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Abstract. Attribute-based encryption (ABE) is a cryptographic primi-
tive which supports fine-grained access control on encrypted data, mak-
ing it an appealing building block for many applications. Pair encodings
(Attrapadung, EUROCRYPT 2014) are simple primitives that can be
used for constructing fully secure ABE schemes associated to a predi-
cate relative to the encoding. We propose a generic transformation that
takes any pair encoding scheme (PES) for a predicate P and produces a
PES for its negated predicate P . This construction finally solves a prob-
lem that was open since 2015. Our techniques bring new insight to the
expressivity and generality of PES and can be of independent interest.
We also provide, to the best of our knowledge, the first pair encoding
scheme for negated doubly spatial encryption (obtained with our trans-
formation) and explore several other consequences of our results.

1 Introduction

Attribute-based encryption (ABE) is a form of public-key encryption that gener-
alizes the traditional single-recipient variant, providing fine-grained access con-
trol on the encrypted data. In this new paradigm, ciphertexts and keys have
attributes attached and the decryption ability of a key on a ciphertext is deter-
mined by a potentially complex access control policy involving these attributes.
More concretely, an ABE scheme for predicate P guarantees that the decryption
of a ciphertext ctx with a secret key sky is successful if and only if the ciphertext
attribute x and the key attribute y verify the predicate, i.e., P (x, y) = 1.

ABE was first conceived by Sahai and Waters [30] and later introduced by
Goyal et al. [19]. Originally, ABE was designed in the flavour of key-policy ABE
(KP-ABE), where value x is a Boolean vector, value y is a Boolean function and
predicate P (x, y) is defined as y(x) ?= 1. On the other hand, in the analogous ver-
sion, ciphertext-policy ABE (CP-ABE), the roles of values x and y are swapped.
Nowadays, the notion of ABE has been generalized and, thanks to a consider-
able effort by the community of cryptographers, there exist efficient schemes for
a rich variety of predicates. For example, identity-based encryption (IBE) [31]
can be obtained as P (x, y) := x ?= y, zero-inner product encryption (ZIPE) [23]
can be obtained by setting P (x,y) := 〈x,y〉 ?= 0, where x and y belong to
some vector space; other examples are span programs [22], non-monotonic access
structures [28], hierarchical IBE [26], large universe ABE [29], polynomial size
circuits [18], or regular languages [33]. Despite such a great progress in the field,
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designing better schemes in terms of size, performance, security and expressiv-
ity became an excessively hard and tedious task. Until two astonishing works
appeared in 2014.

Modular Frameworks for ABE. In 2014, Wee [34] and Attrapadung [4] indepen-
dently proposed two generic and unifying frameworks for designing attribute-
based encryption schemes for different predicates. Both works define a simple
primitive called encoding and follow the dual system methodology by Lewko
and Waters [25,32] to construct a compiler that, on input an encoding (for cer-
tain predicate P ), produces a fully secure attribute-based encryption scheme for
P . Wee defines so-called predicate encodings, an information-theoretic primitive
inspired by linear secret sharing, while Attrapadung introduces the notion of
pair encodings, a similar primitive that admits both information-theoretic and
computational security definitions. These frameworks remarkably simplify the
design and study of ABE schemes: the designer can focus on the construction
of the simpler encoding (for the desired predicate), which requires weaker secu-
rity properties that are more easily verifiable. In fact, the potential of this new
frameworks is evidenced by the invention of new constructions and performance
improvements on existing primitives. Although these frameworks were designed
over composite-order groups, they were both extended, in [15] and [5] respec-
tively, to the prime-order setting (under the Matrix-DH assumption). Subsequent
works propose variations and extensions of these modular frameworks [1,2,14],
some of them even redefining the core encoding primitive [24] (defining so-called
tag-based encodings). However, note that the frameworks based on pair encodings
are the most general and expressive1 and they have led to breakthrough con-
structions such as constant-size ciphertext KP-ABE (with large universes) [4],
fully-secure functional encryption for regular languages [4], constant-size cipher-
text CP-ABE [1] or completely-unbounded KP-ABE for non-monotone span
programs (NSP) over large universes [6]. Note that, even nowadays, it is still
unknown how to construct any of these powerful schemes based on predicate
encodings or tag-based encodings.

Generic Predicate Transformations. In order to further simplify the design of
these encodings, a common practice is to develop techniques to modify or com-
bine existing ones. For example, the DUAL transformation, that swaps the
ciphertext attribute and the key attribute, or the AND transformation, that
joins two predicates in conjunction, can be achieved for pair encodings [4,10].
Among many applications, these transformations can be used to build dual-
policy attribute-based encryption (DP-ABE) [7,10]; or to enhance any encoding
with direct revocation of keys by combining (in conjunction) the original encod-
ing with, e.g., an encoding for broadcast encryption.

In the framework of [15], Ambrona et al. [3] designed new general transfor-
mations for the DUAL, OR and AND connectors and, remarkably, the NOT
transformation (that negates the predicate of the encoding). This functionally

1 In fact, it is known that predicate encodings are a subclass of pair encodings [3].
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complete set of Boolean transformers provides a rich combination of predicates
and arguably broadens the expressivity of the framework, however, such a nega-
tion is limited to the framework based on predicate encodings. Designing a similar
negation transformation that is applicable to all pair encoding schemes (PES)
is a very appealing problem, since it would facilitate the design of new encod-
ings and would immediately expand the expressivity of the PES framework by
applying it to all existing ones. Note that, as we have already mentioned, pair
encodings have proven themselves to be significantly more expressive than any
other related framework.

However, recent works have considered the problem of designing such a gen-
eral negation to be intrinsically hard [2,6] (see our discussion in Sect. 3, we also
refer to this section for more details about relevant related works). To the best
of our knowledge, a general NOT transformation that is applicable to the frame-
work of pair encodings does not exist in the literature.

1.1 Our Contribution

We pursue the study of pair encoding schemes and establish several general
results that can lead to performance improvements, and new encodings that
broaden their scope.

Generic Negation of Pair Encodings. We propose a generic transformation that
takes any pair encoding scheme for a predicate P and produces a pair encoding
scheme for its negated predicate, P . Our transformation is applicable to pair
encodings that follow the most recent and refined definition given in [2]. Our
construction finally solves a problem that was open since 2015, when several
other transformation for pair encodings (like conjunction or duality) were pro-
posed [10], but no generic negation was provided (nor designed in subsequent
works). In fact, several works had suggested that finding such a transformation
was non-obvious [2,6], since it relates to the problem of generically finding a short
“certificate” of security of the encoding. We elaborate on this idea in Sect. 3.

Algebraic Characterization of Pair Encodings. En route to designing our generic
negation, we define an algebraic characterization of PES that brings new insight
to their expressivity and generality and can be of independent interest. Our
characterization allows us to express the security of a pair encoding scheme as
the (in)existence of solutions to a system of matrix equations. This is the bridge
that allows us to leverage Lemma 1, a very powerful result from linear algebra
(commonly used in cryptography), in order to design and prove our generic
negation.

New Encodings. Our generic negation facilitates the design of new pair encoding
schemes. It will immediately provide us with a negated version of any encoding,
something particularly useful for encodings for which a negated counterpart is
not known. A relevant example of a PES with (previously) unknown negation is
the case of doubly spatial encryption.



Generic Negation of Pair Encodings 123

Doubly spatial encryption [20] is an important primitive that generalizes both
spatial encryption and negated spatial encryption [8]. A negated doubly spatial
encryption scheme serves as its revocation analogue and can lead to powerful
generalizations in the same way that negated (standard) spatial encryption uni-
fies existing primitives, e.g. it subsumes non-zero-mode inner-product encryption
(IPE) [8]. In Sect. 6.1 we provide, to the best of our knowledge, the first pair
encoding scheme for negated doubly spatial encryption, obtained with our trans-
formation.

