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Abstract. Edge computing is becoming more and more present, with
sites geo-distributed around the globe. Applications on these infrastruc-
tures must be able to manage the latency and disconnections inherent
to their distribution. One way to deal with these concerns could be to
deploy one entire instance of the application per site and use a service
mesh to manage the collaboration between the geo-distributed instances.
More precisely, we propose to reify the location of application instances
in REST requests and allow redirections between these requests thanks
to a dedicated language and a service mesh allowing three types of col-
laborations. This paper focuses on the replication of a resource between
multiple instances. Though it is still a work in progress, we demonstrated
the relevance of our approach in the OpenStack ecosystem.

1 Introduction

Edge computing is getting more important, with more and more small datacen-
ters at the edge of the network. Nonetheless, lots of applications do not benefit
from the geo-distribution of wide-area networks and are not designed to han-
dle the high latencies and disconnections implied by these distributions [8]. To
deal with these concerns, we advocate for the placement of an instance of the
application on each site. This way, each site is autonomous and can fully work if
disconnected from the rest of the network [2]. Unfortunately, the collaboration
is still missing: instances are able to function by themselves, but they cannot
collaborate between each other and so do not benefit from the geo-distribution.

To provide such a collaboration without changing the code, we propose to
leverage the service mesh concept. Service meshes help cloud computing appli-
cations solve different problems with their built-in functionalities. For example,
to improve overall performance, load-balancing is provided. More largely, by
intercepting communications, they provide functionalities to ease different oper-
ations, like traffic monitoring, access control, fault tolerance [3]. In general, they
are implemented with proxies as sidecars for the services, without interfering
with their code as they only work on requests passing from services to services.
Their ability to intercept and redirect communications offers an opportunity to
orchestrate requests between endpoints of any instance of the same application.
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In this paper, we propose Cheops, a service to use in combination with a
service mesh to program on-demand collaborations between multiple instances
of an application. To specify where a request will be executed at a fine-grained
level, Cheops relies on the scope-lang proposal we initially developed [2].

Scope-lang extends applications API and allows the user to specify where
(on which services) the request is executed. The language has been designed
to provide different types of collaborations between application instances. For
example, sharing is when a resource needed by a service has been created on
another instance. This is the basic collaboration which allows to share resources
between the instances. Replication allows operations on identical resources on
different sites, to deal with availability of these resources in case of network
partitioning or to improve overall performance. Finally, cross allows a resource
to span across different sites. In this paper, we focus on replication (sharing has
already been discussed [2], while cross is let as future work). By resources, we
mean every entities managed by services, whether it is an entry in the database
or something has complex and low-level as a network.

It is noteworthy that other frameworks or languages [4,7] have been proposed.
However, they are invasive as they require to entangle geo-distribution in the
business code. Non-invasive approaches generally follow the brokering approach:
an entity is in charge of redirecting requests between the different instances.
However, instances are not aware of the others. The goal of this proposal is to
allow the instances to collaborate on-demand as if they were a single entity.
Another way to see it is to allow the users to operate changes on resources on
different sites through the API.

In this paper, we focus on how replication is interpreted and executed thanks
to Cheops. We first explain scope-lang and how our general model works to
allow DevOps to specify the location of a request execution. Then, we dive into
the replication collaboration between different instances of the same service. In
particular, how we manage replicas of a resource on different sites and how we
handle disconnections, partitions or faults.

2 Scope-Lang, A Language to Reify the Geo-Distribution
of Requests

In this section, we dive deeper into how scope-lang, Cheops1 and our general
model work together to allow collaborations outside of the application, and so
keep a clear separation of concerns.

2.1 General Model

As a reminder, we have entire instances of the application on each site. Scope-
lang parameters Cheops on a per-request basis in order to orchestrate collabo-
rations between instances.

1 https://gitlab.inria.fr/discovery/cheops.

https://gitlab.inria.fr/discovery/cheops
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Fig. 1. Microservices architecture of a cloud application.

To explain collaboration between each instance of different services, let us take
a look on how microservices based applications work. Each service composing the
application exposes endpoints to communicate with other services. These end-
points are linked to a specific part of the business they achieve. When calling
endpoints of other services, they form a workflow between services. For example,
Fig. 1a shows an application App composed of two services s and t that expose
endpoints e, f , g, h and one example of a workflow s.e → t.h. Figure 1b shows the
instantiation of the application App on two different sites and their correspond-
ing service instances: s1 and t1 for App1; s2 and t2 for App2. A client (•) triggers
the execution of the workflow s.e → t.h on App2. It addresses a request to the
endpoint e of s2 which handles it and, in turn, contacts the endpoint h of t2.

