
Coordination Strategies: Managing Inter-team
Coordination Challenges in Large-Scale Agile

Marthe Berntzen1(B) , Viktoria Stray1,2 , and Nils Brede Moe2

1 University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
{marthenb,stray}@ifi.uio

2 SINTEF, Strindveien 4, 7465 Trondheim, Norway
{viktoria.stray,nils.b.moe}@sintef.no

Abstract. Inter-team coordination in large-scale software development can be
challenging when relying on agile development methods that emphasize iterative
and frequent delivery in autonomous teams. Previous research has introduced the
concept of coordination strategies, which refer to a set of coordination mecha-
nisms to manage dependencies. We report on a case study in a large-scale agile
development program with 16 development teams. Through interviews, meeting
observations, and supplemental document analyses, we explore the challenges to
inter-team coordination and how dependencies are managed. We found four coor-
dination strategies: 1) aligning autonomous teams, 2) maintaining overview in
the large-scale setting, 3) managing prioritizations, and 4) managing architecture
and technical dependencies. This study extends previous research on coordination
strategies within teams to the inter-team level. We propose that large-scale organi-
zations can use coordination strategies to understand how they coordinate across
teams and manage their unique coordination situation.

Keywords: Coordination strategies · Coordination mechanisms · Dependency
management · Large-scale agile · Inter-team coordination · Software
development

1 Introduction

Digital transformation drives new sectors, such as the finance and transportation sectors,
to make use of agile development methods, often in large-scale settings. Despite the
popularity of agile, there are new and complex challenges associated with agile meth-
ods in large-scale settings due to the unavoidable coordination required when many
development teams work together [1–3]. When many teams work simultaneously with
large code bases, achieving technical consistency across teams, managing stakeholders,
balancing a shortage of expert resources, and aligning autonomous teams can become
problematic [3, 4]. Practitioners of large-scale agile need to understand how to orga-
nize for scale, select optimal large-scale practices, and enable inter-team knowledge
sharing [1, 5]. Development teams need to manage dependencies between, for example,
requirements, testing, integration, and deliverables, working together with requirement

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 140–156, 2021.
https://doi.org/10.1007/978-3-030-78098-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_9&domain=pdf
http://orcid.org/0000-0003-1455-2562
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-030-78098-2_9

Coordination Strategies: Managing Inter-team Coordination Challenges 141

engineers, architects, testers, other teams, and support and expert roles, all while keep-
ing in line with the team’s goals and prioritizations [3]. Many of these aspects represent
coordination challenges, as several parts of the development organization depend on
each other to align their efforts to deliver a software product.

Coordination is often defined as managing dependencies between activities [6], and
effective coordination is considered a critical element for large-scale software develop-
ment [5, 7]. Successful coordination is achieved by the use of appropriate coordination
mechanisms, defined as organizational arrangements such as meetings, roles, tools, and
artifacts associated with one or more dependencies that allow individuals or teams to
realize collective performance [8]. When a set of coordination mechanisms are used to
manage dependencies, it is knownas a coordination strategy [9].Moving to the inter-team
level, coordination mechanisms, and potentially strategies, are directed at managing the
dependencies between teams [2, 10]. Examples of mechanisms include Scrum-of-Scrum
meetings and communities of practice, where representatives from each team are present
[11], as well as tools and artifacts such as inter-team task boards and project backlogs.
When mechanisms work together to address specific coordination issues, for instance
managing inter-team prioritizations, they form coordination strategies.

While there is a vast literature on coordination in agile software development,
research-based knowledge on inter-team coordination strategies is limited, as existing
empirical studies have focused on coordination strategies within the team [9, 12]. To
better understand the challenges to inter-team coordination and how they can be man-
aged, we address the following research question: How are coordination strategies used
in large-scale agile to manage inter-team coordination challenges?

We conducted a case study over six months in a large-scale program in the public
transportation sector with 16 development teams. We analyzed data from interviews and
field observations to identify the challenges. To guide our analysis, we applied concepts
from the theory of coordination in co-located agile software development [9, 12], or
the theory of coordination, for brevity [8]. This theory was developed in the context of
co-located agile teams [9]. Of particular interest to further exploration is that the theory
proposes one agile coordination strategy [9]. In large-scale contexts, there is likely to
be a mix of typical agile software development practices and more traditional practices.
Furthermore, as large-scale settings are characterized by complex dependencies [2, 3],
there may be more than one strategy at play [10, 13].

2 Background and Related Work

2.1 Managing Dependencies in Large-Scale Agile Development

Dependencies are central to the study of coordination. A dependency is defined as when
the progress of one action relies upon the timely output of a previous action or on the
presence of a specific thing, such as an artifact, a person, or relevant information [12].
Moving to the large-scale level, an inter-team dependency occurs when the output of one
team is required as input for another team’s work [2, 10]. According to a dependency
taxonomy for agile projects [12], there are eight types of dependencies, divided into
three categories: knowledge, process, and resource dependencies. Table 1 summarizes
the eight typxes of dependencies.