Other Implications of Our Results. We believe the results presented in this work
improve our understanding of pair encodings and how expressive they are. In par-
ticular, we now know that the set of predicates that can be expressed with PES
is closed under negation. In Sect. 6.2, we elaborate on the conclusions we could
derive from this fact as well as discuss how our generic transformation can also
lead to performance improvements when implementing ABE schemes. Further-
more, note that our generic negation is compatible with the very recent frame-
work proposed by Attrapadung [6], designed to perform dynamic pair encoding
compositions. We believe our new transformation complements his work, where
the proposed non-monotone formulae composition was only semi-generic (but
dynamic), because he had to rely on encodings for which a negated version was
available.

2 Preliminaries

2.1 Notation

We write s←$ S to denote that s is uniformly sampled from a set S. For integers
m,n, we define [m,n] as the range {m, . . . , n} and we denote by [n] the range
[1, n]. We use the same conventions for matrix-representations of linear maps
on finite-dimensional spaces. For a ring R, we define vectors v ∈ Rn as column
matrices, denote the transpose of a matrix A by A� and its trace by tr(A). We
denote by |v| the length or dimension of vector v and by vi its i-th component,
for all i ∈ {1, . . . , |v|}. Similarly, Ai denotes the i-th row of matrix A (we do not
use this notation when the name of the matrix already contains a subindex). We
denote by span(A) the linear column span of matrix A. We denote the identity
matrix of dimension n by In, a zero vector of length n by 0n and a zero matrix of
m rows and n columns by 0m×n. We denote by en

i the i-th vector of the standard
basis of an n-dimensional space, for all i ∈ [n]. We sometimes denote en

1 by 1n.
Similarly, we denote by 1m×n the matrix 1m1�

n, i.e., a null matrix of m rows and
n columns whose component in the first row and first column is 1. Given two
matrices A and B, we denote by A ⊗ B their Kronecker product.

We consider a bilinear group generator G that takes a security parameter
λ ∈ N and outputs the description of a bilinear group (p,G1, G2, Gt, g1, g2, e)
where G1, G2 and Gt are cyclic groups of order p (for a λ-bits prime p), g1
and g2 are generators of G1 and G2 respectively and e : G1 × G2 → Gt is a
(non-degenerate) bilinear map, satisfying e(ga

1 , gb
2) = e(g1, g2)ab for all a, b ∈ N.

Observe that the element gt = e(g1, g2) generates Gt.
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2.2 Attribute-Based Encryption

Attribute-based encryption (ABE) [30] is a form of of public-key encryption that
supports fine-grained access control of encrypted data.

Definition 1 (Attribute-based encryption). An ABE scheme for predicate
P : X × Y → {0, 1} consists of four probabilistic polynomial-time algorithms:

• Setup(1λ,X ,Y) → (mpk,msk), on input the security parameter λ and
attribute universes X ,Y, outputs a master public key and a master secret
key, defining a key space K.

• Enc(mpk, x) → (ctx, τ), on input mpk and a ciphertext attribute x∈ X , out-
puts a ciphertext ctx and a symmetric encryption key τ ∈ K.

• KeyGen(msk, y) → sky, on input the master secret key and a key attribute
y ∈ Y, outputs a secret key sky.

• Dec(mpk, sky, ctx, x) → τ/⊥, on input sky and ctx, outputs a symmetric key
τ ∈ K if P (x, y) = 1 or ⊥ otherwise.

Correctness. For all λ ∈ N, x ∈ X and y ∈ Y such that P (x, y) = 1, it holds:

Pr

⎡
⎣

(msk, pk) ← Setup(1λ)
sky ← KeyGen(msk, y)

(ctx, τ) ← Enc(mpk, x)
: Dec(mpk, sky, ctx, x) = τ

⎤
⎦ = 1.

Security. Informally, an ABE scheme is secure if no probabilistic polynomial-
time (PPT) adversary can distinguish the symmetric encryption key associated
to a ciphertext ctx� (for some attribute x�) from a uniformly chosen one from K,
even after requesting several secret keys for attributes y of their choice, as long
as they all satisfy P (x�, y) = 0.

In this work we focus on pair encodings (see the next section) as a building
block for constructing ABE schemes and we refer to Appendix B.1 for a formal
security definition of ABE, which we do not state here. Instead, we will formally
state and reason about the security requirements for pair encodings.

2.3 Pair Encodings

We consider the refined definition of pair encodings introduced by Agrawal and
Chase in [2].

Definition 2 (Pair encoding). A pair encoding scheme (PES) for a predicate
family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) consists of the following
deterministic and efficiently computable algorithms:

• Param(par): on input certain parameters outputs an integer n, specifying the
number of common variables, denoted by b = (b1, . . . , bn).
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• EncKey(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a vector of polyno-
mials k = (k1, . . . , km3) in the non-lone variables r = (r1, . . . , rm1), the lone
variables r̂ = (α, r̂1, . . . , r̂m2) and the common variables b.

• EncCt(N,x): on input N ∈ N and x ∈ X(N,par), outputs a vector of polynomials
c = (c1, . . . , cw3) in the non-lone variables s = (s0, s1, . . . , sw1−1), the lone
variables ŝ = (ŝ1, . . . , ŝw2) and the common variables b.

• Pair(N,x, y): on input N ∈ N and attributes x and y, outputs a pair of matri-
ces (E,E′) with coefficients in ZN of dimensions w1 × m3 and w3 × m1

respectively.

We require that the following properties be satisfied:

reconstructability: For every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, the following equation holds symbolically:

s�Ek + c�E′r = αs0,

where k ← EncKey(N,x), c ← EncCt(N, y) and (E,E′) ← Pair(N,x, y).
structural constraints: The polynomials produced by EncKey only contain

monomials of the form α, ribj or r̂i′ for some i ∈ [m1], j ∈ [n] and i′ ∈ [m2].
On the other hand, the polynomials produced by EncCt only contain monomi-
als of the form sibj or ŝi′ for some i ∈ [0, w1−1], j ∈ [n] and i′ ∈ [w2].

security (non-reconstructability): For all κ ∈ (N, par), x∈Xκ and y ∈ Yκ

such that Pκ(x, y) = 0, and for every pair of matrices E and E′, over ZN ,
s�Ek + c�E′r 	= αs0, where k ← EncKey(N,x) and c ← EncCt(N, y).

Remark 1. Observe that m1 and w1 represent2 the number of non-lone variables
r and s respectively; m2 and w2 represent the number of lone variables r̂ and
ŝ respectively; and m3 and w3 represent the number of polynomials produced
by EncKey and EncCt respectively. Also note that m3 may depend on the key
attribute y and w3 may depend on the ciphertext attribute x. We will use this
notation throughout the paper.

Agrawal and Chase [2] showed that an encoding with the non-reconstruc-
tability property (coined non-trivially broken) satisfies the symbolic property, a
concept introduced by them which is a sufficient condition to build attribute-
based encryption in the standard model under the so-called q-ratio assumption.

We refer to Appendix B.2 for details about how the compiler from PES to
fully secure ABE works. In this work we directly reason about PES and do not
need to explicitly define such a compiler. However, for the sake of understanding,
we provide an intuition of how a PES can be used to create an ABE scheme in
the following section.

2 In some literature, the number of non-lone ciphertext variables is defined as w1+1,
since the special variable s0 is treated separately. Observe that our vector of non-lone
variables ranges from s0 to sw1−1, this is for the sake of notation in further sections.
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Example 1 (PES for identity-based encryption). The following is a pair encoding
scheme for the IBE predicate P (x, y) := x ?= y, for x, y ∈ ZN . (With m1 = 1,
m2 = 0, m3 = 2 and w1 = 2, w2 = 0, w3 = 1.)

EncKey(N, y) := {α+ r1b1, r1(yb2 + b3)} EncCt(N,x) := {s0b1 + s1(xb2 + b3)}.

