya noted that there is an increased “democratization” of software development, with
the rise of many new low-code or no-code environments that can be used by non-
programmers to build applications. She talked about Cognizant’s think tank “Center
for the Future of Work,” which was launched to study the influences of globalization,
virtualization, AI, and the cloud [7]. That future for software engineering, according to



The Future of Software Engineering 225

Priya, may be “founded on natural and spoken language, where we don’t have to be as
conversant in an arcane coding language, or the vagaries of a very specific environment
that’s complex to manipulate.”

Anita added her observations on the evolution of the software industry. She described
significant advances in the past 30 years of software development, such as a better focus
on architecture, improved practices and tools, agile processes, and “DevSecOps” which
have combined to make product development better.

Landon voiced concerns.He noted that, “Agile practices have a potential for helping,”
but observed that developers are often attracted by the glitter of new programming
languages. Hewould prefer developers to spend less time on the “language of themonth”
or “current design fads” and more on engineering principles, best practices, and good
algorithm design.

3 Can AI and Machine Learning Help?

The panel was split on the question of the potential effectiveness of AI-centric tools.
In 2020, Anita was one of the guest editors of the July/August 2020 issue of IEEE

Computer [8], which contained several articles that explored future interactions between
AI and software engineering. Anita expected that AI will be part of “societal-scale sys-
tems.” However, she worried that we still aren’t sure where AI research will take us.
Priya believed that future programming infrastructure will incorporate machine learning
technology. But Bertrand was skeptical about the potential impact of machine learn-
ing on software development. He explained that the development of correct programs
requires logic and reasoning, not heuristic search. “Machine learning works on statisti-
cal principles. Program correctness works on a different kind of mathematics – which is
logic. It’s not so easy to see how we can apply statistical techniques. What does it mean
to say the programs in the world are going to be 2% more correct?”.

4 Companies May Need to Do More In-Sourcing

Kati worried about the consequences of “out-sourcing followed by in-sourcing.” When
companies outsourced most of their development, many of them were seeking to reduce
costs, so they collected many applications from different vendors. “I don’t think it’s a
wonder that the whole thing is a mess.” The process of in-sourcing and hiring software
developers is difficult and costly.

Kati shared her experience in Finland – developers are expensive, they can choose
where they want to work, and the companies do not have much experience leading and
managing software projects. Some accommodation is needed on all sides. “For this to
work,” according to Kati, business specialists need to know more about software and
software people need to knowmore about business. Shementioned the increased demand
for her consulting services, where leadership teams frequently request her introductory
seminar course on software management.



226 D. Mancl and S. D. Fraser

5 Do We Need to Reform the Software Industry?

Three areas of evolutionary or revolutionary change were on the minds of the panelists:
reform of the industry’s commercial incentives (including product liability), the future
of free and open source software, and general improvements in software engineering
education.

5.1 The Software Industry and Commercial Incentives

Landon believed the failure of modern software engineering is rooted in commercial
incentives. He called for reform: a specific list of actions to change the economic model
for software development to reduce company incentives to ship software systems and
applications that crash. Landon’s list:

• Invalidate EULAs (End User License Agreements) for software or software-based
services that attempt to avoid responsibility for the software and services they sell

• Penalize companies with triple damages if they willfully disregard software best prac-
tices, lack adequate testing, ignore reported defects, or employ unqualified software
developers

• Require certification and continuing education for software developers
• Empower regulatory panels to study software failures and make recommendations
e.g., patterned after those that reviewed the Challenger or Titanic incidents

• Identify and adopt “best practices” widely, including for non-critical software systems
like games

Other panelists pushed back on these suggestions.
Anita claimed that the software industry has improved steadily and it will continue to

advance in many areas, such as better instrumentation of the development process. She
went on, “I don’t think tools are the only answer. But humans, tools, and AI, working
together to address issues of scalability, composability, and complexity” will continue
to make progress.

Priya was also more positive about the software industry than Landon. She recog-
nized potential quality issues with the “democratization” of software engineering.While
systems may be designed and built by experts, some applications may be developed by
end users – so we must be aware of the relative quality differences. In the end, ongoing
abstraction and the continuation of original agile principles will mean more people can
solve problems using software principles appropriate to their own level of expertise.

Landon was critical of the “fail hard, fail fast” culture often found in the software
industry, noting that this emphasis on failure has been an excuse for delivering poor
quality software. It will be tragic if the “fail hard, fail fast and throw it out there and see
what happens” culture is pervasive, and influences negatively (life threatening results)
critical systems such as medical, avionics, and security systems.