142 M. Berntzen et al.

Prior research suggests that there are many and complex dependencies in large-
scale agile, and that organizational context matters for large-scale coordination. Uludağ
and colleagues [14] studied recurring development patterns and presented an iteration
dependencymatrix to visualize dependencies between teams. Sekitoleko et al. [15] inves-
tigated challenges associated with communication of technical dependencies in large-
scale agile. They found challenges such as planning, task prioritization, code quality, and
integration and suggested that these challenges can be addressed by practices such as
Scrum-of-Scrum meetings, continuous integration, and working in an open space [15].
Dingsøyr et al. [5] explored coordination in a large-scale program with a high degree of
task uncertainty and interdependencies and highlighted the importance of scheduled and
unscheduled meetings for coordination by feedback. They also emphasized the need for
changing coordination practices over time [5].

Further, Gustavsson [16] studied coordination in companies that had implemented
the Scaled Agile Framework (SAFe) and found that SAFe provides several coordination
mechanisms, such as product increment planning meetings, Scrum-of-Scrum meetings,
and program task boards address inter-team dependencies. These, however, required tai-
loring to the specific contexts of each company [16]. Martini et al. [17] also highlighted
the role of context for coordination between teams. They studied inter-group interac-
tion speed in an embedded software development context, exploring how boundary-
spanning roles, activities, and artifacts mitigate challenges, with interaction hindering
speed between teams. Their findings highlight the need for boundary-spanning mecha-
nisms across teams and organizational levels for software architecture, processes, shared
responsibilities, and managing expectations [17].

Table 1. Types of dependencies that can affect agile project progress [24, 25]

K
no

w
le

dg
e A form of information is

required for a project to
progress

Requirement: Domain knowledge or a requirement is not
known and must be located or identified.
Expertise: Information about task is known only by
certain persons or groups.
Historical: Knowledge about past decisions is needed.
Task Allocation: Who is doing what, and when, is
unknown.

Pr
oc

es
s A task must be completed

before another task can
process and this affects

project progress

Activity: An activity is blocked until another activity is
complete.
Business process: Existing business processes cause a
certain order of activities.

R
es

ou
rc

e

An object is required for a
project to progress

Entity: A resource (person, place or thing) is not
available.
Technical: A technical aspect of development affects
progress, such as when two software components must
interact.

Coordination Strategies: Managing Inter-team Coordination Challenges 143

2.2 Coordination Strategies

One way to manage dependencies in software projects is to implement coordination
strategies [9]. The idea that coordination mechanisms can be used together in the form
of coordination strategies is not entirely new. Within software engineering, the concept
has been explored conceptually in co-located [9, 12] and global software development
settings [18]. However, empirical descriptions of the concept are scarce.

Xu [13] proposed eight coordination strategies for large agile projects for empiri-
cal exploration, focusing on decision-making, communication, and control as relevant
dimensions of large-scale coordination and encouraging empirical exploration of these.
Li and Maedche [18] conceptually explored coordination strategies within teams in
a distributed setting, suggesting that increased communication within the team facili-
tates shared understandings within the distributed team. Scheerer and colleagues [10]
described eight types of inter-team coordination strategies, from purely mechanistic to
cognitive and organic, and suggested that future research further explore the concept.
These studies recognize that situational factors influence coordination strategies, which
should also be relevant to the large-scale inter-team context, where teams are often
surrounded by complex organizational contexts [19].

In this paper, we apply concepts developed in the theory of coordination [9, 12]. We
chose this theory as a lens for investigating inter-team coordination because it provides
a framework for analyzing dependencies and coordination mechanisms specific to agile
software development and captures both explicit (such as a Kanban board) and implicit
forms of coordination (such as shared knowledge) [5, 9]. The theory, and in particular the
coordination strategy concept, is relevant also to large-scale contexts because it takes into
account that project complexity and uncertainty, as well as the organizational structure,
influence coordination [9]. The theory of coordination proposes that coordination in
agile software development results from a combination of various agile coordination
mechanisms, such as daily stand-up meetings, product backlogs, and software demos,
which address dependencies in different ways [9, 12, 20]. The theory further proposes
that appropriate coordination strategies enable effective coordination [20].

A coordination strategy comprises three components: coordination mechanisms for
synchronization, for structure, and for boundary spanning [9, 20]. Synchronization activ-
ities and artifacts refer to coordination mechanisms that promote shared understand-
ing. Structure coordination mechanisms include the proximity, availability, and substi-
tutability of personnel, whereas boundary spanning refers to mechanisms that involve
interaction outside the boundaries of the development team [9, 20].

3 Method and Analysis

This study reports on a case study conducted in a Norwegian public sector organization.
This organization has an ongoing development program, referred to as the PubTrans
program. The data reported in this study was collected over six months during fall 2019.
The case study design was chosen because the research-based knowledge on inter-team
coordination of software development activities is limited, and case studies can provide
detailed insights into the topic under investigation [21]. We took an ethnographic app-
roach to the data collection, focusing on obtaining rich descriptions of the development

144 M. Berntzen et al.

process and the participants’ experiences [22], complemented by in-depth interviews
and document analyses.