Furthermore, in this case Param is an algorithm that simply outputs n = 3
and Pair(N,x, y) returns matrices E = I2 and E′ = −I1. For reconstructability,
observe that

(
s0 s1

)
Ek + c�E′(r1

)
equals s0α + s1r1(yb2 + b3) − s1r1(xb2 + b3)

which equals αs0 whenever x = y, as desired.
Arguing security, i.e., non-reconstructability whenever x 	= y, is a little trick-

ier. One needs to show that for all matrices E ∈ Z
2×2
N , E′ ∈ ZN , the above linear

combination is never equal to αs0. This could be done by unfolding the list of
polynomials in s ⊗ k, c ⊗ r into a matrix A with w1m3 + w3m1 rows (as many
as polynomials) and as many columns as different monomials appear in them,
where the element at row i and column j of the matrix represents the coefficient
of the j-th monomial in the i-th polynomial. (Let the first column be the one
associated to monomial αs0.) One could then argue security by checking that
the row span of A does not contain the vector (1 0 . . . 0) when P (x, y) = 0.

However, there is a simpler way of proving non-reconstructability. Simply
evaluate the polynomials produced by EncKey and EncCt in:

b1 ← −1 b2, s0, r1, α ← 1 b3 ← −y s1 ← (x−y)−1.

Since all the polynomials evaluate to 0, but αs0 evaluates to 1 	= 0, it must
be impossible to symbolically reconstruct αs0 with some pair of matrices E,E′.
Otherwise, we would have a contradiction:

0 = s�E0m3 + 0�
w3

E′r = s�Ek(r, b) + c(s, b)�E′r = αs0 = 1.

The above variable substitution that vanishes all polynomials, but does not
vanish polynomial αs0 can be considered to be a short “certificate” of the security
of the scheme (and it is well-defined as long as x 	= y). We elaborate on this
interesting method for arguing security in Sect. 3. �

2.4 ABE from PES

The compiler from pair encodings to attribute-based encryption is defined over
bilinear groups implemented as dual system groups (DSG) [2,16,17]. Here, we
define a simplified version of the compiler and avoid DSG for simplicity, but note
that the actual scheme produced by these compilers uses vectors of group ele-
ments where we write single group elements. We provide a complete description
of the compiler from [2] in Appendix B.2.

Informally, the symmetric encryption key is computed as τ := gαs0
t , where

s0 is fresh randomness and gα
t is part of the master public key. Both ciphertexts

and keys are made of group elements (created based on the recipe given by the
corresponding PES polynomials). It is possible to recover τ when the predicate
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is satisfied. More concretely, for k ← EncKey(x) and c ← EncCt(y), the compiler
could be summarized as follows:

mpk :=
{
gα
t , gb1

}
(ctx, τ) :=

({gs1 , g
c(s,ŝ,b)
1 }, gαs0

t

)

msk :=
{
α, b

}
sky :=

{
gr2 , g

k(r ,r̂ ,b)
2

}

Decryption is done by pairing gs1 with gk2 , gc1 with gr2 , and linearly combining
the resulting elements, according to the coefficients given by Pair(x, y), obtaining
αs0 in the exponent.

2.5 Linear Algebra Tools

In order to prove the validity of our generic negation of pair encodings, we will
use a very powerful result from linear algebra that has been widely used in the
literature [1–3,11]. It states that given a field K, a matrix A ∈ Km×n and a
vector z ∈ Km, it holds that Av 	= z for all v ∈ Kn if and only if there exists a
vector w ∈ Km such that w�A = 0n and w�z = 1. We refer to [11, Claim 2] for
a formal proof.

Here, for the sake of presentation, we state a variant of the above result,
which can be shown to be equivalent, but that facilitates its application in the
proof of Lemma 2.

Lemma 1. Let V and W be vector spaces over a field K. Let f : V → W be a
linear operator and let z ∈ W . We have that:

z 	∈ Im(f) ⇔ ∃ϕ ∈ W ∗ such that ϕ ◦ f = 0 ∧ ϕ(z) = 1.

Here, W ∗denotes the dual space of W , i.e., the set of all linear maps ϕ : W → K.

3 Overview of Our Generic Negation Transformation

Our starting point is the generic negation for the (less expressive) framework of
predicate encodings from [3]. In order to achieve their transformation, Ambrona,
Barthe, and Schmidt first defined an algebraic characterization of predicate
encodings where the security of the encoding (previously defined as an equality
between distributions) was redefined into a purely algebraic statement related
to the existence of solutions to a linear system of equations. This observation
allowed them to link the notions of security and non-reconstructability and define
what they coined the implicit predicate of an encoding. This implies, in a nut-
shell, that all functions mapping attributes into matrices define a valid predicate
encoding for a certain predicate, informally defined as all pairs of attributes (x, y)
that map into matrices that lead to reconstructability.

Now that security has been proven to be equivalent to non-reconstructability,
and given the simple structure of predicate encodings (which are essentially
matrices over Zp), it is possible to find a short “witness” of non-reconstructability
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by simply finding a solution to a dual system of equations.3 What we want to
highlight here is that their new understanding of predicate encodings allows
them to view both reconstructability and non-reconstructability as essentially
the same kind of property. This suggests that one may be able to build a generic
negation of predicate encodings by transposing the matrices induced by them.4

This is in fact what the negation by Ambrona et al. does, but extra care is
needed to make things really work.

Unfortunately, in the case of pair encodings things are not as simple. Their
structure is significantly more convoluted, involving abstract polynomials that do
not allow the kind of reasoning that was possible before (standard linear algebra).
However, in 2017, Agrawal and Chase introduced a new security notion appli-
cable to pair encodings called the symbolic property [2]. They also showed how
to adapt the previous modular frameworks [1,5] to define a compiler that takes
pair encodings satisfying the symbolic property and produces fully secure predi-
cate encryption schemes under the q-ratio assumption, a new q-type assumption
proposed by them that is implied by other assumptions of this kind [27]. This
symbolic property can be seen as a generalization of the “trick” that we have used
in Example 1 to argue the security of the encoding. The main difference is that
scalar variables in the PES may be substituted by vectors or matrices (not neces-
sarily scalars as in our example) in such a way that, after the substitution, all the
polynomials evaluate to zero, but there is an extra constraint relating the inner
product of the vectors that replaced the special variables that guarantees that
αs0 is non-zero. As mentioned by Attrapadung [6], the above methodology gen-
eralizes the well-known Boneh-Boyen cancellation technique for identity-based
encryption [12]. What is remarkable about this idea is that the substitution can
be used as a “witness” or “certificate” (as coined by the authors of [2]) of the
security of the scheme. Furthermore, Agrawal and Chase also showed that any
pair encoding that is not trivially broken satisfies the symbolic property, a result
that is closely related to the algebraic characterization of privacy on predicate
encodings from [3].

It may seem that after these relevant results on pair encodings, and the simi-
larity with those in the framework of predicate encodings, we are in a position to
define a generic negation transformation for pair encodings. However, the more
involved structure of pair encodings makes it difficult to find and prove a valid
conversion. In fact, recent works have considered the problem of designing such a
general negation to be non-trivial (see [6, Appendix L.5]), since in the framework
of pair encodings it is generally hard to find the mentioned “certificates” that
can be interpreted as a short proof of security. (Note that any possible NOT
transformation would, at least implicitly, use such certificates as decryption cre-

3 Recall that ∀v : Av �= z ⇔ ∃w : A�w = 0 ∧ z�w = 1 for all compatible A and z.
4 That way, the witness of non-reconstructability can be used as the linear combina-

tion for decryption (reconstructability) in the negated encoding and vice versa: the
solution for reconstructability can be used as the witness of security in the negated
encoding.
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dentials for the transformed encoding, whereas the decryption credentials of the
original encoding would become the security certificate of the negated one.)

