®

Check for
updates

Towards a Framework to Guide
the Creation of Development Practices
for Software Startups

Jorge Melegati(®™)

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
jorge@jmelegati.com

Abstract. The research on software startups has increased lately, focus-
ing on describing how these companies’ unique context influences devel-
opment practices. The next step for research is the creation of specific
practices for these companies grounded in scientific results. An obsta-
cle in this path is which dependent variable these novel practices should
improve. A natural answer is these companies’ success. This position
paper reviews the literature on new ventures and startups’ success to
show that telling if a startup is successful or not is a complex issue.
As a solution to this problem, this paper proposes a conceptual frame-
work, suggesting that novel practices should improve success determi-
nants or reduce inhibitors rather than focusing on the startups’ suc-
cess. Three examples illustrate the framework’s use: hypotheses engi-
neering, microservices, and BizDev. The identification of contributors
and inhibitors for success of software startups could enrich the framework
and indicate possible avenues for the creation of development practices
specific tailored for these companies.

Keywords: Software startups - Startup success - Software success -
Software engineering practices

1 Introduction

Recently, the research in software startups has increased in number and rigor [4],
focusing on describing the consequences of this unique context to software engi-
neering [15]. For instance, Giardino et al. [11] proposed the Greenfield Startup
model to describe software development in startups as a sped up process leading
to the consequence of accumulated technical debt. However, the creation of spe-
cific development practices tailored to the unique context these companies face is
still in its infancy [15]. A natural question towards this goal is what the dependent
variable is, i.e., which aspects these novel practices should improve to be consid-
ered useful. Besides guiding the creation of novel practices, a better definition of
what is a successful startup allows the investigation of what makes some startups
achieve better results allowing others teams to replicate practices employed.

© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 155-164, 2021.
https://doi.org/10.1007/978-3-030-88583-0_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_15&domain=pdf
http://orcid.org/0000-0003-1303-4173
https://doi.org/10.1007/978-3-030-88583-0_15

156 J. Melegati

Software startups are companies searching for a scalable business model for
a new software-intensive product [19]. Hence, a logical answer to the dependent
variable question is success. However, this answer leads to at least two other
questions: what is success for a software startup and to which extent it could be
influenced by software development.

This paper explores possible answers to these two questions using results
from the literature and examples of failed startups. Based on a review of the
literature about success of new ventures and startups, and its determinants, I
argue the complexity to define and to assess what a successful startup is, but
acknowledge the existence of several contributors and inhibitors to success. Thus,
I propose a conceptual framework to guide the creation and evaluation of specific
software development practices to startups. According to the framework, instead
of focusing on success, studies should aim to improve a contributor or reduce
an inhibitor without negatively contributing to other aspects. To illustrate the
framework use, I employ it to propose the evaluation of practices that, although
not specifically proposed for software startups, could be employed in this context:
hypotheses engineering, microservices, and BizDev.

2 Success of Software Projects

A logical approach to guide the creation of development practices for software
startups is to distinguish the software project, or “technical,” success from the
business outcomes. However, this dichotomy is contrary to the literature on soft-
ware success. The discussion of software project success and failure is a complex
argument and to present it in detail would not fit this paper. Nevertheless, an
overview, presented below, is essential to the flow of argument.

Ralph and Kelly [17] investigate the success concept in the software engineer-
ing context. First, they observe how the understanding of this concept evolved in
project management literature. They acknowledge that, for a long time, a model
used to describe such a phenomenon was the Iron, or Project, Triangle [3]. This
metaphor postulates that the quality of a product (inner of the triangle) is con-
strained by three vertices: scope, budget, and schedule [1]. Then, the authors
describe a more comprehensive taxonomy proposed by Shenhar et al. [18], which
characterizes success through four dimensions: project efficiency, impact on the
customer, business success, and preparing for the future. Finally, they inter-
viewed 191 design professionals, where 68 were in the software industry, to
investigate the practitioners’ perceptions on success. The results indicated that
professionals understand software engineering success “as a multidimensional
variable comprising project efficiency, artifact quality, market performance, and
stakeholder impacts over time.”