3.1 Case Description

The PubTrans development program was established in 2016 following a public trans-
portation reform and aims to develop a new micro-services-based platform. The new
platform provides, among others, a sales platform for travel operators and a trip planner
for travelers. Many languages and technologies were used across the program, and new
technologies and tools were adopted as development needs arose. The new cloud-based
platform ran on Google Cloud Platform with Kubernetes. Central languages and tech-
nologies in use included Kotlin and Java for back-end, and JavaScript (Node.js) and
React-Native for front-end. They also used support tools such as Grafana, Prometheus,
Slack, JIRA and Confluence. The development organization was mostly co-located with
16 teams, each responsible for their part of the overall software product.

Since the outset, PubTrans has worked with agile methods and autonomous teams.
The agile values were largely embraced on the organizational level and the develop-
ment management had top managements’ support on working in agile ways of working.
PubTrans did not subscribe to any specific agile methodology or large-scale agile frame-
work, such as Scrum or SAFe. Rather, the development teams had the autonomy to
choose which agile practices to use. Most teams had chosen to adopt practices from
Scrum such as sprints, stand-up meetings and retrospectives with varying frequency. In
addition to developers, all teams included a team leader, a tech lead (a form of team
architect), and a product owner. In addition, there were several inter-team roles such as
system-, cloud-, and security architects, as well as product and development managers.

Since the initial architecture and team organization was designed in 2016, PubTrans
grew from five initial teams to the current large-scale set-up with 16 permanent teams.
The teams were organized based on product areas, and the number of members per
team varied from five to over fifteen team members. The program was initiated as a
development project in 2016 but was transformed to an ongoing development program
in 2018. Along the way, they went through several organizational phases and how to
best align the team organization with the technical platform was an ongoing discussion.

While the new micro-services-based platform was being developed, PubTrans also
delivered services both to their clients (typically public transportation operators) and to
the general public through the old, monolithic system. More functionality was added to
the new platform continuously and needed to be compatible also with the old system.
Many dependencies existed between these systems, and all teams had dependencies to
other teams. In addition, there were inter-team knowledge and process dependencies
related to, for instance, the delivery sequences. Accordingly, the need for coordination
across teams was high.

3.2 Data Collection and Analytical Procedures

During fall 2019, we spent a total of 24 full days at the PubTrans site. The observations
consisted of more than 44 h of observation, including a total of 25 meetings. We con-
ducted 12 interviews with team members and program managers. Additionally, we had

Coordination Strategies: Managing Inter-team Coordination Challenges 145

Table 2. Data sources

Data type Description
Interviews 3 program architects, 3 tech leads, 1 product owner, 1 team leader, 4

program managers.

Observations Twenty-four days on-site including observation of 6 tech lead forums,
6 stand-up meetings, 4 product owner meetings, 4 client meetings, 3
program demos, 2 retrospectives

Supplemental
documents

Jira and Confluence documentation such as product backlog and priori-
tization documents, Slack channels; meeting agendas

frequent informal conversations with the program members. We also inspected docu-
ments, logs, and other textual sources for supplemental analysis. The data sources are
specified in Table 2. All interviews were tape-recorded based on participants’ consent
and later transcribed by the first author. The duration was 62 min on average. All inter-
views were semi-structured, and although the conversations developed naturally, we
used an interview guide with questions relating to participants’ work habits and inter-
team coordination practices. Questions included, “What challenges do you face working
with other teams or roles in the program?,” “Can you describe how you interact with
members of other teams?,” and “What may hinder teams from completing their tasks?”.

When analyzing the data, we triangulated between sources to strengthen the accuracy
and compellability of our findings [21]. By interviewing participants from different parts
of the development organization, we gained access to participants’ understanding of
their work routines across teams and across levels of responsibility. By observing the
development process as it unfolded over time and examining associated documents, we
obtained context to the interview statements. Together, these data sources provided us
with rich information for addressing our research question.

The data was coded in NVivo 12 by the first author, who knew the case in detail. To
ensure validity, all emerging categories and concepts were negotiated during a series of
discussions among the authors, and some of the material was coded by all authors before
discussion. The analytical coding proceeded incrementally. During first-cycle coding,
we used descriptive and holistic coding to understand “what is going on” in the data
[23] and to identify the broad challenges observed and described by the participants.
In the second stage, we categorized the challenges that were relevant across teams
and identified the various dependencies and coordination mechanisms associated with
inter-team challenges using focused coding [23]. Finally, we compared the challenges
identified in the first stagewith the dependencies and relatedmechanisms.We considered
something a coordination mechanism if it was associated with one or more distinct
dependencies, and a coordination strategy when the mechanisms addressed the same
set of challenges [9]. As the mechanisms included operated at the inter-team level, we
considered them all to be boundary-spanning [9].

146 M. Berntzen et al.

3.3 Limitations and Threats to Validity

All empirical studies have limitations that might threaten the validity and reliability of
the results. One limitation of this study is the reliance on a single case. As such, the
general criticisms of single-case studies, including the replicability and generalizability
to other settings, apply to our study [21]. However, there is theoretical generalizability
in the concepts applied, as the challenges we report on are not expected to be unique to
this setting [21]. A second limitation relates to the reliance on interviews as a major data
source. However, we complemented the interviews with extensive on-site observations
and supplemental documents. As such, data triangulation allowed us to obtain context
for the interview statements and strengthen our findings [21]. A third limitation is related
to the number and types of meetings we observed. If we had observed more and differ-
ent meetings, such as more retrospectives, we might have found other challenges and
mechanisms. However, our extensive on-site presence allowed us to observe many of
the challenges in practice.