In order to construct a valid negation of pair encodings, we first need to
treat them in a simplified manner, closer to linear algebra. To do so, we pro-
vide an algebraic characterization of pair encodings (Sect. 4), whose security can
be expressed as a system of matrix equations, very similar to the statement i)
from Lemma 2. Intuitively, we split the polynomials produced by the encod-
ing into layers, each being a matrix that corresponds to one of the (common,
lone or non-lone) variables. We then show how the security of the scheme can
be expressed as a linear system involving these matrices. Our characterization
makes an structural assumption on the form of the pair encoding (that can be
made without loss of generality and has been used in the literature for other
purposes [2,6]). Namely, we assume that EncKey only produces one polynomial
that depends on α, which is of the form α + r1b1. This assumption introduces
a “symmetry” between the nature of key and ciphertext polynomials (now that
the special variable α is out of the way) that allows us to express the security
of the PES as the symmetric algebraic statement of Definition 3. The next step
is to leverage Lemma 1 in order to prove our following lemma, linking the inex-
istence of a solution to the system in i) with the existence of a solution to ii).
This is the main tool on which we base our negation transformation. The last
(but non-trivial) step is to define a new encoding (in algebraic form) such that
the solution from statement ii) serves as a decryption credential for it.

Lemma 2. Let K be a field, let n ∈ N and let {Ai, Bi, Ci}i∈[n], Â, B̂ be matrices:

Ai ∈ K�×m Bi ∈ Kr×s Ci ∈ Kr×m

Â ∈ K�×m̂ B̂ ∈ K r̂×s,

for certain �,m, r, s, m̂, r̂ ∈ N and every i ∈ [n]. The following are equivalent:

i) There do not exist X,Y with X ∈ Kr×�, Y ∈ Ks×m such that:

∀i ∈ [n]. XAi + BiY = Ci ∧ XÂ = 0r×m̂ ∧ B̂Y = 0r̂×m.

ii) There exist Z1, . . . , Zn ∈ Km×r and ZA ∈ Km̂×r, ZB ∈ Km×r̂ such that

A1Z1 + · · · + AnZn + ÂZA = 0�×r

∧ Z1B1 + · · · + ZnBn + ZBB̂ = 0m×s

∧ ∑n
i=1 tr(CiZi) = 1.

Proof. Let f be the linear map defined as

f : (X,Y ) �→ (XA1+B1Y, . . . , XAn+BnY, XÂ, B̂Y ).

Observe that the first statement of the lemma is equivalent to saying that

(C1, . . . , Cn, 0r×m̂, 0r̂×m) 	∈ Im(f),



130 M. Ambrona

which, by Lemma 1 is equivalent to the existence of ϕ : W → K, where in this
case W := (Kr×m)n × Kr×m̂ × K r̂×m, such that

ϕ ◦ f = 0 and ϕ(C1, . . . , Cn, 0r×m̂, 0r̂×m) = 1,

which is equivalent to the existence of matrices Z1, . . . , Zn ∈ Km×r and ZA ∈
Km̂×r, ZB ∈ Km×r̂ such that

∀X,Y. tr
(∑n

i=1(XAi+BiY )Zi

)
+ tr

(
XÂZA

)
+ tr

(
B̂Y ZB

)
= 0 (1)

and tr
(
C1Z1 + · · · + CnZn

)
+ tr

(
0r×m̂ZA

)
+ tr

(
0r̂×mZB

)
= 1, (2)

which is equivalent to the second statement of the lemma, quod erat demonstran-
dum. To see why, note that Eq. (2) is present in both cases and observe that if
the second statement of the lemma holds, then (for any X,Y ) we have

0 = tr
(
0�×r

)
+ tr

(
0m×s

)

= tr
(
X

(
A1Z1 + · · · + AnZn + ÂZA

))
+ tr

((
Z1B1 + · · · + ZnBn + ZBB̂

)
Y

)

= tr
( ∑n

i=1 XAiZi

)
+ tr

(
XÂZA

)
+ tr

( ∑n
i=1 ZiBiY

)
+ tr

(
ZBB̂Y

)

†
= tr

( ∑n
i=1 XAiZi

)
+ tr

(
XÂZA

)
+ tr

( ∑n
i=1 BiY Zi

)
+ tr

(
B̂Y ZB

)

= tr
( ∑n

i=1(XAi+BiY )Zi

)
+ tr

(
XÂZA

)
+ tr

(
B̂Y ZB

)
,

where in † we have used the fact that the trace is invariant under cyclic permu-
tations. Finally, to see the converse, note that if Eq. (1) holds for any X,Y , it
must hold for Y = 0s×m, which would imply that for every X ∈ Kr×�,

tr
(
X

(
A1Z1 + · · · + AnZn + ÂZA

))
= 0,

but that can only happen if A1Z1 + · · · + AnZn + ÂZA is the zero matrix.
Analogously, evaluating (1) on X = 0r×�, we get

tr
(
B1Y Z1 + · · ·+B1Y Zn

)
+tr

(
B̂Y ZB

) †
= tr

((
Z1B1 + · · ·+ZnBn +ZBB̂

)
Y

)
= 0,

for every Y ∈ Ks×m, which can only happen if Z1B1 + · · · + ZnBn + ZBB̂ is the
null matrix. �

4 Characterization of Pair Encodings

In this section we propose a characterization of pair encodings that will be used
to define our generic transformation for the negated predicate.

The first step towards our characterization is to assume that only one poly-
nomial from EncKey depends on α and is of the form α + r1b1. This assumption
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is without loss of generality5, and has been utilized before in the literature [2,6].
The rest of polynomials can be expressed as k = Byr+Cyr̂, for some matrix By

whose terms are linear polynomials in ZN [b1, . . . , bn], and some matrix Cy with
coefficients in ZN . Given that α + r1b1 is always present, for the sake of nota-
tion, we redefine m3 to be the total number of polynomials produced by KeyGen
excluding α + r1b1. Similarly, the polynomials from EncCt can be expressed as
c = B′

xs + C ′
xŝ. Such an analogy in the form of k and c (only achieved after

getting rid of variable α) allows us to express the encodings in an algebraic form,
amenable to be combined with different results of linear algebra.

Definition 3 (Algebraic pair encoding). An algebraic pair encoding
scheme for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par)
consists of the following deterministic and efficiently computable algorithms:

• Paramalg(par): on input certain parameters outputs an integer n ∈ N.
• EncKeyalg(N,x): on input N ∈ N and x ∈ X(N,par), outputs a list of n+1

matrices with coefficients in ZN , (B1, . . . , Bn, C), where Bj has dimension
m3 × m1, for j ∈ [n], and C has dimension m3 × m2.

• EncCtalg(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a list of n+1 matri-
ces with coefficients in ZN , (B′

1, . . . , B
′
n, C ′), where B′

j has dimension w3×w1,
for j ∈ [n], and C ′ has dimension w3 × w2.

Furthermore, for every κ = (N, par), x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and
only if there exist matrices E ∈ Z

w1×m3
N and E′ ∈ Z

w3×m1
N such that

EB1 + B′�
1E

′ = 1w1×m1 ∧ EC = 0w1×m2

∧ EBj + B′�
jE

′ = 0w1×m1 , j ∈ [2, n] ∧ C ′�E′ = 0w2×m1 (3)

where (B1, . . . , Bn, C) ← EncKeyalg(N,x) and (B′
1, . . . , B

′
n, C ′) ← EncCtalg

(N, y).

Theorem 1 (Characterization). There exists a pair encoding for predicate
family Pκ if and only if there exists an algebraic pair encoding for Pκ. Further-
more, there is an efficient conversion in both directions.

The above theorem is a consequence of our following two lemmas.

Lemma 3 (From algebraic to standard). Let (Paramalg,EncKeyalg,EncCtalg)
be an algebraic pair encoding scheme for predicate family Pκ : Xκ × Yκ →
{0, 1}. Then, algorithms (Param,EncKey,EncCt,Pair) (defined below) constitute
a pair encoding scheme for Pκ.