Bertrand defended “fail fast” by explaining the agile thinking behind it. “When they
say ‘fail fast,’ it’s not that it isOK to fail. It’s a different approach to programverification.”
He explained that agile development emphasizes frequent testing: “Their way of getting
things correct is to test it all the time.” Bertrand preferred other approaches like careful



The Future of Software Engineering 227

up-front design and programming by contract, but he insisted that XP and other agile
methods can build quality software with an iterative approach combined with a rigorous
testing process: “I’m not ready to cast stones at the agile people… It’s not my approach,
but it’s completely reasonable, and it is possible to combine it will other approaches.”
Bertrand referred the audience to his recent book (Agile: The Good, the Hype, and the
Ugly) for more details.

Kati explained that the software industrywill need to address future issues that cannot
be solved within software engineering alone. “We need to have a much better connection
to psychology, sociology, neuroscience, environmental sciences, and so on.” In the past,
when UX (user experience) was a new concept, “it brought a whole new perspective to
many software developers.” Kati expressed that the broader view is critical: “to widen
our horizons, think about the impact of software, and make conscious choices.” She
explained, “I’m all for good engineering practices and teaching that as a science. But I
don’t think it’s enough.”

5.2 The Future of Open Software

Bertrand questioned whether free software and open source software will continue as a
major source of future innovation. He knew that criticism of the open source economic
model is not a popular point of view. He warned that if you are too critical, “you appear
to be a horrible representative of the powers of mercantile capitalism.” He admitted that
the world has gained a lot from open source, but he pointed out that the experience of
other engineering fields is unanimous: “there is no example of an engineering discipline
which has gotten better in a context where there was no money to be made.” Bertrand
was willing to consider open source to be “a different business model” that that is useful
in some contexts, but the software engineering community needs to be realistic about
its limitations.

Some economists view “free” software and services as a “barter” system – free
products in exchange for user data. As a recent Harvard Business Review article [9]
explained, “Thebusiness strategyof companies such asFacebook,Google, andnumerous
others is partly an exchange that does not entail money: Consumer data is being collected
in exchange for the provision of internet services, just as berries might be swapped for
meat.” The economics of open source may evolve along a similar path to the economics
of social media websites and “free” online services such as Dropbox and Google Docs.

5.3 The Future of Software Engineering Technology and Education

Panelists suggested topics for inclusion in software engineering education and future
software engineering technologies.

Landon advocated an approach to focus developers on building applications with
an attention to correctness and reliability. “You have to start with the simplest cases
[in education and industry]: trivial ‘Hello World’ programs, games, social media, and
things that are not critical.” In computer science courses, it is better “to have assignments
graded on whether they put in the appropriate amount of documentation and testing, not
just on whether the program worked.” Landon advocated assessing assignments based
on both development process and operational function.



228 D. Mancl and S. D. Fraser

Kati believed that ethical considerations are a fundamental consideration, particularly
in AI applications and surveillance systems. She noted that society is exceptionally
vulnerable since so much of our life is heavily reliant on software. “We need to start to
think about the impact of what we do [with software] to others.”

Anitamentioned a study launched by SEI last year to anticipate the future of software
engineering. That study, the National Agenda for Software Engineering Research &
Development, proposed research focus areas and collected ideas on the importance of
ethics in software. Other key observations included increases in automation, scalability,
evolvability, and rapid deployment, as well as more applications of AI (such as AI-
augmented software development).

Priya believed that the future of software engineering will need to combine techno-
logical advanceswith social components – technologies such asAI/MLandvirtualization
will assist in the democratization of development, build systems that incorporate empa-
thy, and create software that embodies the characteristics of its users and makers. Priya
saw this as a natural evolution of the path software engineering was already on.

Bertrand reflected on four influential technology areas that have been making their
mark on software engineering over the last 30 years: object-oriented programming, open
source, agile development, and cloud-related technologies (which includes microser-
vices and DevOps). Bertrand saw the cloud-related technologies as positive so far (“it’s
recent and the jury is still out”), but these techniques are changing how we do software
engineering. The technologies cross some boundaries, because cloud,microservices, and
DevOps are a blend of software engineering, networking, and systems administration,
and they are likely to trigger big changes in application development. Bertrand’s view
was that “traditional software engineering wisdom, principles, and modes of reasoning
about the world do not completely transpose to that new world.”

6 Summary: Goals for the Future

The panelists shared their disagreements about the future of software engineering, but
they agreed that technology, education, and markets will bring new challenges. The
software community will find new ways to use AI, machine learning, remote working,
cloud technology, natural language processing, and new software engineering tools to
meet those new challenges.