4 Findings

In this section, we present four coordination strategies that were used to manage chal-
lenges with inter-team coordination in the large-scale program. Below, we describe the
challenges, dependencies, and corresponding coordination strategies in more detail. The
coordination strategies were: 1) aligning autonomous teams, 2) gaining and maintaining
overview across teams, 3) managing prioritization issues, and 4) managing architecture
and technical dependencies. Table 3 provides an overview.

4.1 Strategy 1: Aligning Autonomous Teams

One set of challenges was related to aligning autonomous teams in the large-scale pro-
gram. Providing the teams with a high degree of autonomy resulted in process depen-
dencies such as teams blocking each other, as well as the surrounding organizational
business processes, which could cause delays that slowed down the speed of the pro-
gram. Additionally, lack of alignment resulted in technical dependencies not being suf-
ficiently managed. PubTrans aimed to facilitate an agile environment and culture based
on autonomous teams. For instance, the teams could choose whether they wanted to
apply Scrum, Kanban, Scrumban, or any other agile method. Although autonomy was
appreciated, there were challenges related to the freedom of choice when teams operated
with different definitions of done, had different testing regimes, and different ways of
updating their documentation. One informant stated, “Here, one has chosen a model
with autonomous teams that are allowed to define their own ways of working. If there
are sixteen teams here, there are sixteen different ways of doing things” [Manager 4].

The missing alignment was also observed when we examined the teams’ Jira and
Confluence pages; some had well-described processes and documentation, whereas oth-
ers had little to none. In addition, missing alignment contributed to a lack of technical
consistency across teams. “We have allowed people to develop the new APIs team by
team. That means they are not uniform” [Manager 2]. Although team autonomy was

Coordination Strategies: Managing Inter-team Coordination Challenges 147

Table 3. Challenges and coordination mechanisms in the four strategies

Challenge description Coordination mechanisms

St
ra

te
gy

 1
:

A
lig

nm
en

t

Choice of agile methods result in
different team routines:
- Different definitions of done
- Different development routines
- Different testing routines
- Lack of technical consistency
Related dependencies:
Process: Activity and Business process
dependencies
Resource: Technical dependencies

Synchronization activities: Inter-team
stand-ups and status meetings, tech lead
forum
Synchronization tools and artefacts:
Shared routines for deliveries and
documentation and testing, common
definition of done, test team, platform team
to support teams with shared technologies
Structure mechanisms: Co-location, open
office space

St
ra

te
gy

 2
:

O
ve

rv
ie

w

Large-scale makes it hard to main-
tain overview:
- Feeling out of sync with other teams
- Problems with information flow
- Task-related communication across
teams
- Locating people and information
Related Dependencies:
Knowledge: Expertise, Task allocation,
Requirement dependencies

Synchronization activities: Inter-team
stand-ups and status meetings, program
demo
Synchronization tools and artefacts:
Slack, shared backlog in Jira, organization
map on Confluence, program roadmap,
Objectives and Key Results
Structure mechanisms: Open office space,
co-location

St
ra

te
gy

 3
:

Pr
io

rit
iz

at
io

n

Hard deadlines and many clients lead
to prioritization challenges:
- Stakeholder expectation management
- Time and delivery pressure
- Lack of time to prioritize quality work
- Changing prioritizations
- Lack of clarity in the prioritization
process
Related Dependencies:
Process: Activity dependencies
Resource: Entity and technical depend-
encies

Synchronization activities:
Inter-team stand-up meetings, Product
owner meetings
Synchronization tools and artefacts:
Prioritization task board, shared backlog
Structure mechanisms: Temporary team
arrangements (task force teams, taking on
other teams’ tasks)

St
ra

te
gy

 4
:

A
rc

hi
te

ct
ur

e

Complex technical dependencies:
- Two systems in use in parallel
- Teams becoming bottlenecks
- Large code bases of some teams
- Risk of repeating old patterns
- Vulnerability for errors
Related Dependencies:
Process: Activity dependencies, Re-
source: Technical dependencies

Synchronization activities:
Tech lead forum
Synchronization tools and artefacts:
Objectives and Key Results, platform team
Structure mechanisms: Temporary team
arrangements

Note. Some coordination mechanisms are recurring across the strategies as they ad-
dress more than one dependency.

appreciated, teams also saw the need for alignment across teams: “It is great that the
teams are free and have a lot of responsibility. But it is also essential to have arenas
where we can discuss and share knowledge across teams so that it’s not spinning out of
control” [Tech lead 2].

148 M. Berntzen et al.

The challenges described above were addressed with several coordination mecha-
nisms. PubTrans implemented shared documentation routines onConfluence, and shared
delivery routines where a shared definition of done and common testing routines was
central. Furthermore, they had established a platform team whose main responsibility
was to support the development teams by “developing functionality across teams, but
also handling things like automatic builds, deploying, monitoring and logging overall
across the teams” [Team leader].

Other mechanisms included synchronization activities such as inter-team stand-ups
for alignment of prioritizations, a test team that worked with testing across the teams,
and a tech lead forum for addressing technical dependencies and architecture. Together,
these mechanisms form a coordination strategy aiming to align the autonomous teams
toward collective deliveries, while at the same time allowing the teams autonomy within
appropriate boundaries.