2.2 Scope-Lang

To parameter collaborations, we developed a domain specific language called
scope-lang. A scope-lang expression (referred to as the scope or σ in Fig. 2a)
contains location information that defines, for each service involved in a work-
flow, in which instance the execution takes place. The scope “s : App1 , t : App2”
intuitively means that the request must be achieved on the service s from App1

Fig. 2. A service mesh to geo-distribute a cloud application
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and t from App2. The scope “t : App1&App2” specifies to execute the request
on the service t of App1 and App2 . Users set the scope of a request to specify the
collaboration between instances they want for a specific execution. The scope
is then interpreted by a dedicated module entitled Cheops during the execution
of the workflow to fulfill that collaboration. The main operation it performs is
request forwarding. To be more precise, reverse proxies in front of each service
instance (geos and geot in Fig. 2b) intercept the request and interpret its scope
to forward the request. “Where” exactly depends on locations in the scope.

The reverse proxy uses a specific function R (see Fig. 2a) to resolve the
service instance at the assigned location. R uses an internal registry. Building
the registry is a common pattern in service mesh using a service discovery [3].

In summary, scope-lang effectively parameters how Cheops will redirect the
request. In the next section, we discuss how the replication is achieved.

3 Replication in Cheops

Replication is the ability to create and maintain identical resources on different
sites: an operation on one replica should be propagated to the others, dealing
with faults and disconnections and maintaining consistency based on our even-
tual model. Other consistency policies [1,10] could be envisioned, but let as
future work as they do not change the general concept of scope-lang/Cheops. To
get a better understanding of the point of replication, imagine a user who needs
a huge resource (like an ISO image) both at home and at work. The resource
can be replicated at creation on both sites and it will be the only time when the
entire resource will go through the network. This saves a lot of bandwidth, and
is especially useful if there is a partition between both sites.

3.1 Replication Model

Modular applications based on microservices usually follow a RESTful HTTP
API. In most cases, they generate an identifier for each resource, which will be
used by the API to retrieve, update or delete it. When receiving a request to
create replicas, Cheops unify these identifiers with a data model called replicant.

A replicant is simply a meta-identifier we generate along with a mapping
site → local identifier. A replicant can thus be implemented for example as:
meta identifier : [siten : local identifiern, ...]. We only store the location (site)
of the replica and not the service used since it is possible to deduce the service
with the incoming request. This is subject to change depending of the evaluation
of our prototype. We could store also the involved service and/or the type of
resource involved.

These replicants are stored in a database co-located to the Cheops agents.
A copy of the replicant is stored on each site where its replicas are (the sites
involved in the replication). Cheops has an API of its own to allow the user to
check the state of operations, sites and inspect replicants.
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3.2 Architecture Overview

Cheops agents are located on each instance site, with a reverse proxy besides
every service transfering their requests to the agents. Agents communicate
between each other and check each other status via heartbeats. Our imple-
mentation of Cheops uses Consul service mesh2 and Envoy3 as reverse proxy
to intercept and redirect, when needed, the requests. It is also worth noting
that Envoy intercepts inbound and outgoing requests from services except for
requests coming from Cheops agents.

In Fig. 3, we represented the reverse proxy and Cheops as one single entity
that intercepts the request as it is in Fig. 2b to ease the comprehension.

Fig. 3. Modelling of the replication by forwarding on multiple instances. c1 arrows
represents Cheops agent on App1 updates to the databases, c2 arrows the one from
Cheops agent on App2.

3.3 CRUD Execution Workflow

First, to define what is the creation, update or delete workflow, we have to
define what they do in our consistency model and what are their boundaries.
The creation of resources replicated in an eventual consistency implies that every
replicas are identical at creation and will be created eventually. The update of
resources created with the replication in an eventual consistency implies that all
replicas will be updated eventually, whether the user specifies a scope or not in
its request. It is the same for deletes.