Anita: The future will bring us smart automation, AI-inspired automation, evolving
systems, composability and scalability of systems, and the architecture of new types of
systems.

Priya:Wewill have amore inclusive software engineering ecosystemwhere everyone
contributes. Building and integrating new software will be interdisciplinary, it will be
ubiquitous, and it will be applied at different skill levels with varying ranges of expertise.

Landon:How the software industry integrateswith society is key.Weneed continuing
education – just because you are a software developer doesn’tmeanyou can stop learning.
Practitioners will need to have certification and recertification – similar to other safety-
critical medical and engineering fields.

Bertrand: Developers needmake the right choices as they develop software technolo-
gies. Many choices of technology at all levels of the stack are influenced by extraneous



The Future of Software Engineering 229

criteria: company policies, a priori tool selection, the color of the marketing brochure,
or whatever.

Kati: Everybody needs to understand something about software development fun-
damentals, and about “good” software development. Fundamentals need to be part of
every single curriculum at the university, especially for future leaders and managers.

Steve Fraser, the panel impresario, offered a pointer to a 2006 OOPSLA panel that
had explored the “Future of Agile” [10]. Steve concluded the panel with the observation:
“We need to remember the past in order to forge the future.”

References

1. Ré,C.: Software 2.0 andSnorkel: beyondhand-labeled data. In:KDD2018ACMInternational
Conference on Knowledge Discovery & Data Mining, p. 2876. https://doi.org/10.1145/321
9819.3219937 (2018)

2. Karpathy, A.: Software 2.0. https://karpathy.medium.com/software-2-0-a64152b37c35.
Accessed 3 Jul. 2021 (2017)

3. France emergency service number disrupted after network outage, 3 Jun 2021. https://www.
bbc.com/news/world-europe-57341526. Accessed 3 July 2021

4. Parnas, D.L.: Software engineering: a profession in waiting. IEEE Comput. 54(5), 62–64
(2021). https://doi.org/10.1109/MC.2021.3057685

5. Shaw, M.: Research toward an engineering discipline of software. In: Proceedings of FoSER
2010: FSE/SDPWorkshop on Future of Software Engineering Research, pp. 337–341. https://
doi.org/10.1145/1882362.1882431 (2010)

6. Shaw, M.: Progress toward an engineering discipline of software. Video of a talk for the
SATURN 2015 conference, https://www.youtube.com/watch?v=S03bsjs2YnQ. Accessed 3
July 2021 (2015)

7. Cognizant: The future ofworkwebsite. https://www.cognizant.com/future-of-work.Accessed
3 July 2021 (2021)

8. Carleton, A.D., Harper, E., Menzies, T., Xie, T., Eldh, S., Lyu, M.: The AI effect: working at
the intersection of AI and SE. IEEE Softw. 37(4), 26–35 (2020). https://doi.org/10.1109/MS.
2020.2987666

9. Tett, G.: The data economy Is a Barter economy. Harvard Business Review, 6 Jul 2021 (2021)
10. Fraser, S., Rising, L., Ambler, S., Cockburn, A., Eckstein, J., Hussman, D., Miller, R.,

Striebeck, M., Thomas, D.: A fishbowl with piranhas: coalescence, convergence, or diver-
gence? The future of Agile software development practices. In: Companion to OOPSLA ‘06,
pp. 937–939. https://doi.org/10.1145/1176617.1176750 (2006)

https://doi.org/10.1145/3219819.3219937
https://karpathy.medium.com/software-2-0-a64152b37c35
https://www.bbc.com/news/world-europe-57341526
https://doi.org/10.1109/MC.2021.3057685
https://doi.org/10.1145/1882362.1882431
https://www.youtube.com/watch%3Fv%3DS03bsjs2YnQ
https://www.cognizant.com/future-of-work
https://doi.org/10.1109/MS.2020.2987666
https://doi.org/10.1145/1176617.1176750


230 D. Mancl and S. D. Fraser

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	The Future of Software Engineering: Where Will Machine Learning, Agile, and Virtualization Take Us Next?
	1 Introduction: The Panelists Share Their Views of the Future
	1.1 AI and Machine Learning
	1.2 Conventional Technology with Better Failure Analysis
	1.3 Need to Address Software Failures
	1.4 Less Outsourcing in Data-Driven Industries

	2 Democratization of the Software Industry?
	3 Can AI and Machine Learning Help?
	4 Companies May Need to Do More In-Sourcing
	5 Do We Need to Reform the Software Industry?
	5.1 The Software Industry and Commercial Incentives
	5.2 The Future of Open Software
	5.3 The Future of Software Engineering Technology and Education

	6 Summary: Goals for the Future
	References