5 An easy way of arguing that this is w.l.o.g. is to apply the generic dual transformation
defined in [10] twice. (Note that the dual operation is an involution and a double
application of it would preserve the original predicate.).
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• Param(par) := run n ← Paramalg(par), output n and let b = (b1, . . . , bn).
• EncKey(N,x) := run (B1, . . . , Bn, C) ← EncKeyalg(N,x), output the vector

of polynomials given by α + r1b1 and (b1B1 + · · · + bnBn)r + Cr̂, where
r = (r1, . . . , rm1) and r̂ = (r̂1, . . . , r̂m2).

• EncCt(N, y) := run (B′
1, . . . , B

′
n, C ′) ← EncCtalg(N, y), output the vector of

polynomials given by (b1B′
1 + · · · + bnB′

n)s + C ′ŝ, where s = (s0, . . . , sw1−1)
and ŝ = (ŝ1, . . . , ŝw2).

• Pair(N,x, y) := find matrices (E,E′) satisfying Eq. (3), that exist if and only
if Pκ(x, y) = 1, output

((
1w1 −E

)
,−E′).

Proof. Observe that the structural constraints on the polynomials of EncKey and
EncCt are satisfied. To see reconstructability, simply note that for any N ∈ N,
x ∈ Xκ and y ∈ Yκ with P (x, y) = 1, and for (E,E′) satisfying (3), it holds:

s�(
1w1 −E

)
(

α + r1b1
(b1B1 + · · ·+ bnBn)r + Cr̂

)
−

(
s�

(
b1B′

1
�
+ · · ·+ bnB′

n
�
)
+ ŝ�C′�

)
E′r

= s0(α + r1b1)− sb1
(
1w1×m1

)
r = s0α.

For security, note that if the new pair encoding were trivially broken, there would
exist a pair (x, y) ∈ Xκ × Yκ with Pκ(x, y) = 0, and matrices E,E′ satisfying
Eq. (3). For details about this fact, we refer to the proof Lemma 4 (the part
about reconstructability). �

Lemma 4 (From standard to algebraic). Let (Param,EncKey,EncCt,Pair)
be a pair encoding scheme6 for predicate family Pκ : Xκ × Yκ → {0, 1}. Then,
algorithms (Paramalg,EncKeyalg,EncCtalg) (defined below) constitute an algebraic
pair encoding scheme for Pκ.

• Paramalg(par) := Param(par).
• EncKeyalg(N,x) := run (α + r1b1,k) ← EncKey(N,x), and let m3 = |k|. For

j ∈ [n], define matrix Bj as the matrix whose element at the �-th row and
i-th column is the coefficient of monomial ribj in polynomial k�. Define C as
the matrix whose element at the �-th row and i′-th column is the coefficient of
monomial r̂i′ in polynomial k�, for i ∈ [m1], i′ ∈ [m2] and � ∈ [m3]. Output
(B1, . . . , Bn, C).

• EncCtalg(N, y) := run c ← EncCt(N, y). For j ∈ [n], define matrix B′
j as the

matrix whose element at the �-th row and (i+1)-th column is the coefficient
of monomial sibj in polynomial c�. Define C ′ as the matrix whose element at
the �-th row and i′-th column is the coefficient of monomial ŝi′ in polynomial
c�, for i ∈ [0, w1−1], i′ ∈ [w2] and � ∈ [w3]. Output (B′

1, . . . , B
′
n, C ′).

Proof. Note that the structural constraints on the PES enforce that for every
N ∈ N, x ∈ Xκ and y ∈ Yκ, (α + r1b1,k) ← EncKey(N,x), c ← EncCt(N, y),
(B1, . . . , Bn, C) ← EncKeyalg(N,x), (B′

1, . . . , B
′
n, C ′) ← EncCtalg(N, y), it holds:

k = (b1B1 + · · · + bnBn)r + Cr̂ and c = (b1B′
1 + · · · + bnB′

n)s + C ′ŝ.
6 Recall that we are assuming, without loss of generality, that the first polynomial

produced by EncKey is α + r1b1 and that α does not appear anywhere else.
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Now, note that, due to reconstructability of the original encoding, for any N ∈ N,
x ∈ Xκ and y ∈ Yκ such that P (x, y) = 1, if we let

((
v E

)
, E′) ← Pair(N,x, y),

it holds:

s�(
v E

) (
α + r1b1

k

)
+ c�E′r = αs0,

which is equivalent to s�Ek + c�E′r = −s0r1b1 ∧ v = 1w1 , but then:

s�E
(
(b1B1 + · · · + bnBn)r + Cr̂

)
+

(
s�(b1B

′
1
�

+ · · · + bnB′
n
�
) + ŝ�C′�)

E′r = −s0r1b1

and because the above equality must hold symbolically, it must be the case that
EB1 + B′

1E
′ = 1w1×m1 and EBj + B′

jE
′ = 0w1×m1 for every j ∈ [2, n]. Moreover,

EC = 0w1×m2 and C ′�E′ = 0w2×m1 . Finally, note that the non-reconstructability
of the original encoding enforces that the above system does not have a solution
when Pκ(x, y) = 0. �

5 Generic Negation of Algebraic Pair Encodings

Although the general definition of pair encodings defines polynomials with coef-
ficients over ZN for an arbitrary integer N ∈ N. In this section we assume that
N is a prime number and write p instead. The reason is that our transformation
for the negated encoding leverages a result from linear algebra (our Lemma 2)
which requires that the underlying structure be a field. Note that this restriction
does not significantly weaken our result, since prime-order groups are preferred
over composite over groups.

Theorem 2. Let (Paramalg,EncKeyalg,EncCtalg) be an algebraic pair encoding
for a predicate family Pκ : Xκ ×Yκ → {0, 1}. The encoding (Pair,EncKey,EncCt)
described in Fig. 1 is an algebraic pair encoding for the predicate family Pκ given
by P (x, y) = 1 ⇔ P (x, y) = 0 for all x ∈ Xκ, y ∈ Yκ.

Proof. We need to show that whenever P (x, y)= 0, there exist matrices E and E′

of dimension w1×(1+m1n+m2) and (w1+w1n+w2)×m1 respectively, with coeffi-
cients in Zp, such that:

EB0 + B′
0

�
E′ = 1w1×m1 ∧ EC = 0w1×m3

∧ EBj + B′
j

�
E′ = 0w1×m1 , j ∈ [n+1] ∧ C ′�E′ = 0w3×m1 , (4)

where (B0, . . . , Bn+1, C) ← EncKey(p, x), (B′
0, . . . , B

′
n+1, C

′) ← EncCt(p, y).
Now, our original encoding guarantees that P (x, y) = 0 if and only if there
do not exist matrices E, E′ such that:

EB1 + B′
1

�
E′ = 1w1×m1 ∧ EC = 0w1×m2

∧ EBj + B′
j

�
E′ = 0w1×m1 , j ∈ [2, n] ∧ C ′�E′ = 0w2×m1 ,
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Fig. 1. Generic negation of algebraic pair encoding schemes.

for (B1, . . . , Bn, C) ← EncKey(p, x) and (B′
1, . . . , B

′
n, C ′) ← EncCt(p, y). But

that is equivalent, in virtue of Lemma 2, to the existence of Z1, . . . , Zn ∈ Z
m1×w1
p ,

ZA ∈ Z
m2×w1
p and ZB ∈ Z

m1×w2
p such that:7

B1Z1 + · · · + BnZn + CZA = 0m3×w1

∧ Z1B
′
1

� + · · · + ZnB′
n

� + ZBC ′� = 0m1×w3

∧ tr(1w1×m1Z1) = 1. (5)

Now, for certain v ∈ Z
w1
p and V ∈ Z

m1×w1
p we can consider the matrices:

E :=
(
v | Z�

1 . . . Z�
n | Z�

A

)
and E′ :=

(
V | Z1 . . . Zn | ZB

)�
, (6)

and observe that they satisfy all the equations in (4) if we set v to be the first
column of Z�

1 multiplied by −1 (with the exception that v1 = 0) and we set V
to be the null matrix except for its first row, that is set to −v�.

