
Verisig 2.0: Verification of Neural
Network Controllers Using Taylor Model

Preconditioning

Radoslav Ivanov(B), Taylor Carpenter, James Weimer, Rajeev Alur,
George Pappas, and Insup Lee

University of Pennsylvania,
Philadelphia, PA 19104, USA

{rivanov,carptj,weimerj,alur,
pappasg,lee}@seas.upenn.edu

Abstract. This paper presents Verisig 2.0, a verification tool for closed-
loop systems with neural network (NN) controllers. We focus on NNs
with tanh/sigmoid activations and develop a Taylor-model-based reach-
ability algorithm through Taylor model preconditioning and shrink wrap-
ping. Furthermore, we provide a parallelized implementation that allows
Verisig 2.0 to efficiently handle larger NNs than existing tools can. We
provide an extensive evaluation over 10 benchmarks and compare Verisig
2.0 against three state-of-the-art verification tools. We show that Verisig
2.0 is both more accurate and faster, achieving speed-ups of up to 21x
and 268x against different tools, respectively.

1 Introduction

Following their increasing popularity, neural networks (NNs) have been recently
introduced to various new domains, including safety-critical systems such as
autonomous cars [4] and airborne collision avoidance systems [21]. At the same
time, NNs have been shown to be greatly susceptible to input perturbations:
minor input changes can cause a NN’s outputs to vary drastically, as is the case
with adversarial examples [26]. Such issues have emphasized the need to formally
analyze NN-based systems and assure their safety before they are deployed.

A number of formal verification approaches have been proposed in the last
few years to analyze closed-loop systems with NN components. On the one hand,
several techniques have been developed for reachability analysis. These works

This work was supported by the Air Force Research Laboratory (AFRL) and the
Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-
18-C-0090, and by the Army Research Office (ARO) under Grant Number W911NF-
20-1-0080, and by the Office of Naval Research (ONR) award N00014-20-1-2115. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of AFRL, ARO, DARPA,
ONR, or the Department of Defense, or the United States Government.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 249–262, 2021.
https://doi.org/10.1007/978-3-030-81685-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_11


250 R. Ivanov et al.

Fig. 1. Overview of the closed-loop system considered in this paper.

handle the NN reachability problem in a variety of ways: by converting the NN
into a hybrid system [19]; by casting the problem into a satisfiability modulo con-
vexity problem [25]; by approximating the NN with a Taylor model [8,11,16,20];
or by propagating NN reachable sets using star sets [27,28]. Multiple falsifica-
tion techniques have been developed as well: these approaches work by adapting
existing hybrid-system falsifiers [2,6] to the NN case [7,29,33]; methods for sys-
tematic testing through scenario specification languages have been proposed as
well [14]. Finally, a number of techniques have been developed to analyze proper-
ties of the NN in isolation (e.g., input-output properties) [9,10,12,15,22,30–32],
though it is challenging to use these tools in a closed-loop setting as it is unclear
what NN specification ensures closed-loop safety in general.

While existing reachability techniques have shown impressive performance,
scalability remains an obstacle to applying these tools to realistic systems. In
particular, these methods have been evaluated mostly on low-dimensional sys-
tems, i.e., systems with several states and at most 41 measurements [18]. The
main scalability challenge stems from the fact that reachability is undecidable
even for linear hybrid systems [1]. Thus, all approaches overapproximate the
true reachable sets using a computationally convenient representation such as
polytopes [13] or Taylor models [5]. At the same time, this overapproximation,
known as the wrapping effect, leads to quick error accumulation over time, thus
making it challenging to verify complex specifications over a longer time horizon.

To address these limitations, we present Verisig 2.0, a scalable tool for ver-
ifying safety properties of closed-loop systems with NN controllers. We com-
bine ideas from NN reachability with ideas from hybrid system verification.
In particular, we adopt the idea of approximating NNs with Taylor models
(TMs) [11,16,20], and we alleviate the wrapping effect through TM precondi-
tioning and shrink wrapping [3,23,24]. Finally, we note that the NN reachability
computation can be parallelized since each neuron in a layer can be analyzed
independently. We have implemented our tool in conjunction with the hybrid
system tool Flow* [5], which enables us to handle general hybrid system models
with NN components.

