®

Check for
updates

From Project to Product

Matthew Philip' ® and Yoan Thirion?

I'St. Louis, USA
2 Luxembourg, Luxembourg

Abstract. As technical advances have enabled organizations to deliver software
to the market faster, in turn shortening the feedback loop for new ideas and spurring
innovation, legacy organizations need to update their mindset from a project-driven
to a product-driven approach or risk being displaced by product-native organiza-
tions. This poster shows the high-level principles that represent our experience
guiding organizations with a project-to-product approach.

Keywords: Product - Project - Outcomes - Experimentation - Value - Flow -
Vision

1 History and Background

Organizations that are product-native — that is, product-oriented from their beginning —
typically do not need to take a project-to-product journey, inasmuch as they have never
known a time when IT was considered anything but integral to the organization’s suc-
cess. On the other hand, organizations who have inherited a legacy approach to infor-
mation technology such that they have traditionally regarded IT as a cost center and
separate from the business often experience the existential threat of being disrupted (or
worse) and therefore choose to orient or reorient themselves toward products and product
development, resulting in a more or less intentional rethinking of their ways of working.

For example, one of the organizations in our experience had a highly matrixed,
globally distributed IT group of more than 12,000 people that optimized for project-
management concerns rather than its customers and the flow of value to them. This
organization had a history of so-called “Agile” and “DevOps” transformations, but none
of them clearly dealt with moving from project to product. These transformations yielded
some gains but ultimately, because they were internally oriented, did not focus on true
customer and user outcomes.

2 Defining “Product”

A digital product (and therefore product management) is fundamentally different from
a project (and project management). According to Jez Humble, some assumptions of
projects can include:

e Once we’ve built it, it doesn’t change much

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 207-212, 2021.
https://doi.org/10.1007/978-3-030-88583-0_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_21

208 M. Philip and Y. Thirion

e In the course of building it, we don’t learn much significant information
e You must complete it because you can start using it.

In contrast, digital products [3]:

e Will change a lot over their lifecycle

e Allow us, in the course of building them, to discover large amounts of information
that can inform decisions and directions

e Can be used and provide value before they are “complete”.

A working definition of product is (adapted from the Scrum Guide):

A product is a vehicle to deliver value. It has a clear purpose, functional boundary,
stakeholders, users and customers. A product could be a single or a group of
services, physical products, applications, platforms, systems, and data.

3 Principles for Moving Toward Product-Orientation

As technical advances have enabled organizations to deliver software to the market faster,
in turn shortening the feedback loop for new ideas and spurring innovation, legacy
organizations need to update their mindset from a project-driven to a product-driven
approach or risk being displaced by product-native organizations.

This change in mindset is significant, covering a wide range of concerns from psy-
chological safety to budgeting to success measures. This poster shows the high-level
principles that represent our experience guiding organizations with a project-to-product
approach.

In moving toward product-orientation, we prefer the following principles:

3.1 Outcomes over Outputs

Outputs can be defined as delivering features, user stories or other work item types with-
out respect to whether they are the right things to build or make a difference in user
success or perceived value. A project mindset prioritizes outputs with metrics such as
conformance to plan and feature delivery. A feature delivered that does not produce a
desired outcome may still be considered a success in a project-oriented approach. How-
ever, by preferring outcomes — that is, measurable impact toward user and/or customer
goals — we will acknowledge that not every feature we plan will necessarily achieve what
we hoped it would but instead optimize for user success. It is the difference between
simply doing work and doing the right work.
As Barry O’Reilly writes [4]:

An outcome-based approach... demands that you clarify the success you seek—in
quantifiable terms—by crisply defining what you’re trying to achieve so people
know why it matters... Clarity of destination allows people to explore different
options to discover if the investments you make are moving you in the direction you
desire... An outcome-based approach allows you to be accurate, more adaptive,
and take action to course-correct and own the results you gather relative to the
final destination.