Therefore, software project success does not concern only the quality, scope,
and schedule of the delivered software system. Following Shenhar et al.’s tax-
onomy, other measures that seem especially important for software startups,
are, for instance, fulfilling customer needs, commercial success, and creating a
large market share. As Ralph and Kelly [17] observe, practitioners perceive the



Towards a Framework to Guide the Development of Practices for Startups 157

existence of a client who has problems to solve or needs to be fulfilled. Software
startups face an even harder challenge: they must find not only the problems but
even the customers. Some types of pivots, strategical changes on a startup’s busi-
ness model or product [2], support such an argument. For instance, a customer
segment pivot is a shift from one customer segment to another [2]. Zoom-in piv-
ots occur when a single feature becomes the whole product and zoom-out pivots,
when a product becomes only a feature of a bigger solution.

In summary, the success of a software system goes beyond developing a set
of features in a determined period of time using a prescribed budget. It also
means fulfilling customer needs and reaching commercial success. Therefore, in
the context of software startups is natural to expect the company success. The
next section presents a review on this aspect.

3 Success of Startups

Some studies in the literature focused on the success of startups, either to learn
from them, e.g. [21], or to predict them, e.g., [7]. To do so, researchers had to
define what a successful startup is. Zaheer et al. [21] considered companies that
had achieved one or more of the following: continued survival, a high sales volume,
a stock exchange listing, or acquisition. For Dellermann et al. [7], it was sufficient
to have received a series A funding, that is, “a venture capital backed funding that
allows angel investors to exit the startup.” A quick search on specialized media
shows that these criteria for success are spread among practitioners.

However, these aspects are problematic in two ways. First, it is hard to pre-
cisely assess them either by the time needed or by the levels distinguishing different
outcomes. For instance, how long should a startup run to be considered success-
ful? Or what is a high volume of sales? Second, and most important, there are
several companies that featured these criteria but were considered failures at the
moment of assessment or later. A criterion based on stock exchange listing does
not work, for instance, when analyzing startups that failed during the dot-com
bubble. Another issue with adopting this rule is a recent trend to stay private
rather than becoming public [9]. Startups can decide to not run an Initial Pub-
lic Offering (IPO) to, among other reasons, wait for a better moment or to avoid
the compliance required as a public company. Regarding the acquisition criterion,
a counterexample is the concept of acquihire, defined by the Cambridge Dictio-
nary! as: “to acquire (= buy) a company in order to use its employees’ skills or
knowledge, rather than for its products or services.” Thus, a startup whose prod-
uct failed might still be acquired by a larger company as a way to hire all team
members at once. With respect to investments received, a piece of evidence against
the criterion comes from a study by Cantamessa et al. [5], that investigated the
failure of 214 startups based on postmortems. Among these companies, 14% failed
after more than five years operating and, in this cohort, startups closed an average
of 2.16 round of investments, receiving, in average, 16.39 million dollars.

! https://dictionary.cambridge.org/dictionary /english /acquihire.


https://dictionary.cambridge.org/dictionary/english/acquihire

158 J. Melegati

It is beyond the scope of this paper to thoroughly define what a successful
startup is. However, this brief discussion showed the complexity of the success
concept for startups. A reliable assessment of this aspect requires a thorough,
holistic inspection of the company, combining several aspects of the business
and the product, to overcome the deficiency of employing a single criterion [12].
Besides the difficulty to reliably judge which startups are successful, there is an
even major concern to software engineering research in this context: to which
extent development techniques could influence the success of these companies.

Some studies focused on identifying determinants of success in high-tech new
ventures. Based on a survey with 27 venture capitalists, Kakati [12] concludes
that the critical determinants are entrepreneur quality, resource-based capabil-
ity, and competitive strategy. Besides that, an interesting result is the distinc-
tion between winning and qualifying criteria. Winning aspects are those “which
directly and significantly contribute to wining business,” while qualifying criteria
may not be “major determinants of success,” but “any reduction |...] will be par-
ticularly serious if it drops below the critical level.” The authors also performed
a principal component analysis to identify factors that could explain the vari-
ance from success and failure, finding nine factors. The first factor, “incapability
risk,” is related to the capabilities needed to succeed. The second, “inexperience
risk,” captures the lack of track record and market knowledge. The third, “prod-
uct risk,” is the first that could be associated to software development. In the
case of novel ideas, as the case of software startups, the authors acknowledge
that “there is a risk of whether the product can be produced and commercial-
ized” and even “technically elegant products may fail to exploit the untapped
market.”