We compare Verisig 2.0 against three tools, namely Verisig [20], NNV [28],
and ReachNN* [11]. We use 10 benchmarks that illustrate various challenges,
such as hybrid models, non-linear systems and systems with high-dimensional
observations. The results indicate that Verisig 2.0 is significantly faster (achiev-
ing speed-ups of up to 21x and 268x against Verisig and ReachNN*, respectively)
and produces tighter reachable set approximations on all benchmarks.



Verification of Neural Network Controllers 251

In summary, this paper has three contributions: 1) a Taylor-model-
based NN reachability method using TM preconditioning and shrink wrap-
ping; 2) an efficient implementation that allows for parallel execution; 3)
an extensive comparison against existing tools on 10 diverse benchmarks.
The source code to reproduce the results is available online (github.com/
rivapp/CAV21 repeatability package) as well as in the main Verisig repository
(github.com/Verisig/verisig).

2 Problem Statement

This section outlines the reachability problem addressed in this paper. We con-
sider a closed-loop system, illustrated in Fig. 1, consisting of: a) a plant with
states x modeled as a hybrid system; b) measurements y produced as a function
of x; c) an NN controller h that takes y as input and produces controls u.

Plant Model. We assume the plant is modeled as a standard hybrid system. In
particular, the state space X = XD × XC consists of continuous variables XC

and discrete locations XD = {q1, . . . , qm}. When in location q ∈ XD, the system
evolves according to differential equations fq, i.e., ẋ = fq(x, u), where x ∈ XC .
Each location q ∈ XD has an associated invariant I(q) ⊆ XC that must hold true
in that location. Transitions between locations are enabled by guards, which are
boolean predicates on the continuous variables. Finally, each continuous variable
may be reset to a new value when transitioning to a new location.

Observation Model. The system produces observations y = g(x), where
g : X → R

p. Note that some benchmarks in this paper use state feedback only,
i.e., y = x.

Controller. The controller h is a fully-connected feedforward NN with sig-
moid/tanh activations. Formally, h can be represented as a composition of its L
layers:

h(y) = hL ◦ hL−1 ◦ · · · ◦ h1(y), (1)

where each hi(y) = a(Wiy + bi) performs a linear function, with parameters Wi

and bi identified during training, followed by a sigmoid/tanh activation a.

Composed System. Although the hybrid system formulation places no restric-
tions on the controller/plant composition, in the interest of clarity we assume
the controller is executed in a time-triggered fashion, with sampling period T ,
as follows: u(t) = h(y(tk)), for t ∈ [tk, tk + T ), where tk = kT and k = 0, 1, 2, . . .

Closed-Loop Reachability Problem. Let S be a composed system. Given an initial
set of states x(0) ∈ X0, the reachability problem, expressed as property φ, is to
verify a property ψ of the reachable states of S:

φ(X0) ≡ (x(0) ∈ X0) ⇒ ψ(x(t)), ∀t ≥ 0. (2)

http://github.com/rivapp/CAV21_repeatability_package
http://github.com/rivapp/CAV21_repeatability_package
http://github.com/Verisig/verisig


252 R. Ivanov et al.

3 Background: Neural Networks as Taylor Models

As described in Sect. 1, in this work we adopt a TM-based approach for propagat-
ing NN reachable sets. There are two main reasons for this: 1) TMs can approxi-
mate any differentiable function over a bounded range given a high enough order;
2) TMs are very effective at approximating hybrid system reachable sets, which
allows for a smooth composition between the NN and the rest of the system.
The rest of this section formalizes TMs and summarizes the existing approaches
to using TMs for NN reachability.

Taylor Model Definition. Intuitively, a TM of a function f is a polynomial
approximation p, together with a worst-case error bound I. A j-degree polyno-
mial approximation p of a j times continuously differentiable function f around
a point x, written p(x) ≡j f(x), is a polynomial p of degree j such that all partial
derivatives of f and p coincide at x. Let I be the set of all intervals I = [a, b]
and let f : D → R be a function of n variables defined over a domain D ∈ I

n.
Then a Taylor model of f over D of degree j is a pair (p, I) of a polynomial
approximation p and an error bound I (also known as a remainder) such that:

1)f(c) ≡j p(c),where c is the center of D,

2)∀x ∈ D, f(x) ∈ {p(x) + e | e ∈ I}.