From Project to Product 209

3.2 Solving Problems over Building Solutions

Solving problems orients the team toward the user/customer. In particular, a product-
orientation enlists engineers and cross-functional teams in generating the ideas for fea-
tures rather than merely carrying out the solutions of a single product owner. John Dewey
wrote that “a problem well put is half solved” [5]. Product-minded teams should build
competency in and spend time identifying the problems they’re trying to solve, as this
will improve their chances of building the right things.

3.3 Options over Requirements (and Optionality over Linearity)

By framing potential work as options rather than requirements (which carry the connota-
tion that they must be done), product teams emphasize their ability to discard unhelpful
work in the face of new information. Teams make plans when they have less information
than they will discover, so even the language of “requirement” can inhibit the ability to
change course.

As Donald Reinertsen writes [6]:

Fast feedback loops give us the ability to truncate unproductive paths quickly,
which unlocks resources for other purposes ... In contrast, the traditional approach
to development focuses on up-front planning rather than adaptation. We tried to
forecast everything and failed to do this accurately.

3.4 Experiments over Backlogs (and Hypotheses over Features)

Ultimately, product or service development is a process to test an hypothesis about system
behaviour in the environment or market it is developed for [12]. Project-minded teams
start planning with feature ideas, whereas product-minded teams plan with hypotheses.
The language of experimentation expresses the uncertainty inherent in software devel-
opment and changes the definition of success from features that are implemented but
not validated (and therefore uncertain progress) to validated learning and true progress.

3.5 Customer-Validated Learning over PO Assumptions

This is why it is important to take a user-centered approach. We found that the vast
majority of project-oriented teams did not use experience-design and design-thinking
techniques such as personas; product-oriented teams did.

According to Daniel Vacanti, “True business value can be determined only after
delivery to the customer. Choices about what to work on and when, then, are really just
you placing bets on what you think the customer will find valuable” [11]. This statement
emphasizes the limitation on a single product owner’s knowledge and ability to forecast
the future.



210 M. Philip and Y. Thirion

3.6 Measuring Value over Measuring Cost

Project-oriented organizations often prioritize measurements such as scope, cost and
time. However, we have found, like Humble, that these concerns are fundamentally
unsuited for product management inasmuch as the success of a productisn’t dependent on
these factors. Or, as Humble says, "How much it costs doesn’t matter if people don’t send
you money” [3]. Additionally, Douglas Hubbard found that the concern is unwarranted
and can actually mislead: “Even in projects with very uncertain development costs, we
haven’t found that those costs have a significant information value for the investment
decision... The single most important unknown is whether the project will be canceled.
... The next most important variable is utilization of the system, including how quickly
the system rolls out and whether some people will use it at all” [1]. An obsession with
cost undermines a focus on outcomes and experimentation.

3.7 Flow over Utilization

Reinertsen found that “Capacity utilization increases queues exponentially” and that
“operating at high levels of capacity utilization increases variability”. As a result, he
recommends that product teams control queue size and not capacity utilization [7].

3.8 Product Vision, Strategy, Personas and Principles over Product Roadmaps

Product vision, strategy, personas and principles (aka product manifesto) enable the
experimentation and problem solving referred to earlier, whereas roadmaps connote a
fixed scope-and-time-based approach. In a product-oriented team, we use the former —
which typically don’t change as much — to guide development.

3.9 Small-Batch Delivery over Big-Batch Delivery

Reducing batch size has many quantifiable benefits that support product thinking, includ-
ing reduced cycle time, faster feedback, increased employee motivation and reduced
variability in flow [7].

3.10 Optimizing for Assumptions Being Wrong over Optimizing for Assumptions
Being Right

Product-oriented teams embrace the reality that most of their ideas will not work. One of
the reasons we de-emphasize traditional feature-based roadmaps is because “at least half
of our ideas are just not going to work™ [2]. Kohavi found that “evaluating well-designed
and executed experiments that were designed to improve a key metric, only about one-
third were successful at improving the key metric!” [9]. Additionally, “Netflix considers
90% of what they try to be wrong” [8]. This reality requires a strategy to deliver and
validate as quickly as possible.