The operation obviously begins when the user makes the request. But for the
end, we could consider that an operation ends either when there is one response
and is returned to the user, or when the operation is executed on every sites.
In an eventual consistency model, the latter end can come a lot later than the
first response. It is important to know what happens in case of failure (partition,
disconnection, server failure) during the execution until the first response, but
also after, because the operation must be executed on our replicas at some point.

In eventual consistency, since the first response to arrive goes to the user
before it might be applied everywhere, it is the responsibility of the user to

2 https://www.consul.io/.
3 https://www.envoyproxy.io/.

https://www.consul.io/
https://www.envoyproxy.io/
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check with a request to Cheops or directly to involved services to know where
the creation or updates are already applied. Users cannot assume because they
received the answer the operation as already been applied everywhere.

Creation. The replication process to create a resource on App1 and App2 hap-
pens as follows:

1. A request for replication is addressed to the endpoint of a service of one
application instance. For example in Fig. 3: • t:App1&App2−−−−−−−−→ t.g , where g is the
endpoint for the creation of the resource managed by the service t.

2. The scope is extracted in the Cheops agent and the R function (from scope-
lang) is used to resolve the endpoints that will store replicas. In Fig. 3: R[[t :
App1&App2]] is equivalent to R[[t : App1]] and R[[t : App2]]. Consequently, t1
and t2 will be used for the resource creation.

3. The meta-identifier is generated and the replicant created using the meta-
identifier and the location of execution. For example, if the generation yielded
72, we have: { 72 : [App1 : none, App2 : none]}. The replicant on App1 (where
the request was made) becomes the leader of the replicants. A log is created
for future operations on replicas, as well to make sure the creation will be
applied on every involved sites.

4. Each request is forwarded to the corresponding Cheops agent on involved
sites and a copy of the replicant is stored in the database on those sites
simultaneously. In Fig. 3: geot forwards the request to t1.g and t2.g and stores
the replicant {72 : [App1 : none, App2 : none]} in App1 and App2 databases.
In the figure, this is represented by the c1 arrows going to the cylinders.

5. Each contacted service instance executes the request and returns the results to
their local Cheops agent, which updates the replicant with the local identifier.
In Fig. 3: t1 and t2 return their local identifier, e.g., 42 and 6.

6. Cheops agents then proceed to propagate the updated information to other
agents involved. In parallel, they send the entire response to the Cheops agent
that stores the leader replicant. In Fig. 3: the replicant is now {72 : [App1 :
6, App2 : 42]} on App1 and App2 sites databases, thanks to the updates
represented by c1 and c2 arrows.

7. When the agent where the leader is receives the first creation response, it
transfers it to the user who asked for the replication, replacing the local ID
with the replicant meta ID.

Read. The process of reads is straightforward; to access a specific resource,
users must either be on a site where one of its replicas is or specify in the scope
on which location a replica of the resource to read is.

Update. From now on, every request made to update (or delete) is filtered
to check if the id given corresponds either to a replicant meta identifier or a
local replica identifier. The process is quite similar to the creation, but does not
generate a new replicant or change an existing one. It only applies an update to
replicas.
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1. A request for an update of a previously created replica is addressed to the
endpoint of a service of one application instance.

2. Cheops checks if the ID in the request exists in a replicant. If not, the request
is sent back to the service to be executed. If it is, the requests is transferred
to the Cheops agent storing the replicant leader. It gets the corresponding
replicant to find every replicas (and thus sites) involved. The operation is
stored in its log.

3. The request is copied as many times as necessary (with the corresponding
local identifier) and sent to the Cheops agent of involved sites.

4. Local Cheops agents send the request to the corresponding service on their
site, which executes the request normally.

5. Each Cheops agent sends back the response to the Cheops agent where the
replicant leader is.

6. This agent sends back the response to the user, once again, with the meta-
identifier where the local-identifier would be expected to notify the user that
the replicas were updated.

Delete. As for the update, a delete on replicas can be identified either by a
local identifier or the meta identifier. The process is identical as the update’s.

3.4 Dealing with Faults

We define a fault as: a partition of an involved site, or a failure from this site,
whether it is shut down, out of order, or if the request cannot be executed for
any reason (not enough memory to create a resource for example).

It is also important to mention that if the site where the user sent its request
is faulty (does not work in any way), the request obviously cannot be executed.
The user can make the request to a more distant site.