4.2 Strategy 2: Gaining and Maintaining Overview Across Teams

Another major challenge to inter-team coordination was the difficulty of maintaining
overview across teams. In the interviews, participants described challenges such as being
out of sync with other teams; problems with the information flow; locating information
concerning other teams; and insufficient communication about tasks across teams. One
informant explained, “Right now, it is a bit hard to know the status of any given team.
I don’t know where to find it. You need to play detective” [Product owner]. Another
said, “It is an information problem. The technical state is not visible across teams and
this is the greatest hindrance to addressing inter-team technical problems” [Architect
2]. These challenges are examples of knowledge dependencies, such as expertise, task
allocation, and requirement dependencies, because there is a need to know something
about other teams in order to proceed on some action. In the team area, we observed
expertise dependencies in practice when frustrated developers discussed whom they
should talk to and who knew what in other teams.

The challenge with overview across teams was addressed by several coordination
mechanisms. For instance, the office space supportedoverviewandknowledge sharingby
both providing open spaces for conducting inter-team stand-up meetings and supporting
spontaneous informal coordination.Aweekly programdemowhere the teams showcased
their latest work was conducted in an open workspace (shown in Fig. 1). In addition,
a program roadmap was visible to all in the open work space. To help team members
identify each other, the program had a Confluence document with the names and photos
of all members of each of the 16 teams, as well as other employees in the program, such
as managers and program architects.

Furthermore, Slack channels and direct messages provided the developers with an
easy way of sharing knowledge and reaching out to people they did not know. PubTrans
also used Objectives and Key Results (OKRs), which is goal-setting framework where
objectives and corresponding key results are defined for individual teams and at the
organizational level tomeasure progress over a set time period, typically per quarter [24].
The company used OKRs as a mechanism to provide an overview of the increasingly
complex development process. OKRswere formed for all teams during off-site quarterly
workshops where product owners, team leaders, and program architects and managers

Coordination Strategies: Managing Inter-team Coordination Challenges 149

Fig. 1. The office space with the program’s roadmap easily visible

worked iteratively with forming team-specific objectives and key results. Because of the
many inter-team dependencies, it was important to compare and discuss OKRs across
teams and adjust as needed. “The goal of using OKRs is to get an overview and gain
insight in the organization. OKR allows us to work more structured, and gain overview
of ‘this is where were we are now’. Then we can assess what to focus on and use it to
take action.” [Architect 1]. Together, these activities and artifacts form a coordination
strategy for gaining and maintaining overview across teams.

4.3 Managing Prioritization Issues

Because PubTrans was started as a result of a political reform, there were often hard
deadlines the program needed to adhere to, causing time and delivery pressure. One tech
lead explained how this impacted the prioritizations they could make: “Because of these
deadlines we are forced to make very hard prioritizations. And that is something I’m
sure the clients feel. It’s a bit painful from time to time” [Tech lead 1]. PubTrans had
many clients with different needs and the program sometimes overpromised what they
were able to do. A manager explained, “Things come up from different clients that they
all expect us to solve. Sometimes we have not managed the expectations well enough,
and we may simply not have finished on time” [Manager 1]. Sometimes one team was
forced to stop working on one task to prioritize something else with higher priority,
which could cause delays for other teams. One tech lead illustrated a situation where
three teams were working together: “We were so close to finishing the feature! And then
one of the teams had to prioritize something else” [Tech lead 2].

Always chasing the nearest fixed deadlines had consequences for the overall product
quality. Informants expressed the challenge of reducing technical debt and working on
improvements:“We need mechanisms that prevent us from always rejecting improvement
work in favor of new features” [Manager 3]. Another said,“It’s all about not overloading
the team and setting aside time to prioritize improvement” [Tech lead 1].

150 M. Berntzen et al.

There was also a lack of clarity in the prioritization process. The product owners
were in charge of the functional prioritizations and were given input from four account
managers who were responsible for client communication. Furthermore, clients could
communicate directly with the teams through Slack. Although frequent communication
with the customers was important, this set-up led to some confusion. One manager
related this to the scaling of the program: “In the beginning, everything was clear. But
now, as things are expanding, these considerations of prioritizations start to matter. Who
are in charge of what is going to be prioritized? Right now, sitting in this chair, I still do
not know how our overall prioritization mechanism works” [Manager 3].

The prioritization challenges relate to process dependencies, as they impacted task
completionwhen an activity was dependent on input from several teams. They also relate
to resource dependencies as often both technical features and input from members of
other teams or program experts, such as the architects, were required to proceed.

Managing prioritization across teams was addressed with mechanisms such as tem-
porary task force teams. A tech lead explained how they had successfully assembled a
task force team to implement a feature where multiple teams were involved: “To get
things done as soon as possible, we put together members from four teams. We sat
together and held our own task force stand-ups, focusing only on what we needed to
get through” [Tech lead 2]. Furthermore, teams taking on tasks from other teams was
described as a successful mechanism when prioritizations caused delays across teams.
One team readjusted by implementing a feature for a team that had too much on their
hands instead of waiting for them to do it. “The payment solutions were implemented
fully by another team, which was a great success and one of the smarter things we have
done” [Product owner]. To manage the prioritization process, PubTrans used inter-team
status meetings for product owners and team leaders, where they discussed top prior-
ities from the different teams toward the overall deliveries. These were conducted in
front of a physical task board showcasing the most important inter-team prioritizations.
The product owners also had weekly meetings discussing the prioritizations in more
detail. Finally, a new and refined shared backlog was created to help with prioritizing
across teams and clients. Together, these mechanisms form a coordination strategy for
managing inter-team prioritization.