Taylor Model Arithmetic. Let TM1 = (p1, I1) and TM2 = (p2, I2) be two TMs
defined over a domain D. Addition and multiplication are defined as follows [5]:

TM1 + TM2 = (p1 + p2, I1 + I2)
TM1 × TM2 = (p1 × p2, Int(p1)I2 + Int(p2)I1 + I1 × I2),

where Int(p) is an interval bound of p over D.
TMs have shown impressive performance in hybrid system reachability prob-

lems due to their ability to approximate any continuously differentiable function
given a high enough order [5]. Another appealing feature is that TMs can be used
to approximate solutions of differential equations through Picard iteration [5].
Thus, it is natural to try to use TMs to approximate NN reachable sets as well.

Two classes of approaches for approximating NNs with TMs have been devel-
oped in the literature. The first one is sampling-based: given a TM TMy of the
inputs y to h, these methods sample points Z from TMy and corresponding
outputs h(Z) to perform polynomial regression [8] or approximation [16]. While
these approaches work well for systems with several state variables, they cannot
handle higher-dimensional problems due to insufficient sampling.

A second approach to using TMs for NN reachability is to propagate the
TMs through each neuron in the NN. Specifically, let TMy = (p, I) be the TM
for y and consider a neuron ν that computes the function σ(wy + b), where σ
denotes the sigmoid. One can use TM arithmetic [5] to obtain TML = (wp +
b, wI) for the linear map in ν. For the sigmoid TM, TMσ, one could obtain
a Taylor series expansion of σ around the center of TML and get remainder



Verification of Neural Network Controllers 253

bounds using Taylor’s theorem [20]. Thus, the final TM for ν is TMν = TMσ ◦
TML. The benefit of propagating TMs in this fashion is that no sampling is
necessary since the NN is approximated directly. On the other hand, scalability
challenges manifest in a different way, namely the TM remainders may grow
quickly depending on the NN architecture (explained in more detail in Sect. 4).

We adopt the latter approach to approximating NN as TMs due to its
improved scalability. The next section describes our approach to reducing the
TM remainder size through TM preconditioning and shrink wrapping.

Fig. 2. The wrapping effect for different
taylor model orientations.

Fig. 3. Illustration of the shrink wrap-
ping method.

4 Taylor Model Preconditioning and Shrink Wrapping

This section presents our approach to limiting the remainder growth as TMs are
propagated through the NN. We explore two complementary techniques, namely
TM preconditioning and shrink wrapping. Both of these ideas were originally
developed for the purpose of reachability analysis of hybrid systems [3,23] – in
this paper, we adapt them to the NN case.

4.1 Taylor Model Preconditioning

As noted in Sect. 3, although propagating the TM through the NN is preferred
since it captures the functional representation of each neuron, it may suffer from
quick remainder growth. The following example illustrates this process.

Example 1. Let y1 and y2 be inputs to the NN h with corresponding TMs
TMy1 = (p1, I1) and TMy2 = (p2, I2) over domain D ∈ I

n. Let ν be a neu-
ron in the first layer implementing the function ν(y1, y2) = σ(w1y1 + w2y2 + b).
The TM for the linear part of ν is

TML := (pL, IL) = (w1p1 + w2p2 + b, w1I1 + w2I2).

Let TMσ = σ(a)+σ′(a)(TML −a)+σ′′(a)(TML −a)2/2+ Iσ be a second-order
Taylor series expansion of the sigmoid around point a, with remainder Iσ. Using
TM arithmetic [5], the TM for ν is TMν = (pν , Iν), where

pν = σ′′(a)p2L + (σ′(a) − aσ′′(a))pL − (σ′(a) − 0.5aσ′′(a))a + σ(a)

Iν = σ′′(a)(2Int(pL)IL + I2L) + (σ′(a) − aσ′′(a))IL + Iσ.