A similar result comes from the investigation of startups’ failures. These
studies focus on failures rather than success since, by making these issues evi-
dent, their mitigation is easier, and more startups could be successful. In their
investigation of startup failures, Cantamessa et al. [5] observed a “typical failure
pattern related to the Business Development process.” The authors analyzed 214
postmortems and identified one or more reasons to failure. The first two aspects
were wrong business model and the lack of business development, occurring in
35% and 28% of the cases, respectively. Behind these issues, the authors observe
“a high focus on the product or service by the management and founders, but
an insufficient attention to commercial development.” After the third position
being running out of cash, happening in 21% of the cases, the fourth aspect
is lack of product/market fit, in 18% of the cases, another issue related to the
business development.

A natural reaction to this conclusion is that founders should focus on improv-
ing the business development process and the software engineering team should
care after the business elements are set. However, experimentation, the basis of
the business development usually advocated for startups, where product assump-
tions are taken as hypotheses and tested, represents a unique problem for soft-
ware engineering, since currently available methods for software development
revolve around requirements obtained with varying degrees of customer contact



Towards a Framework to Guide the Development of Practices for Startups 159

frequency [15]. This uniqueness means several consequences to software develop-
ment. First, since experiments are based on hypotheses and not in requirements
as conventional practices, requirements engineering practices might not be the
most suitable to the this context. Second, the heavy use of experiments and the
probable consequence of the implemented features influence the software sys-
tem’s architecture and design. Bad choices could contribute to technical debt
accumulation and compromise the system capacity to handle larger loads or
the team ability to maintain the code or add new features during scaling the
product. Third, startups are characterized by small teams where members often
perform multiple and diverse tasks. A software developer in a startup has a
higher probability to be involved in other tasks than programming.

In summary, defining whether a startup is successful or not is a complex
endeavor and represents a challenge to studies aiming to either learn from these
companies or to create novel techniques to improve these companies’ chance of
success. A more viable option is to focus on improving (or detecting the existence
of) determinants of success and reducing aspects that increase the risk of failure.
To summarize this idea, the next section proposes a conceptual framework to
guide the research on practices specific for software startups.

4 Conceptual Framework

Based on the review above, it is complex and, often, dubious to assess if a startup
is successful or not. This section presents a conceptual framework to support
researchers, or practitioners, interested in developing, or evaluating, practices to
software startups. It is essential, though, to highlight that this framework does
not aim to answer what success is for these companies.

Research has identified many contributors and inhibitors to success, that
is, aspects influencing the success of a startup either positively (contributors)
or negatively (inhibitors). Similarly, several other aspects, including software
engineering practices, could influence positively (or negatively) these antecedents
of success. Clearly, not all of them could be influenced by software development
practices. For instance, changes on legal or economical frameworks might derail
a startup’s business model. To simplify the framework, I did not explicitly model
aspects that could act as a contributor or inhibitor depending on the level. These
aspects could be modeled in a way to fit this framework without losing generality.

Figure 1 depicts the framework using arrows to represent the influence of
several aspects, represented by boxes, including software development practices
to guide the creation of practices specific to software startups. The labels asso-
ciated with the arrows tells if the influence is positive (represented by the ‘+’
arrow ), negatively (‘—’ arrow), or not (‘0’ arrow).

To use the framework, a researcher, aiming to create a novel technique, should
identify which aspects associated, either positively or negatively, to startup suc-
cess that activity could influence. Then, the researcher should demonstrate that
the new technique improves contributors, reduce inhibitors, or both. The pro-
posed technique should also lead to no, or limited, negative consequences or the



160 J. Melegati

Software Engineering

Activity N

Contributor 1

Inhibitor 1

Success

| Other aspect 1

Inhibitor N

| Other aspect N

Fig. 1. A conceptual framework to guide the creation of practices for software startups.

researcher should, at least, acknowledge this issue and point out this problem
as an issue to be solved. In this initial version of the framework, I do not list
possible contributors and inhibitors to success but, in future work, this addition
could be achieved by reviewing the literature on new ventures and inspecting
failure cases. This list creation process should also consider the different stages
a startup faces [13]: inception, stabilization, growth, and maturity. Some con-
tributors and inhibitors could be associated with goals of specific stages. For
instance, in the stabilization stage, the startup should prepare for scaling in the
next stage. If a technique is proposed to be used in this stage, it should not have
negative consequences to this goal.