4.4 Managing Architecture and Technical Dependencies

The program scaled fast, growing from five teams in 2016 to 16 teams in 2019. In addi-
tion, new clients were constantly added. Scaling up meant that new technical and archi-
tectural dependencies arose; several software components from different teams needed
to interact, knowledge dependencies arose as information was required across teams,
as well as process dependencies, because development activities had to be completed
across teams before they were integrated.

In developing the new micro-services-based application, it was hard to avoid devel-
oping copies of the old system, which, according to a team leader, left them at risk of
developing a distributed monolith. “Overall, we don’t have any mechanism to protect
us from repeating old patterns. We have some teams that have been able to create some-
thing entirely new, but we also have teams that simply re-implement what they have
implemented in the past” [Team leader]. After some time, two teams who developed

Coordination Strategies: Managing Inter-team Coordination Challenges 151

key components became bottlenecks. At one point, one team’s code base was seemingly
large enough to constitute a mini version of the whole platform on which all teams
depended. Furthermore, change in one part of the code could have a significant impact
on other parts andmake the platform vulnerable: “One risk with developing a distributed
monolith with poor error handling is that if one application goes down, the whole system
goes down” [Team leader].

Several coordinationmechanismswere used to deal with these challenges. The archi-
tects formed specific OKRs to increase awareness of the technical state across teams and
to identify constraints and bottlenecks that slowed down the delivery speed. The above-
mentioned use of temporary team arrangements, the tech lead forum, as well as the
platform team, also contributed to managing technical dependencies. Together, these
coordination mechanisms form a coordination strategy for managing architecture and
technical dependencies.

The tech lead forumwasvital in this strategybecause teams learned about eachother’s
architectures and discussed their challenges in relation to each other. The forum was
described as a community of practice aimed at sharing architecture-related knowledge
and providing an overview of technical dependencies across all the teams. The forummet
biweekly, facilitated by one of the program architects and accompanied by a Confluence
page where meeting agendas and minutes were posted. One tech lead stated, “I think
the forum is great! It is very good to learn about other teams and what they do and what
challenges they have. It’s very helpful” [Tech lead 2].

While valuable, such synchronization activities introduced new challenges, as all
teams needed to be represented. Challenges included keeping the meetings relevant for
all, engaging participants in discussions, and finding the optimal meeting size. Across
the six tech lead forums we observed, between 20 and 25 people showed up, of whom
several weremanagers whowere interested in following the discussions. Being a popular
meeting, there was a shortage of space, and at two meetings, some people had to stand
because there were no more chairs available. Despite the many participants, there were
mostly five or six people who talked. One tech lead reflected on why people did not
speak up: “It can be very quiet in tech lead forum. Maybe it is that we do not dare to
use the time of all these important people who are here” [Tech lead 2]. A final challenge
with this forum was related to its dependency on a person (entity dependency): “The
tech lead forum is currently completely dependent on the architect facilitating it; it is
not self-organizing in any way” [Team leader].

5 Discussion

In this study, we explored the research question: How are coordination strategies used in
large-scale agile to manage inter-team coordination challenges? We applied the theory
of coordination as a guiding lens and extended the coordination strategy concept to
the inter-team level. Our findings broaden the application of the theory of coordination
beyond single co-located agile teams [9, 20] and answer calls for future research on
coordination strategies [10, 13, 18].

According to the theory of coordination, a coordination strategy is a set of agile
coordination mechanisms used to manage dependencies [9, 20]. This theoretical lens

152 M. Berntzen et al.

served to understand how PubTrans worked on solving their day-to-day coordination
challenges among the 16 teams. These challenges are not unique to PubTrans, but rather
are characteristics of scaling agile [4]. The four coordination strategies we identified
from PubTrans’ coordination challenges and mechanisms were 1) aligning autonomous
teams, 2) maintaining overview in the large-scale setting, 3) managing prioritizations,
and 4) managing architecture and technical dependencies. By extending the theory of
coordination to the large-scale level, we show that the identified coordination strategies
reflect the complex environment. In large-scale settings, agile practices are often used
in combination with other organizational practices [2, 5]. We found that the four coordi-
nation strategies included both agile coordination practices, such as stand-up meetings,
demos, and task-boards, as well as non-agile practices like OKRs, task force teams, and
communities of practice.

Our findings further show that coordination mechanisms were used for several pur-
poses to address challenges and dependencies in the program, which is reflected by their
occurrence in several strategies. For instance, tools like Confluence and Slack supported
both inter-team alignment (strategy 1) and overview of team members (strategy 2), by
providing digital arenas for common documentation routines and gaining easy access
to people. Inter-team stand-up meetings provided overview of what was going on in the
teams (strategy 2) and served to manage prioritizations between teams (strategy 3). The
use of temporary team arrangements supported both inter-team prioritizations (strategy
3), as well as technological dependency management (strategy 4).