254 R. Ivanov et al.

Remark 1. In order to compute a TMσ = (pσ, Iσ) for the sigmoid/tanh, one
can follow the procedure described in prior work [20]. In summary, the following
three steps need to be performed, assuming the input TM is denoted by TML:

1. compute interval bounds, [a, b], for TML using interval analysis;
2. obtain a Taylor series approximation, pσ, of the sigmoid/tanh around the

midpoint of [a, b];
3. obtain worst-case error bounds, Iσ, for pσ using Taylor’s theorem.

As shown in Example 1, the remainder is propagated using interval analysis,
where a major contributor is the Int(pL) term, i.e., the interval bounds of pL.
Since this term approximates the (potentially high-dimensional) input TM with
a box, it may introduce significant wrapping effect if the input TM is not a
box, as illustrated in Fig. 2. The natural way to address this wrapping effect is
through rotating the TM in order to align it with the axes [23,24].

Algorithm 1. NN Verification Using Taylor Model Preconditioning
Input: Measurement TM Vector TMVy, NN h with L layers, and sigmoid activations.
1: TMV0 ← TMVy

2: for each i in {1, . . . , L} do
3: TMV L

i ← Wi ∗ TMVi−1 + bi

4: (Q + c,0) ◦ (R + Q�N,Q�I) ← TaylorModelPreconditioning(TMV L
i )

5: TMV ν
i ← TaylorModelForSigmoid((Q,0)) //Taylor series approximation

6: TMVi ← TMV ν
i ◦ (R + Q�(c + N), I)

7: end for
8: return TMVL

Since the set represented by a TM is the image of a polynomial over a given
domain, it is challenging to choose an appropriate rotation matrix. However,
as discussed in prior work [23,24], if one first normalizes the TM so that the
domain is [−1, 1]n, then the linear terms become the largest contributors to
interval analysis overapproximation (since higher order terms are less than 1 in
magnitude). Thus, a good choice for a rotation matrix is the matrix formed by
the linear terms of the (normalized) TM.

To formalize the above concept, let us decompose a TM vector TMV = (p, I)
into TMV = (c + M + N, I), where c denotes the constant terms, M denotes
the linear terms and N denotes the higher-order terms. The idea of precondi-
tioning is to decompose M = QR, where Q is an orthonormal matrix and R is
upper-triangular. This is achieved by splitting TMV into a composition of two
TM vectors: TMV = (Q+c,0)◦ (R+Q�N,Q�I).1 Then, each neuron’s compu-
tation is performed on Q only, which alleviates the wrapping effect introduced
by Int(pL) in Example 1 since Q is orthonormal.

1 Note that the new remainder may need to be enlarged to also include numerical
errors due to the computation of Q.



Verification of Neural Network Controllers 255

The algorithm is presented in Algorithm 1. Note that preconditioning is
performed in each layer, followed by again composing the two parts into the full
TM. While it is possible to represent the final TM as a composition of individual
layer TMs, the benefits of preconditioning would decrease after the first layer,
since most of the variability is captured in the right-most TM.

4.2 Shrink Wrapping

In systems where verification over a longer time horizon is required, avoiding
large remainders may be impossible even with effective preconditioning. In such
cases, one could use shrink wrapping in order to refactor the TM into one that
results in slower remainder accumulation in the future [3,24].

The high-level idea of shrink wrapping is illustrated in Fig. 3. If the remainder
becomes a significant part of the set described by the TM, then TM arithmetic
degrades into standard interval analysis. In this case, it helps to transform the
TM into a new TM that contains the original one but has no remainder. Thus,
even if the new TM is slightly larger, it is propagated symbolically using TM
arithmetic, which results in smaller error accumulation in the long run.

The choice of new TM is not obvious and is affected by the system in
consideration. The standard approach in related work [3,24] is to focus on
the linear terms (assuming the TM is normalized so that D = [−1, 1]n).
Specifically, suppose that the system’s state x is described by the TM vector
TMVx = (p, I) = (c + M + N, I). One option for the new TM vector is to
premultiply TMVx by M−1, thereby reducing the linear terms to the iden-
tity matrix, I. Then a shrink wrap factor q is chosen such that the image of
the higher-order terms contains the remainder of the initial TM vector, i.e.,
TMV new

x = (c + I + qM−1N,0).2

While it is possible to choose q by finding bounds on the partial derivatives of
the higher-order terms M−1N [3], our initial experiments indicated that a more
straightforward approach leads to no loss in precision. In particular, we represent
the new TM vector as TMV new

x = (c + diag(q),0), where q = Int(TMVx).
The last consideration is when to perform the TM conversion: if it is applied
too often, more error could be introduced by the frequent elimination of useful
information in the TMs. In our experiments, shrink wrapping is triggered when
the remainder is larger than 1e−6 and larger than 1% of the total TM range.