7 To see why, set the matrices in Lemma 2 to Ai := Bi, Bi := B′
i
�
, for i ∈ [n] and

C1 := 1w1×m1 , Cj := 0w1×m1 for j ∈ [2, n]. Also, Â := C and B̂ := C′�.
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To conclude, observe that the converse is also true, i.e., if the equations in (4)
admit a solution, then (5) is satisfiable. To see this, note that the left-hand side
equations of (4) imply that any solution to them must be of the form of (6) for
certain v, V , Z1, . . . , Zn, ZA, ZB. Furthermore, the right-hand side equations of
(4) guarantee that such matrices Zi, for i ∈ {1, . . . , n, A, B} satisfy (5). Therefore,
we have shown that P (x, y) = 0 iff the equations in (4) have a solution. �

Observe that, in general, if (m1,m2,m3, w1, w2, w3, n) are the parameters of
the original encoding, our negated transformation will produce an encoding with
parameters n = n+2 and:

m1 = m1 m2 = m3 m3 = 1 + m1n + m2

w1 = w1 w2 = w3 w3 = w1(1 + n) + w2 − 1.

Note that, although the negated encoding may seem to have a much larger
size compared to the original one, the matrices associated to the new encoding
are actually very sparse and thus, our transformation will barely impact the
performance of the ABE scheme build from the negated encoding.

Furthermore, note that our generic negation is compatible with the promising
dynamic pair encoding composition technique very recently proposed by Attra-
padung [6]. We believe our new transformation complements his work which
could only achieve non-monotone formulae composition in a semi-generic (but
dynamic) manner, since the composition had to rely on encodings for which a
negated version was available.

6 Consequences of Our Results

Since Attrapadung introduced the notion of pair encoding schemes and the mod-
ular framework for constructing fully secure ABE from them [4], there have
been several works [1,2,6] refining this framework and proposing new encoding
schemes for different predicates, that sometimes enjoy extra properties (e.g., con-
stant ciphertext size). The community has made a significant effort on building
the negated version of most of the encodings from the literature, which in some
cases is significantly more involved. However, there are still encodings for which
not negation is known. Our generic transformation puts an end to this situation,
since we can now take any encoding and immediately obtain its negated coun-
terpart. A relevant example of a PES with (previously) unknown negation is the
case of doubly spatial encryption.

6.1 PES for Negated Doubly Spatial Encryption

Doubly spatial encryption [20] is an important primitive that generalizes both
spatial encryption8 [13] and negated spatial encryption, defined by Attrapadung

8 Spatial encryption is already a quite powerful predicate, that generalizes hierarchical
identity-based encryption (HIBE).
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and Libert [8]. It can be used to capture complex predicates and build flexible
revocation systems. Its relevance is evidenced by the fact that a variant of it,
called key-policy over doubly spatial encryption (defined by Attrapadung [4]),
generalizes KP-ABE and leads to efficient unbounded KP-ABE schemes with
large universes and KP-ABE with short ciphertexts. Given a field K, the dou-
bly spatial predicate, over sets X := Kd × Kd×� and Y := Kd × Kd×�′

,
P ((x,X), (y, Y )), is defined as 1 if and only if the affine spaces x + span(X)
and y + span(Y ) intersect.

In the same way that negated spatial encryption generalizes spatial encryp-
tion and serves as its revocation analogue, unifying existing primitives (for exam-
ple, it subsumes non-zero-mode IPE), negated doubly spatial encryption is a
more expressive and very powerful primitive that deserves our attention. How-
ever, to the best of our knowledge, there does not exist a general pair encoding
scheme for negated doubly spatial encryption in the literature. Attrapadung [4]
provided a pair encoding for doubly spatial encryption and a negated version, for
which he had to restrict one of the attributes (originally the ciphertext attribute)
to be confined to just a vector instead of a general affine space. This encoding
gave birth to the first fully-secure negated spatial encryption scheme, but it is
not the negated version of doubly spatial encryption. In the rest of this section,
we describe how to obtain the first, to the best of our knowledge, pair encoding
scheme for negated doubly spatial encryption without restrictions.

We start from the following PES for doubly spatial encryption (over ZN )
from [4]. (With m1 = 1, m2 = 0, m3 = �′+1 and w1 = 1, w2 = 0, w3 = �+1.)

Param(par) → d + 1 and let b = (b0, b′) = (b0, b1, . . . , bd)
EncKey(N, (y, Y )) := {α + r1b0 + r1y

�b′, r1Y
�b′}

EncCt(N, (x,X) := { s0b0 + s0x
�b′, s0X

�b′}.

We refer to [4] for a proof of security and reconstructability.
In order to apply our negated transformation to this encoding, we first need

to modify it so that it satisfies our structural assumption (see the first paragraph
of our Sect. 4). For this, we can apply the conversion defined by Attrapadung [6,
Section 4]. If we do so, we will get and encoding with m1 = 2, m2 = 0, m3 = �′+1
and w1 = 2, w2 = 0, w3 = �+2 that looks as follows (after renaming some
variables):

Param(par) → d + 3 and let b = (b0, b′, bd+1, bd+2) with b′ = (b1, . . . , bd)

EncKey(N, (y, Y )) := {r1bd+2 + r2bd+1 + r2y
�b′, r2Y

�b′} (also α + r1b0)
EncCt(N, (x,X) := {s0b0 + s1bd+2, s1bd+1 + s1x

�b′, s1X
�b′}.

Applying our negation transformation to the above encoding, we obtain the
pair encoding described in Fig. 3 (presented in Appendix A), where we have
renamed9 some common variables for the sake of readability. In Appendix A.1
9 Before applying the transformation, we rename b0 �→ t, bd+1 �→ u, bd+2 �→ v. After

the transformation, the two new common variables are named b0 and w respectively.
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Fig. 2. Simplified PES for negated doubly spatial encryption.

we show how we can slightly simplify the encoding from Fig. 3 and derive the
encoding that we present in Fig. 2. Our Theorem 2 guarantees that it is a valid
encoding for the negated doubly spatial encryption predicate, but we provide an
independent proof in Appendix A.2.

The process of applying our generic negation by hand may seem tedious (but
it seems necessary if we want to give an explicit description of an encoding that is
parametric in size, like the one for negated doubly spatial encryption). However,
notice that this process can be easily delegated to a computer, which does not
need to have an explicit definition of the negated encoding. Instead, it can start
from the non-negated encoding and apply the negation on the fly.

6.2 Other Implications of Our Transformation

Expressivity of Pair Encoding Schemes. A very important and long-standing
open question about pair encoding schemes is how expressive they really are.
They have led to breakthrough constructions such as constant-size ciphertext
KP-ABE (with large universes) [4], fully-secure functional encryption for regular
languages [4], completely-unbounded KP-ABE for non-monotone span programs
(NSP) over large universes [6]. However, it is still unknown where their limit is.
We believe our results bring new insight to answer this question and improve
our understanding of pair encodings and their expressivity.

For example, there exist pair encodings for regular languages, where key
attributes represent deterministic finite-state automata (DFSA), ciphertext
attributes represent (arbitrarily long) words, and the predicate is defined as
1 iff the automaton accepts the word. However, building ABE for context-free
languages (CFL) from pairings is still an important open problem, so it would
be desirable to understand whether CFL can be constructed from pair encoding
schemes. Our results imply that:
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The set of predicates that can be expressed with PES is closed under nega-
tion.

This tells us new non-trivial information about what predicates can be expressed
with a PES. In particular, it suggests that building PES for context-free lan-
guages may be harder than we think or even impossible. Note that context-free
languages are not closed under complementation [21] and, consequently, if we
can build a PES for CFL, we could build a PES for a predicate class that is
strictly more powerful than CFL (at least the union of CFL and coCFL10). Of
course, this reasoning does not allow us to roundly conclude anything, but it
serves as an evidence of the difficulty of this problem.