Further, PubTrans had several coordinator roles [9, 25], such as the team leaders,
product owners, and tech leads, aswell asmanagers and programarchitects.Other studies
highlight shared goals and knowledge enabled by high-quality communication between
inter-team roles [3, 25, 26]. For instance, Sablis et al. [3] emphasize the importance of
expert roles such as architects in supporting teams and that there is often a shortage of
expertise in large-scale projects. In line with this research, we found that there were
entity dependencies related to architects in facilitating the tech lead forum. Shastri and
colleagues [26] found that project managers perform important coordinating activates
such as facilitating, tracking, and negotiating project progress. This research relates to
our findings in that programmanagers facilitated the use of OKRs and supported product
owners and team leaders with inter-team prioritizations.

In large-scale software development, neither dependencies nor coordination needs
are static. We found that the coordination strategies responded to coordination problems
that emerged when the program scaled. Our findings are consistent with a study of
two large-scale programs, where coordination mechanisms did not arise as ready-to-use
procedures, but were formed during the coordination process [27].

5.1 Implications for Practice

Our findings generate a number of practical implications.While autonomous teams need
to know what others are doing, solve technical dependencies, and align their prioriti-
zations and processes with other teams [28], agile methods offer little specific advice
on how this should be implemented in large-scale settings. In line with research on
large-scale agile frameworks [16, 29] and hybrid settings [2], we found that coordi-
nation needs tailoring to the specific organizational context to cope with uncertainty,

Coordination Strategies: Managing Inter-team Coordination Challenges 153

novelty, and complexity [6, 30]. Our results show that the coordination strategy con-
cept is useful for dependency management at scale, and that large-scale agile programs
benefit from adapting coordination mechanisms to their specific needs. We suggest that
large-scale companies gather insights of their coordination challenges and dependencies
across teams and use these to understand their own coordination strategies.

With respect to the first strategy, aligning autonomous teams, we find that while
autonomous teams are central to agile, it appears important to strike a balance between
autonomy and alignment and to be flexible across the large-scale development orga-
nization [2, 4, 31]. We suggest including shared documentation and testing routines
and a common definition of done while still allowing the teams autonomy to choose
development practices in an alignment strategy.

The second strategy,maintaining overview across teams, relates to typical challenges
with knowledge dependencies as the number of teams grows so large that it is hard to
keep track of who is working on what. For this strategy, we recommend including
mechanisms such as keeping a team chart showcasing who does what in which teams,
and using communication tools that provide easy access to members of other teams,
such as Slack, and regular synchronization meetings to support overview [27].

Relating to the third strategy, managing prioritizations, PubTrans worked on estab-
lishing effective prioritization mechanisms. In line with previous studies [e.g., 5, 16,
27], we found that physical or digital prioritization boards highlight essential inter-team
prioritizations and guided teams in adjusting to each other. Another successful practice
in PubTrans was the ability of teams to take on the tasks of other teams. This flexibility
appears core to an agile culture and mindset. We recommend such practices to make the
most of a strategy for managing prioritizations. Concerning the fourth strategy, manag-
ing architecture and technical dependencies, we recommend the use of communities of
practice, such as the tech lead forum, to support management of technical dependencies
across teams [11], and establishing a platform team to support development teams [29].

6 Conclusion and Future Research

In this study, we explored the research question of how coordination strategies were
used to manage challenges with inter-team coordination in a large-scale agile program
with 16 teams.We found the coordination strategy concept useful for studying inter-team
coordination in large-scale settings. The concept provides practitioners with an approach
that is highly context-specific and flexible and thus suitable for the volatile, complex, and
ambiguous large-scale development setting. From our analysis, we found four coordi-
nation strategies: 1) aligning autonomous, 2) gaining and maintaining overview across
teams, 3) managing prioritization issues and, 4) managing architecture and technical
dependencies. We extend the coordination strategy concept to include more practices
beyond agile coordination mechanisms, as we found that the mechanisms included in
the strategies consisted of both agile practices, such as stand-up meetings and demos,
and other practices such as OKRs and a community of practice. Future research could
further explore how coordination mechanisms fit together to form coordination strate-
gies, and how to tailor them to contribute to effective coordination in large-scale settings.
We also encourage future research to explore coordinator roles in relation to inter-team

154 M. Berntzen et al.

coordination strategies. Finally, our on-site access allowed us to explore coordination in
a co-located setting. Since then, the workplace has changed, and we encourage empirical
research on coordination strategies in distributed settings.

Acknowledgements. This research was supported by the Research Council of Norway through
the research project Autonomous teams (A-teams) project, under Grant Number 267704.