5 Implementation

We implemented our approach in conjunction with the Flow* tool [5], for easy
integration with standard hybrid system models. We provide similar TM func-
tions to the ones existing in Flow*, adapted to the case of NNs. In addition to
modified data structures, a main difference in our implementation is the option
to parallelize the TM vector propagation, i.e., Line 5 in Algorithm 1. This par-
allelization is possible since each neuron in a layer only depends on the input
2 The new remainder may be greater than 0 due to round-off error during the inversion.



256 R. Ivanov et al.

TMs, thus each computation can be done on a separate core. As illustrated in
Sect. 7, this implementation brings great benefits, especially in the case of larger
NNs, where multiple neuron computations can be performed in parallel.

6 Benchmarks

We use 10 benchmarks to evaluate the proposed approach. These benchmarks
were compiled from the related literature [17,19,20,28] and were selected in order
to cover a wide variety of systems and controllers: 1) continuous and hybrid
systems; 2) systems with state feedback and systems with measurements as a
function of the states; 3) low-dimensional systems as well as systems with high-
dimensional measurements; 4) controllers with both tanh and sigmoid activations
and with a number of neurons varying from 16 to 200 per layer.

Table 1 presents the dynamics and the initial set for each benchmark. For
simplicity, all properties are reachability properties (i.e., the problem is to verify
whether a goal set is reached from all initial states), though safety properties
can be handled as well. In particular, the goal regions are as follows:

– B1 : x1 ∈ [0, 0.2], x2 ∈ [0.05, 0.3]; B2 : x1 ∈ [−0.3, 0.1], x2 ∈ [−0.35, 0.5];

Table 1. List of benchmarks. Benchmarks B1−B5 and Tora were introduced by Huang
et al. [17]; adaptive cruise control (ACC) was presented by Tran et al. [28]; mountain car
(MC), quadrotor with model-predictive control (QMPC) and F1/10 were introduced
by Ivanov et al. [20]. We use V to denote the measurement dimension. In F1/10, y is
a 21-dimensional LiDAR scan.

Name Dynamics V Initial set

B1 ẋ1 = x2, ẋ2 = ux2
2 − x1 2 x1 ∈ [0.8, 0.9], x2 ∈ [0.5, 0.6]

B2 ẋ1 = x2 − x3
1, ẋ2 = u 2 x1 ∈ [0.7, 0.9], x2 ∈ [0.7, 0.9]

B3 ẋ1 = −x1(0.1 + (x1 + x2)
2), 2 x1 ∈ [0.8, 0.9],

ẋ2 = (u + x1)(0.1 + (x1 + x2)
2) x2 ∈ [0.4, 0.5]

B4 ẋ1 = −x1 + x2 − x3, 3 x1, x3 ∈ [0.25, 0.27],

ẋ2 = −x1(x3 + 1) − x2, ẋ3 = −x1 + u x2 ∈ [0.08, 0.1]

B5 ẋ1 = x3
1 − x2, 3 x1 ∈ [0.38, 0.4], x2 ∈ [0.45, 0.47]

ẋ2 = x3, ẋ3 = u x3 ∈ [0.25, 0.27],

Tora ẋ1 = x2, 4 x1 ∈ [−0.77, −0.75],

ẋ2 = −x1 + 0.1sin(x3), x2 ∈ [−0.45, −0.43],

ẋ3 = x4, x3 ∈ [0.51, 0.54],

ẋ4 = u x4 ∈ [−0.3, −0.28]

ACC ẋ1 = x2, ẋ2 = x3, ẋ3 = −4 − 2x3 − x2
2

1000 5 x1 ∈ [90, 91], x2 ∈ [32, 32.05]

ẋ4 = x5, ẋ5 = x6, ẋ6 = 2u − 2x6 − x2
5

1000 x4 ∈ [10, 11], x5 ∈ [30, 30.05]