From Project to Product 211

3.11 Teams of Missionaries over Teams of Mercenaries

Product-team culture is perhaps best described by John Doerr’s “missionaries and mer-
cenaries” metaphor. “Mercenaries are driven by paranoia; missionaries are driven by
passion... Mercenaries focus on their competitors and financial statements; mission-
aries focus on their customers and value statements ... missionaries are obsessed with
making a contribution ... and... are fundamentally driven by the desire to make meaning”
[10].

3.12 Business-Driven over IT- or PMO-Driven

The movement from project to product requires not only business involvement and
collaboration, but business orientation, subordinating IT and the Project-Management
Office, which are often driven by project-management concerns that undercut product
success discussed earlier.

References

. Douglas Hubbard. https://www.cio.com/article/2438748/the-it-measurement-inversion.html

. Cagan, M.: Inspired: How to Create Tech Products Customers Love. Wiley, Hoboken (2017)

. Jez Humble. https://lectures.leanagile.pm/

. Barry O’Reilly. https://barryoreilly.com/explore/blog/your-mission-is-to-produce-outcomes-
not-outputs/

. Dewey, J.: Logic, the Structure of Inquiry. Henry Holt & Co, New York (1938)

. Reinertsen, D.: Towards Developing Accelerators in Half the Time. https://accelconf.web.
cern.ch/ipac2011/papers/weib02.pdf

. Reinertsen. http://lpd2.com/sample-page/the-principles-of-flow/

Moran, M.: Do it wrong quickly: how the web changes the old marketing rules (2007)

Kohavi, R., et al. http://ai.stanford.edu/~ronnyk/2013%?20controlledExperimentsAtScale.pdf

Doerr, J.: Two Kinds of Internet Entrepreneurs, UPenn. https://knowledge.wharton.upenn.

edu/article/mercenaries-vs-missionaries-john-doerr-sees-two-kinds-of-internet-entrepren

eurs/

11. Vacanti, D.: Actionable Agile Metrics For Predictability: An Introduction Kindle Edition

(2105)
12. Barry O’Reilly. https://barryoreilly.com/explore/blog/how-to-implement-hypothesis-driven-
development/

BN —

AN W

S©ow N


https://www.cio.com/article/2438748/the-it-measurement-inversion.html
https://lectures.leanagile.pm/
https://barryoreilly.com/explore/blog/your-mission-is-to-produce-outcomes-not-outputs/
https://accelconf.web.cern.ch/ipac2011/papers/weib02.pdf
http://lpd2.com/sample-page/the-principles-of-flow/
http://ai.stanford.edu/~ronnyk/2013%2520controlledExperimentsAtScale.pdf
https://knowledge.wharton.upenn.edu/article/mercenaries-vs-missionaries-john-doerr-sees-two-kinds-of-internet-entrepreneurs/
https://barryoreilly.com/explore/blog/how-to-implement-hypothesis-driven-development/

212 M. Philip and Y. Thirion

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	From Project to Product
	1 History and Background
	2 Defining “Product”
	3 Principles for Moving Toward Product-Orientation
	3.1 Outcomes over Outputs
	3.2 Solving Problems over Building Solutions
	3.3 Options over Requirements (and Optionality over Linearity)
	3.4 Experiments over Backlogs (and Hypotheses over Features)
	3.5 Customer-Validated Learning over PO Assumptions
	3.6 Measuring Value over Measuring Cost
	3.7 Flow over Utilization
	3.8 Product Vision, Strategy, Personas and Principles over Product Roadmaps
	3.9 Small-Batch Delivery over Big-Batch Delivery
	3.10 Optimizing for Assumptions Being Wrong over Optimizing for Assumptions Being Right
	3.11 Teams of Missionaries over Teams of Mercenaries
	3.12 Business-Driven over IT- or PMO-Driven

	References