References

1. Bass, J.M., Salameh, A.: Agile at scale: a summary of the 8th International Workshop on
Large-Scale Agile Development. Presented at the Agile Processes in Software Engineering
and Extreme Programming–Workshops (2020)

2. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in large-
scale software development: a case study of planning misalignment in hybrid settings. IEEE
Trans. Softw. Eng. 44, 932–950 (2018)

3. Sablis, A., Smite, D., Moe, N.: Team-external coordination in large-scale software develop-
ment projects. J. Softw. Evol. Process. e2297 (2020)

4. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

5. Dingsøyr, T., Moe, N.B., Seim, E.A.: Coordinating knowledge work in multi-team programs:
findings from a large-scale agile development program. Proj. Manage. J. 49, 64–77 (2018)

6. Malone, T.W., Crowston,K.: The interdisciplinary study of coordination.ACMComput. Surv.
(CSUR). 26, 87–119 (1994)

7. Faraj, S., Sproull, L.: Coordinating expertise in software development teams. Manage. Sci.
46, 1554–1568 (2000)

8. Okhuysen, G.A., Bechky, B.A.: 10 coordination in organizations: an integrative perspective.
Acad. Manag. Ann. 3, 463–502 (2009)

9. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Softw. 85, 1222–1238 (2012)

10. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software devel-
opment: a multiteam systems perspective. Presented at the 2014 47th Hawaii international
conference on system sciences (2014)

11. Smite,D.,Moe,N.B., Levinta,G., Floryan,M.: Spotify guilds: how to succeedwith knowledge
sharing in large-scale agile organizations. IEEE Softw. 36, 51–57 (2019)

12. Strode, D.E.: A dependency taxonomy for agile software development projects. Inf. Syst.
Front. 18(1), 23–46 (2015). https://doi.org/10.1007/s10796-015-9574-1

13. Xu, P.: Coordination in large agile projects. Rev. Bus. Inf. Syst. (RBIS). 13, (2009)
14. Uludağ, Ö., Harders, N.-M., Matthes, F.: Documenting recurring concerns and patterns in

large-scale agile development. Presented at the Proceedings of the 24th European Conference
on Pattern Languages of Programs (2019)

15. Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M., Olsson, H.H.: Techni-
cal dependency challenges in large-scale agile software development. In: Presented at the
International Conference on Agile Software Development (2014)

16. Gustavsson, T.: Dynamics of inter-team coordination routines in large-scale agile software
development. In: Proceedings of the 27th European Conference on Information Systems
(ECIS), pp. 1–16, Uppsala (2019)

https://doi.org/10.1007/s10796-015-9574-1

Coordination Strategies: Managing Inter-team Coordination Challenges 155

17. Martini, A., Pareto, L., Bosch, J.: A multiple case study on the inter-group interaction speed
in large, embedded software companies employing agile. J. Softw. Evol. Process. 28, 4–26
(2016)

18. Li, Y., Maedche, A.: Formulating effective coordination strategies in agile global software
development teams (2012)

19. Mikalsen, M., Næsje, M., Reime, E.A., Solem, A.: Agile autonomous teams in complex
organizations. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 55–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_7

20. Kanaparan, G., Strode, D.: A theory of coordination: from propositions to hypotheses in
agile software development. In: Presented at the Proceedings of the 54th Hawaii International
Conference on System Sciences (2021)

21. Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications,
Thousand Oaks (2018)

22. Sharp, H., Dittrich, Y., de Souza, C.R.B.: The role of ethnographic studies in empirical
software engineering. IEEE Trans. Softw. Eng. 42, 786–804 (2016)

23. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks (2012)
24. Niven, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment, and

Engagement with OKRs. John Wiley & Sons, Hoboken (2016)
25. Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an empirical

study through the lens of relational coordination theory. In: Presented at the International
Conference on Agile Software Development (2019)

26. Shastri, Y., Hoda, R., Amor, R.: The role of the project manager in agile software development
projects. J. Syst. Softw. 173, 110871 (2021)

27. Moe, N.B., Dingsøyr, T., Rolland, K.: To schedule or not to schedule? An investigation of
meetings as an inter-team coordination mechanism in large-scale agile software development
(2018)

28. Martini, A., Stray, V., Moe, N.B.: Technical-, social-and process debt in large-scale agile:
an exploratory case-study. In: Presented at the International Conference on Agile Software
Development (2019)

29. Paasivaara, M.: Adopting SAFe to scale agile in a globally distributed organization. In: Pre-
sented at the 2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE) (2017)

30. Jarzabkowski, P.A., Lê, J.K., Feldman, M.S.: Toward a theory of coordinating: creating
coordinating mechanisms in practice. Organ. Sci. 23, 907–927 (2012)

31. Moe, N.B., Smite, D., Paasivaara,M., Lassenius, C.: Finding the sweet spot for organizational
control and team autonomy in large-scale agile software development. Empirical Softw. Eng.
(2021)

https://doi.org/10.1007/978-3-030-30126-2_7

156 M. Berntzen et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Coordination Strategies: Managing Inter-team Coordination Challenges in Large-Scale Agile
	1 Introduction
	2 Background and Related Work
	2.1 Managing Dependencies in Large-Scale Agile Development
	2.2 Coordination Strategies

	3 Method and Analysis
	3.1 Case Description
	3.2 Data Collection and Analytical Procedures
	3.3 Limitations and Threats to Validity

	4 Findings
	4.1 Strategy 1: Aligning Autonomous Teams
	4.2 Strategy 2: Gaining and Maintaining Overview Across Teams
	4.3 Managing Prioritization Issues
	4.4 Managing Architecture and Technical Dependencies

	5 Discussion
	5.1 Implications for Practice

	6 Conclusion and Future Research
	References