MC x+
1 = x1 + x2, 2 x1 ∈ [−0.53, −0.5]

x+
2 = x2 + 0.0015u − 0.0025cos(3x1)

QMPC ẋ1 = x4 − 0.25, ẋ2 = x5 + 0.25, ẋ3 = x6 6 x1 ∈ [0.025, 0.05],

ẋ4 = 9.81u1, ẋ5 = −9.81u2, ẋ6 = u3 − 9.81 x2 ∈ [0, 0.025]

F1/10 ẋ1 = x3cos(x4), ẋ2 = x3sin(x4) 21 x1 ∈ [−0.0025, 0.0025],

ẋ3 = −1.633x3 + 0.3266(u − 4), ẋ4 =
x3tan(u)

0.225 x3 ∈ [−0.0025, 0.0025]



Verification of Neural Network Controllers 257

– B3 : x1 ∈ [0.2, 0.3], x2 ∈ [−0.3,−0.05]; B4 : x1 ∈ [−0.05, 0.05], x2 ∈ [−0.05, 0];
– B5(sig) : x1 ∈ [−0.4,−0.28], x2 ∈ [0.05, 0.22];
– B5(tanh) : x1 ∈ [−0.43,−0.38], x2 ∈ [0.16, 0.18];
– Tora: x1 ∈ [−0.1, 0.2], x2 ∈ [−0.9,−0.6];
– ACC: x1 ∈ [22.81, 22.87], x4 ∈ [29.88, 30.02];
– MC: x1 ≥ 0.45; QMPC: x1, x2, x3 ∈ [−0.32, 0.32]; F1/10: no crash [18].

7 Experiments

We compare our tool, named Verisig 2.0, against three state-of-the-art tools,
namely Verisig [19,20], ReachNN* [11,17], and NNV [27,28]. We selected these
tools because they handle NNs with sigmoid/tanh activations. For each bench-
mark, we record whether each tool could verify the property (or return Unknown
due to large approximation error). In addition, we compare the verification times
between the different tools. While Verisig and NNV do not support parallel exe-
cution,3 ReachNN* has been optimized for GPU execution, so a comparison in
terms of verification times is fair (all experiments were run on an Intel Xeon
Gold 6248 running at 2.5 GHz and with an Nvidia GeForce RTX 2080 Ti GPU).
Finally, we provide a comparison in terms of reachable sets.

Verification outcomes and times are reported in Table 2. Multiple controllers
were used in some benchmarks in order to test a variety of NNs. We present the

Table 2. Verification evaluation. The notation tanh/sig (n × k) indicates a NN with
tanh/sig activations, n hidden layers and k neurons per layer. For each tool, we provide
the verification time in seconds; if a property could not be verified, it is marked as
Unknown. If a tool crashed on a benchmark, it is marked as DNF.

Name NN setup Verisig 2.0 (40 cores) Verisig 2.0 (1 core) Verisig ReachNN* NNV

B1 tanh (2 × 20) 38 s 48 s DNF Unknown Unknown

sig (2 × 20) 40 s 49 s Unknown 69 s Unknown

B2 tanh (2 × 20) Unknown Unknown Unknown Unknown Unknown

sig (2 × 20) 6 s 8 s 12 s 32 s Unknown

B3 tanh (2 × 20) 32s 43 s 98 s 128 s Unknown

sig (2 × 20) 36 s 47 s 98 s 130 s Unknown

B4 tanh (2 × 20) 9 s 11 s 23 s 20 s DNF

sig (2 × 20) 10 s 12 s 24 s 20 s DNF

B5 tanh (3 × 100) 48 s 168 s Unknown Unknown Unknown

sig (3 × 100) 51s 196 s 1063 s 31 s Unknown

Tora tanh (3 × 20) 43 s 70 s 134 s 2524 s Unknown

sig (3 × 20) 50 s 83 s 136 s 3402 s Unknown

ACC tanh (3 × 20) 529 s 1512 s Unknown DNF Unknown

MC sig (2 × 16) 48 s 52 s 33 s N/A N/A

sig (2 × 200) 1241 s 4311 s Unknown N/A N/A

QMPC tanh (2 × 20) 636 s 697 s 703 s N/A N/A

F1/10 tanh (2 × 64) 3411 s 3654 s 2021 s N/A N/A

3 NNV is parallelized in the case of ReLU activations, but not for smooth activations.



258 R. Ivanov et al.

results for Verisig 2.0 as used with one and with 40 cores, in order to illustrate
the benefit of parallelization. Note that parallelization helps the most in systems
with wider NNs, e.g., the MC benchmark, since a larger part of the computation
is devoted to NN computation (relative to plant computation) in these systems.