Potential Performance Improvements. Not only does our generic transformation
broaden the class of predicates that can be captured by pair encoding schemes,
but it also can lead to efficiency improvements in actual ABE constructions.
Observe the peculiar structure of the negated encodings produced with our trans-
formation from Fig. 1. All of the matrices associated to common variables, Bi

and B′
i, have a fixed structure that is independent of the key attribute and

the ciphertext attribute respectively (only the part associated to lone variables
is dependent on the attributes). Furthermore, observe that they are arguably
sparse. We can conclude that all pair encoding schemes admit a representation
(an encoding for the same predicate) in this form, since we can always apply
our transformation twice, leveraging the fact that the negation is an involution.
However, in many cases it may be simpler to arrive at the mentioned structure
more directly, by simply applying linear combinations and variable substitutions.
What is important is that such a representation always exists.

This observation opens the possibility of splitting the computation of cipher-
texts and secret keys into an offline part (before the attribute value is known)
and an online part (once the attribute has been determined). Observe that such a
strategy can bring significant performance improvements, given that operations
involving common variables require a group exponentiation per matrix coeffi-
cient (since the common variables are available in the master public key in the
form of group elements, with unknown discrete logarithm)11, whereas operations
involving lone variables can be batched together, reducing the number of expo-
nentiations (one can do linear algebra over the field ZN and perform one single
exponentiation at the end). This is because the value of lone variables is freshly
sampled during the computation and, therefore, known. This approach would
not only reduce the online encryption and key generation time, but also the
total time, since the offline computation can be reused for different attributes
after it has been computed once.

10 We denote by coCFL the class of languages whose complement is context-free.
11 See the ABE compiler from PES described in Appendix B.2.
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7 Conclusions and Future Work

Pair encodings are a simple, yet powerful, tool for building complex fully secure
attribute-based encryption schemes. In this work, we have presented a generic
transformation that takes any pair encoding scheme and negates its predicate.
This construction finally solves a problem that was open since 2015 [10] and
that has been considered to be non-obvious by several recent works [2,6]. Along
the way, we have defined new results that improve our understanding of pair
encodings and can be of independent interest, including a new encoding (pre-
viously unknown) for negated doubly spatial encryption, obtained with our
transformation.

We propose several directions for future work. On the theoretical side, it
would be interesting to explore whether our negation transformation can lead to
simpler encodings as in [3]. In their work, Ambrona et al. show how, applying
their negation to an encoding for monotone span programs [22] and after per-
forming some simplifications, the new encoding is more compact and leads to
an ABE that is twice as fast as the original one. The fact that the encoding is
negated does not spoil its usage, since span programs are closed under negation
and can be tweaked to implement the original functionality. The same technique
of negating the encoding also results into a successful simplification in the case of
arithmetic span programs. We believe the same kind of phenomenon can occur
when negating pair encodings with our technique, potentially producing simpler
encodings.

A very recent work [9] provides a new framework for constructing ABE
schemes that support unbounded and dynamic predicate compositions whose
security is proven under the standard matrix Diffie-Hellman assumption (gener-
alizing the result by Attrapadung [6], which achieved the same kind of compo-
sition under the q-ratio assumption). The work by Attrapadung and Tomida [9]
enables generic conjunctive and disjunctive compositions (which lead to mono-
tone Boolean formula compositions). Extending their techniques in order to
design a generic negation under standard assumptions is a very appealing direc-
tion for future work. (Note that the negation that we have provided in this work
is applicable to the framework of Agrawal and Chase [2], thus it also relies on
the less standard q-ratio assumption.)

On the practical side, it would be interesting to implement and evaluate the
performance improvements that we propose in Sect. 6.2, exploiting the singular
structure of the encodings produced by our transformation.
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A Pair Encoding for Negated Doubly Spatial Encryption

A.1 Building the Encoding

A direct application of our negated transformation (Fig. 1) to the encoding for
doubly spatial encryption from [4] (after minor modifications so that it satisfies
our structural constraints) leads to the encoding from Fig. 3. This encoding can
be simplified, as the following reasoning shows that not all the polynomials are
needed for reconstructability.

The only way to get polynomial s0r1b0 (and consequently αs0) as a linear
combination of polynomials from L = s ⊗ k ∪ c ⊗ r is through the two first
polynomials in the key (multiplied by s0): s0r1b0 + s0r1w and s0r1b0 + s0r1t.
For that, we need to express monomial s0r1w or monomial s0r1t as a linear
combination of other polynomials in L. The former is impossible to obtain (since
monomial s0r1w does not appear in any other polynomial in L). The latter can be
achieved only through polynomial r1s0t−r1ŝ1 ∈ L. Again, that requires to arrive
at polynomial r1ŝ1, which is present only in r1s1v−r1ŝ1. Furthermore, r1s1v can
only be (additionally) found in s1r1v + s1r̂1. However, s1r̂1 is present in several
polynomials in L, namely: s1r2u+s1r̂1 and s1(Yj r̂

′+r2bj +r̂1yj)j∈[d]. The former
contains a monomial, s1r2u, that only additionally appears in r2s1u − r2ŝ2, but
r2ŝ2 is only present in polynomials r2(Xj ŝ

′ − s1bj + ŝ2xj)j∈[d]. Consequently,
reconstructability will be possible if there exist coefficients βj and γj for all
j ∈ [0, d] such that:

s1r̂1 = β0(s1r2u + s1r̂1) +
∑

j∈[d] βjs1(Yj r̂
′ + r2bj + r̂1yj)

+ γ0(r2s1u − r2ŝ2) +
∑

j∈[d] γjr2(Xj ŝ
′ − s1bj + ŝ2xj).

Considering the different monomials in both sides of the equation, we deduce:

s1r̂1 : 1 = β0 +
∑

j∈[d] βjyj

s1r2u : 0 = β0 + γ0
s1r̂

′ : 0�′ =
∑

j∈[d] βjYj

r2ŝ2 : 0 = −γ0 +
∑

j∈[d] γjxj

s1r2bj : 0 = βj − γj ∀j ∈ [d]
r2ŝ

′ : 0� =
∑

j∈[d] γjXj

Consequently, reconstructability is possible if there exist coefficients βj for all
j ∈ [d] such that:

1 =
∑

j∈[d] βj(yj − xj) ∧ 0�′ =
∑

j∈[d] βjYj ∧ 0� =
∑

j∈[d] βjXj .

But this is equivalent to y−x /∈ span(Y )∪ span(X) (see Lemma 1) which holds
if and only if the predicate is true, as needed.

All the polynomials in the key and the ciphertext which have not been used
for reconstructability can be eliminated. Figure 2 describes the resulting encoding
after this simplification.

A.2 Arguing Security

Our Theorem 2 guarantees that the encoding from Fig. 3 is secure. Note that
removing polynomials cannot change security (only spoil reconstructability), so



Generic Negation of Pair Encodings 141

Fig. 3. PES for negated doubly spatial encryption.

the simpler scheme presented in the main body (Fig. 2) must also be secure.
Nevertheless, we provide an independent proof of its security, for the sake of
completeness.

Proof (Security of the encoding from Fig. 2). Assume the predicate is false, i.e.,
the affine spaces x+span(X) and y+span(Y ) intersect. Let z ∈ Z

d
N be a vector

in their intersection and let zx ∈ Z
�
N and zy ∈ Z

�′
N be such that:

x + Xzx = z = y + Y zy .

Observe that all the polynomials in EncKey(N, (y, Y )) and EncCt(N, (x,X)) (see
Fig. 2) evaluate to zero on the following substitution:

(b, r̂′, ŝ′) ← (z,zy,zx) r1, s1, r̂1, ŝ2, u, t, α ← 1 b0, s0, r2, ŝ1, v ← −1,

but polynomial αs0 evaluates to −1 (	= 0). As explained in Example 1, this is
an evidence of the security of the encoding.