5 Some Examples of the Framework Use

To exemplify the framework use, this section describes how researchers could
evaluate if three proposed practices from different areas of software engineering
are useful for software startups based on their influence on a contributor and on
an inhibitor to success. Based on the review presented in Sect.3, the business
development speed is a contributor, an aspect positively associated to startup
success. On the other hand, the accumulated technical debt could act as an
inhibitor, that is, negatively associated, to success, especially when a startup
reaches the scaling stage.

Hypotheses Engineering [16] is a proposal to support experiment-driven
software development, as a parallel to Requirements Engineering in the con-
ventional, requirements-driven software development. Rather than describing
features to be implemented, hypotheses define uncertain questions about the
business model or other software product aspects that the team could assess
with an experiment. Since Requirements Engineering’s goal is to precisely define
the problem the software should solve [6], software startups represent a unique
challenge to development. A customer on whom to rely to elicit requirements, a



Towards a Framework to Guide the Development of Practices for Startups 161

feature present in traditional and agile methodologies alike [15], lacks in the con-
text of software startups. Therefore, Hypotheses Engineering could be a valuable
practices for software startups.

Following the framework, an evaluation of the Hypotheses Engineering for
software startups could assess, for instance, the speed with which startups adjust
their plans based on information about the customer and market rather than
the companies’ success.

However, although the use of experiments can reduce technical debt by not
building unnecessary features, it could also increase the technical debt [20]. For
instance, one type of experiment is a prototype to deliver features as soon as pos-
sible to get customers’ feedback. However, these quick solutions probably lead
to high levels of technical debt. Therefore, an evaluation of Hypotheses Engi-
neering for software startups should also assess the influence of these practices
to technical debt.

Microservices is “an approach to developing a single application as a suite
of small services, each running in its own process and communicating with
lightweight mechanisms” [14]. It could be useful for a fast changing product
as a way to isolate features, remove them if not useful, facilitate the software
modularization, and scale. Using the framework, rather than assessing success,
the employment of microservices should facilitate business experimentation while
keeping technical debt low.

BizDev is a role proposed by Fitzgerald and Stol [10], as a closer inte-
gration between business and software development functions, a parallel to the
well-known DevOps phenomenon. DevOps is “an organizational shift in which
[...] cross-functional teams work on continuous operational feature delivery” by
employing “automated development, deployment, and infrastructure monitor-
ing” [8]. That is, instead of separated teams, development and operations work
together in the delivery of features. Similarly, BizDev proposes collaboration
between development and business strategy [10]. This new role could be an
answer for the biggest issue for professionals in software startups: the mindset
shift from strictly developing a feature defined by customers or other stakehold-
ers to an active participant in the business development. For instance, several
pivots mean partial or total modifications to software [2]. To evaluate the effec-
tiveness of this new role, a researcher could evaluate if it indeed increases the
speed on which the startup performs business development.

Figure2 summarizes how the framework could be used to evaluate these
three proposals when applied in software startups. Rather than measuring the
companies’ success, using or not these techniques, researchers could test, for
instance, if they improve the speed of business development without increasing
the technical debt.



162 J. Melegati

Software Engineering

Hypotheses + N
Enginnering Business
10/ development speed
+
.
Success
10/ -

Fig. 2. Three examples applying the framework.

6 Conclusions

Researchers focused on improving software engineering practices for startups
depend on clearly defining which dependent variable to improve. Although suc-
cess is a natural answer, to tell if a software startup is successful or not is a com-
plex task, requiring an holistic analysis of the company. This issue also hinders
research aiming to learning from successful cases. To support these researchers,
this paper reviews the literature to argue that success is complex and studies
should focus on improving determinants and reducing inhibitors of success. To
operationalize this argument, I propose a conceptual framework and, to illus-
trate its use, I gave three examples of how it could help the evaluation of novel
practices from diverse areas of software engineering in startups.

The argument presented in this paper is not essentially new and a simi-
lar one has been implicitly employed in software engineering research. That is,
researchers evaluate proposed techniques against diverse aspects rather than
software project success. However, the uniqueness of software startups induces
the use of success as a final goal, or a reference, to the development of new
practices. This paper argued that this choice is not practical. Besides that, it
showed that focusing on diverse aspects than those generally used in software
engineering research might be useful as the case of business development. This
paper is an initial proposal and, in future work, we will develop the framework
further identifying contributing factors from the literature and inhibitors from
failed startup cases which are abundantly available in Internet.