Comparison with Verisig. Verisig is the closest method to Verisig 2.0, as it also
propagates TMs through the NN. Thus, Verisig can be seen as a baseline for our
approach, so this comparison illustrates most clearly the benefits of precondi-
tioning and shrink wrapping. Firstly, note that Verisig takes significantly more
time to compute reachable sets (21 times slower in the case of the B5 benchmark)
on all but one benchmark – the MC benchmark is peculiar because the NN is
very small, hence most of the computation is spent on the plant. Furthermore,
Verisig is unable to verify some properties due to increasing error. As shown
in Fig. 4, the reachable sets computed by Verisig introduce more approximation
error, especially in the challenging ACC benchmark, where preconditioning is
particularly useful due to the larger input space.

24 26 28 30 32

x
1

29.7

29.8

29.9

30

30.1

30.2

x
4

(a) ACC benchmark.

-0.5 0 0.5

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

(b) B5 benchmark, sigmoid.

-1 -0.5 0 0.5 1

x
1

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x
2

(c) MC benchmark, 2× 200.

Fig. 4. Comparison between the reachable sets produced by Verisig (blue) and Verisig
2.0 (green). Example simulated trajectories are plotted in red. The goal set is shown in
magenta. Note that the goal is not reached in the B5 benchmark. (Color figure online)

-0.5 0 0.5 1

x
1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

(a) B1 benchmark, sigmoid.

-0.5 0 0.5

x
1

0.1

0.2

0.3

0.4

0.5

0.6

x
2

(b) B5 benchmark, tanh.

-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x
2

(c) Tora benchmark, sigmoid.

Fig. 5. Comparison between the reachable sets produced by ReachNN* (blue) and
Verisig 2.0 (green). Simulated trajectories are plotted in red (not shown in the Tora
benchmark to improve visibility). The goal set is shown in magenta. (Color figure
online)



Verification of Neural Network Controllers 259

24 26 28 30 32

x
1

29.6

29.7

29.8

29.9

30

30.1

30.2
x
4

(a) ACC benchmark.

-1 -0.5 0 0.5 1

x
1

-3

-2

-1

0

1

2

x
2

(b) B2 benchmark, sigmoid.

-1 -0.5 0 0.5 1

x
1

-1.5

-1

-0.5

0

0.5

1

x
2

(c) Tora benchmark, tanh.

Fig. 6. Comparison between the reachable sets produced by NNV (blue) and the Verisig
2.0 approach (green) on three of the benchmarks from Table 2. Example simulated
trajectories are plotted in red. The goal set is shown in magenta. (Color figure online)

Fig. 7. Verisig 2.0 remainder growth (for position, x1) on the MC benchmark as we
increase the NN size. The remainder is reset to 0 after shrink wrapping.

Comparison with ReachNN*. ReachNN* is a sampling-based approach to NN
verification, so it is expected to work well on low-dimensional systems and
encounter difficulties as the dimension increases. As can be seen in Table 2,
Verisig 2.0 is faster on all but one benchmark, and the difference is especially
pronounced on the four-dimensional Tora benchmark, where ReachNN* is 268
times slower. Note that ReachNN* cannot handle hybrid models, so no compar-
ison could be made on those benchmarks. Finally, as shown in Fig. 5, Verisig
2.0 also results in tighter reachable sets – the benefit of shrink wrapping can be
observed in Fig. 5a, where the ReachNN* reachable sets eventually start to grow
fast whereas Verisig 2.0 is able to maintain low approximation error over time.

Comparison with NNV. Note that NNV is unable to verify any of the properties
considered in this paper due to high approximation error. This is mostly due to
the fact that NNV is optimized for networks with ReLU activations, where the
star set method used in NNV is effective and parallelizable. Figure 6 shows the
reachable computed by each tool, where it is clear that Verisig 2.0 maintains
tight reachable sets whereas the NNV approximation error grows quickly.