B Additional Definitions

B.1 Security of Attribute-Based Encryption

An ABE scheme is adaptively secure if there exists a negligible ε such that for all
PPT adversaries A, and all sufficiently large λ ∈ N, AdvABEA (λ) < ε(λ), where:

AdvABEA (λ) := Pr

⎡
⎢⎢⎢⎢⎣

(mpk,msk) ← Setup(1λ,X ,Y)
x� ← AKeyGen(msk,·)(mpk)

(ctx� , τ) ← Enc(mpk, x�)
b ←$ {0, 1}; τ0 := τ ; τ1 ←$ K
b′ ← AKeyGen(msk,·)(ctx� , τb)

: b′ = b

⎤
⎥⎥⎥⎥⎦

− 1
2
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where the advantage is defined to be zero if some of the queries y made by
A to the KeyGen oracle violates the condition P (x�, y) = 0.

B.2 Attribute-Based Encryption from Pair Encodings

In order to explain how to build attribute-based encryption from pair encodings,
we need to introduce the notion of dual system groups (DSG) [2,16,17], since
the compilers from pair encodings into ABE [1,5] rely on DSG in a black-box
way.

Dual System Groups

A dual system group is a tuple of six efficiently computable algorithms:

• SampP(1λ, 1n): on input the security parameter and an integer n, outputs
public parameters pp and secret parameters sp such that:

◦ The public parameters, pp, include a triple of abelian groups (G,H,Gt)
(that are Zp-modules for some λ-bits prime p), a non-degenerate bilinear
map e : G×H → Gt, an homomorphism μ (defined over H) and additional
parameters required by SampP and SampH.

◦ Given pp, it is possible to uniformly sample to H.
◦ The secret parameters, sp, include a distinguished element h∗ ∈ H (dif-

ferent from the unit) and additional parameters required by ŜampG and
ŜampH.

• SampG(pp) and ŜampG(pp, sp) output an element from Gn+1.

• SampH(pp) and ŜampH(pp, sp) output an element from Hn+1.

• SampGT is a function defined from Im(μ) to Gt.

Additional conditions are required for correctness and security:

projective: For all public parameters, pp, every h ∈ H and all coin tosses σ, it
holds SampGT(μ(h);σ) = e(g0, h), where (g0, g1, . . . , gn) ← SampG(pp; r).

associative: Let (g0, g1, . . . , gn) ← SampG(pp), (h0, h1, . . . , hn) ← SampH(pp),
it holds e(g0, hi) = e(gi, h0) for every i ∈ [n].

H-subgroup: SampH(pp) is the uniform distribution over a subgroup of Hn+1.
orthogonality: h∗ ∈ Kernel(μ).
non-degeneracy: For every (h0, h1, . . . , hn) ← SampH(pp), h∗ ∈ 〈h0〉. Further-

more, for every (ĝ0, ĝ1, . . . , ĝn) ← ŜampG(pp, sp), (α ←$
Zp; return e(ĝ0, h∗)α)

is the uniform distribution over Gt.
left-subgroup indistinguishability: (pp, g) ≈c (pp, g·ĝ).
right-subgroup indistinguishability: (pp, h∗, g·ĝ, h) ≈c (pp, h∗, g·ĝ, h·ĥ).
parameter-hiding: (pp, h∗, ĝ, ĥ) ≡ (pp, h∗, ĝ·ĝ′, ĥ·ĥ′).
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Where, ≈c denotes a distinguishing probability upper-bounded by a negligi-
ble function on λ and, for any n ∈ N, the above elements are sampled as:

(pp, sp) ← SampP(1λ, 1n)

g ← SampG(pp) ĝ ← ŜampG(pp, sp) ĝ′ := (1G, ĝz1
0 , . . . , ĝzn

0 )

h ← SampG(pp) ĥ ← ŜampG(pp, sp) ĥ′ := (1H, ĥz1
0 , . . . , ĥzn

0 )

for z1, . . . , zn ←$
Zp.

Remark. Observe that we have presented the version of dual system groups
defined in [15]. Other works consider slightly different conditions (e.g., the non-
degeneracy of [1]). However, the widely used instantiation of DSG from k-lin
given in [15] also satisfies the properties of those variations.

ABE from Pair Encodings

Given a pair encoding scheme {Param,EncKey,EncCt,Pair} (see Definition 2) for
a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) (let λ = |N |),
an attribute-based encryption scheme can be constructed as follows:

• Setup(1λ,Xκ,Yκ): let n ← Param(par) and run the DSG generation algorithm
SampP(1λ, 1n) to obtain pp and sp. Let msk←$ H and mpk := (pp, μ(msk)).
Output (mpk,msk).

• Enc(mpk, x): run EncCt(N,x) to obtain polynomials cx(s, ŝ, b). For every � ∈
[w3], let the �-th polynomial in cx be

∑
i∈[w2]

γ(�)

i ŝi +
∑

i∈[0,w1−1]

∑
j∈[n]

γ(�)

{i,j}sibj

for some coefficients γ(�)

i and γ(�)

{i,j} in Zp. Now, run SampG to produce

(ĝ{i,0}, ĝ{i,1}, . . . , ĝ{i,n}) ← SampG(pp) for i ∈ [w2]
(g{i,0}, g{i,1}, . . . , g{i,n}) ← SampG(pp) for i ∈ [0, w1−1]

(g{0,0}, g{0,1}, . . . , g{0,n}) ← SampG(pp;σ)

Observe that we have made explicit the coin tosses, σ, used in the last sam-
pling. Setup ctx :=

(
ct0, ct1, . . . , ctw1−1, c̃t1, . . . , c̃tw3

)
and define the sym-

metric encryption key as τ := SampGT(μ(msk);σ), where cti := g{i,0} for
every i ∈ [0, w1−1]; and for every � ∈ [w3], c̃t� is computed as

c̃t� :=
∏

i∈[w2]

ĝ
γ
(�)
i

{i,0} ·
∏

i∈[0,w1−1]

∏
j∈[n]

g
γ
(�)
{i,j}

{i,j} .

Output (ctx, τ).
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• KeyGen(msk, y): run EncKey(N, y) to obtain polynomials ky(r, r̂, b). For every
� ∈ [m3], let the �-th polynomial in ky be

φ(�)α +
∑

i∈[m2]

φ(�)

i r̂i +
∑

i∈[m1]

∑
j∈[n]

φ(�)

{i,j}ribj

for some coefficients φ(�), φ(�)

i and φ(�)

{i,j} in Zp. Now, run SampH to produce

(ĥ{i,0}, ĥ{i,1}, . . . , ĥ{i,n}) ← SampH(pp) for i ∈ [m2]
(h{i,0}, h{i,1}, . . . , h{i,n}) ← SampH(pp) for i ∈ [m1]

Define the secret key as sky :=
(
sk1, . . . , skm1 , s̃k1, . . . , s̃km3

)
, where ski :=

h{i,0} for every i ∈ [m1]; and for every � ∈ [m3], s̃k� is computed as

s̃k� := mskφ(�) ·
∏

i∈[m2]

ĥ
φ
(�)
i

{i,0} ·
∏

i∈[m1]

∏
j∈[n]

h
φ
(�)
{i,j}

{i,j} .

Output sky.
• Dec(mpk, sky, ctx, x): run Pair(N,x, y) to obtain matrices E,E′ (note that y

is assumed to be extractable from sky, whereas x is explicitly included as an
input to Dec). Define:

τ :=
∏

i∈[w1]

∏
�∈[m3]

e(cti−1, s̃k�)Ei,� ·
∏

�∈[w3]

∏
i∈[m1]

e( c̃t�, ski)E′
�,i

Output the symmetric encryption key τ .
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