Moreover, the “during an operation” can refer to two distinct phases. As we
discussed before, the end of an operation can be seen as: when a replica has been
created/updated/deleted and the user has been notified, and when the operation
is applied to all replicas. So “during an operation” is between the request of the
user and before one of these end. In our consistency model, this conveys no
difference to the process.

If a site fails where a replica is supposed to be, other Cheops will be informed
due to its heartbeat (or rather lack of). Any other operation received by the
leader will then be retried according to the log when the site comes back
again. Therefore, a site is considered to be eventually available again unless
it is removed. If a site is removed from the system, every replicant that were
hosting a replica on this site must delete the site from their mapping (from the
replicant). The leader will be in charge of this particular task.

Faults during operations The operation will be applied eventually on all
involved sites. This eventual consistency uses a consensus protocol, and in
our case, an implementation of Raft [6]. For example, the leader’s log allows
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to replay operations that are not yet applied. It is the responsibility of the
Cheops agent where the leader is to ensure that operations are applied even-
tually.

Faults while there are replicas When a site fails while there are replicas
somewhere without any particular operation running, no heartbeat is received
by other Cheops agent and the replica is considered unavailable temporarily.

If a site where a replica is was partitioned at some point but could be used
locally, only read queries can be made, and these reads might be stale. When
rejoining the cluster, operations will be applied on the site so it is up-to-date
thanks to the leader’s log.

4 Discussion

In this paper, the service mesh and proxy mentioned were respectively Consul
and Envoy, but this approach could work with other proxies or services meshes
available such as Istio4 or Open Service Mesh5. The approach differs from using
a service mesh to redirect the requests with load-balancing or in case of failures
by giving the users the ability to chose where their requests will be executed
per-demand.

The users are thus responsible to trigger the request based on their needs
and the availability of sites. In the case of a infrastructure such as OpenStack,
this means that it gives back the DevOps the ability to decide where a request
will be available. But for more common applications, the user might not need as
much information about the execution of their request. In this case, it is then
totally possible to apply usual quality of service techniques available in a service
that would execute the request by adding a relevant scope itself.

4.1 Proof of Concept

Though Cheops is still a work in progress, we demonstrated the relevance of
sharing a resource in a proof of concept (PoC) on OpenStack [2]. This PoC
gives DevOps the ability to make multiple independant instances of OpenStack
collaborative. Using our approach with OpenStack would allow to manage a
geo-distributed infrastructure as a usual IaaS platform. This is a breakthrough
as several initiatives tried to propose a framework to manage edge infrastruc-
tures and processes [5,9], but due to the difficulty of delivering a software as
complex/complete as OpenStack, the work to be redone would be colossal.

4.2 Limitations

There are of course some limitations to our approach. First, it requires
microservices-based applications that exposes an API for services communica-
tions. These applications need to be able to work on a single site since we will
4 https://istio.io/.
5 https://openservicemesh.io/.

https://istio.io/
https://openservicemesh.io/
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deploy them autonomously on every sites. Moreover, every instance of the appli-
cation should have the same version for identical resources.

This approach ensures consistency at the service-level, but for the resources
they manage. The only operations available to manipulate these resources are
therefore the ones exposed by the API. Thus, the resources are maintained as
identical as the API allows it, but nothing less. For example, nothing can be said
about the consistency of two VMs booted through this process; their internal
state will probably diverge, as expected.

5 Conclusion

In this paper, we presented the replication mechanisms of Cheops and how scope-
lang allows its parametrization. The ultimate goal of this project is to allow
generic collaborations between multiple instances of the same application with-
out applying intrusive changes in the business code. We presented especially the
different workflows for the replication collaboration.

As future work, we identified other collaboration mechanisms that could be
relevant. For example, our replication strategy could be extended in order to
include a controller and propose an abstraction similar to the ReplicaSet and
its controller in the Kubernetes ecosystem6. The point would be to add control
loop capabilities into Cheops in order to maintain the desired number of replicas
according to the infrastructure changes. We could also propose different ways
to keep the consistency between replicas, giving more choice for the users (e.g.,
giving them the choice to change the location of a replica if its site fails).

Besides replication, additional collaborations can also be envisioned (such as
an otherwise operator that will ask for a request to be executed on a specific
site and if this one is unavailable, execute on the other specified). Any future
implementation will depend on the needs observed when deploying this solution.

Acknowledgments. We would like to thank Matthieu Juzdzewski and Arnaud Szy-
manek for their work on Cheops.
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