References

1. Atkinson, R.: Project management: cost, time and quality, two best guesses and
a phenomenon, its time to accept other success criteria. Int. J. Project Manag.
17(6), 337-342 (1999)

2. Bajwa, S.S., Wang, X., Nguyen Duc, A., Abrahamsson, P.: “Failures” to be cel-
ebrated: an analysis of major pivots of software startups. Empirical Softw. Eng.
22(5), 2373-2408 (2017)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Towards a Framework to Guide the Development of Practices for Startups 163

Bano, M., Zowghi, D., da Rimini, F.: User satisfaction and system success: an
empirical exploration of user involvement in software development. Empirical
Softw. Eng. 22(5), 2339-2372 (2017)

Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, 1.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144, 255-274
(2018)

Cantamessa, M., Gatteschi, V., Perboli, G., Rosano, M.: Startups’ roads to failure.
Sustainability 10(7), 2346 (2018)

Cheng, B.H.C., Atlee, J.M., Joanne, M.: Research directions in requirements engi-
neering. In: Proceedings of the 2007 Future of Software Engineering, FOSE 2007,
pp- 285-303 (2007)

Dellermann, D., Ebel, P.; Lipusch, N., Popp, K.M., Leimeister, J.M.: Finding
the unicorn: predicting early stage startup success through a hybrid intelligence
method. In: ICIS 2017: Transforming Society with Digital Innovation (2018)
Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94-100 (2016). https://doi.org/10.1109/MS.2016.68

Ewens, M., Farre-Mensa, J.: The Evolution of the Private Equity Market and the
Decline in IPOs (2017)

Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176-189 (2017)

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: the greenfield startup model. IEEE
Trans. Softw. Eng. 42(6), 585-604 (2016)

Kakati, M.: Success criteria in high-tech new ventures. Technovation 23(5), 447—
457 (2003)

Klotins, E., et al.: A progression model of software engineering goals, challenges,
and practices in start-ups. IEEE Trans. Softw. Eng. 47(3), 498-521 (2021)

Lewis, J., Fowler, M.: Microservices (2014). https://martinfowler.com/articles/
microservices.html. Accessed 30 June 2021

Melegati, J., Chanin, R., Sales, A., Prikladnicki, R.: Towards specific software
engineering practices for early-stage startups. In: Paasivaara, M., Kruchten, P.
(eds.) XP 2020. LNBIP, vol. 396, pp. 18-22. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58858-8_2

Melegati, J., Wang, X., Abrahamsson, P.: Hypotheses engineering: first essen-
tial steps of experiment-driven software development. In: IEEE/ACM Joint 4th
International Workshop on Rapid Continuous Software Engineering and 1st Inter-
national Workshop on Data-Driven Decisions, Experimentation and Evolution
(RCoSE/DDrEE), pp. 16-19 (2019)

Ralph, P., Kelly, P.: The dimensions of software engineering success. In: Proceed-
ings of the 36th International Conference on Software Engineering - ICSE 2014,
no. 1, pp. 24-35. ACM Press, New York (2014)

Shenhar, A.J.; et al.: Project success: a multidimensional strategic concept. Long
Range Plan. 34(6), 699-725 (2001)

Unterkalmsteiner, M., et al.: Software startups - a research agenda. e-Inform. Softw.
Eng. J. 10(1), 1-28 (2016)

Yli-Huumo, J., et al.: The Relationship Between Business Model Experimentation
and Technical Debt, vol. 210, pp. 17-29 (2015)

Zaheer, H., Breyer, Y., Dumay, J., Enjeti, M.: Straight from the horse’s mouth:
founders’ perspectives on achieving ‘traction’ in digital start-ups. Comput. Hum.
Behav. 95, 262-274 (2019)


https://doi.org/10.1109/MS.2016.68
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-030-58858-8_2
https://doi.org/10.1007/978-3-030-58858-8_2

164 J. Melegati

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Towards a Framework to Guide the Creation of Development Practices for Software Startups
	1 Introduction
	2 Success of Software Projects
	3 Success of Startups
	4 Conceptual Framework
	5 Some Examples of the Framework Use
	6 Conclusions
	References