260 R. Ivanov et al.

Scalability Evaluation. Finally, we also evaluate the scalability of Verisig 2.0 as
we increase the NN size on the MC benchmark. Figure 7 illustrates how the
remainder grows over time for the x1 (position) state. We observe that the
larger NN results in significantly larger remainder growth. At the same time,
interpreting the remainder growth in isolation may be misleading since it also
depends on the size and shape of the true reachable sets. We leave a rigorous
analysis of the effect of NN size on scalability for future work.

8 Conclusion

This paper presented Verisig 2.0, a parallelized tool for NN verification. We devel-
oped a Taylor-model-based approach in which we reduce the approximation error
in reachable sets through Taylor model preconditioning and shrink wrapping.
Finally, we provided an extensive evaluation over 10 benchmarks and showed
that our method is significantly more accurate and faster than state-of-the-art
tools, resulting in 21x and 268x speed-ups on some benchmarks, respectively.
For future work, we will investigate which NN architectures are more amenable
for verification, both in terms of size and number of layers as well as in terms of
weight magnitude and direction.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Berz, M., Makino, K.: Suppression of the wrapping effect by taylor model-based
verified integrators: long-term stabilization by shrink wrapping. Int. J. Diff. Eq.
Appl 10, 385–403 (2005)

4. Bojarski, M., Del Testa, D., Dworakowski, D., et al.: End to end learning for self-
driving cars. arXiv preprint arXiv:1604.07316 (2016)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

6. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: International Conference on Computer Aided Verification (2010)

7. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

8. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: 22nd International
Conference on Hybrid Systems: Computation and Control, pp. 157–168 (2019)

https://doi.org/10.1007/978-3-642-19835-9_21
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26


Verification of Neural Network Controllers 261

9. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

11. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

12. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. arXiv preprint
arXiv:1906.04893 (2019)

13. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

14. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: Conference on Programming Language Design and Implementation (2019)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP) (2018)

16. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. ACM Trans. Embed. Comput. Syst. (TECS)
18(5s), 1–22 (2019)

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification (2017)

18. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Case study:
verifying the safety of an autonomous racing car with a neural network controller.
In: International Conference on Hybrid Systems: Computation and Control (2020)

19. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control (2019)

20. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1) (2020). https://doi.org/10.1145/3419742

21. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: Digital Avionics Systems Con-
ference (DASC), 2016 IEEE/AIAA 35th, pp. 1–10. IEEE (2016)

22. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

23. Makino, K., Berz, M.: Suppression of the wrapping effect by taylor model-based
verified integrators: Long-term stabilization by preconditioning. Int. J. Differ. Equ.
Appl. 10(4) (2011)

24. Neher, M., Jackson, K.R., Nedialkov, N.S.: On taylor model based integration of
odes. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
http://arxiv.org/abs/1906.04893
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1145/3419742
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5


262 R. Ivanov et al.

25. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147–156. ACM (2019)

26. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., et al.: Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

27. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

28. Tran, H., Cai, F., Lopez, D.M., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embed. Comput. Syst. 18(5s), 105 (2019)

29. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial
test generation for autonomous vehicles with machine learning components. arXiv
preprint arXiv:1804.06760 (2018)

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems (2018)

31. Weng, T., et al.: Towards fast computation of certified robustness for relu networks.
In: International Conference on Machine Learning, pp. 5273–5282 (2018)

32. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and veri-
fication for multi-layer neural networks. arXiv preprint arXiv:1708.03322 (2017)

33. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 179–184 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
http://arxiv.org/abs/1804.06760
http://arxiv.org/abs/1708.03322
http://creativecommons.org/licenses/by/4.0/

	Verisig 2.0: Verification of Neural Network Controllers Using Taylor Model Preconditioning
	1 Introduction
	2 Problem Statement
	3 Background: Neural Networks as Taylor Models
	4 Taylor Model Preconditioning and Shrink Wrapping
	4.1 Taylor Model Preconditioning
	4.2 Shrink Wrapping

	5 Implementation
	6 Benchmarks
	7 Experiments
	8 Conclusion
	References




