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Abstract. Randomness is an essential resource for cryptography. For
practical randomness generation, the security notion of pseudorandom
generators (PRGs) intends to automatically preserve (computational)
security of cryptosystems when used in implementation. Nevertheless,
some opposite case such as in computational randomness extractors
(Barak et al., CRYPTO 2011) is known (but not yet systematically stud-
ied so far) where the security can be lost even by applying secure PRGs.
The present paper aims at pushing ahead the observation and under-
standing about such a phenomenon; we reveal such situations at layers
of primitives and protocols as well, not just of building blocks like ran-
domness extractors. We present three typical types of such cases: (1)
adversaries can legally see the seed of the PRGs (including the case of
randomness extractors); (2) the set of “bad” randomness may be not
efficiently recognizable; (3) the formulation of a desired property implic-
itly involves non-uniform distinguishers for PRGs. We point out that the
semi-honest security of multiparty computation also belongs to Type
1, while the correctness with negligible decryption error probability for
public key encryption belongs to Types 2 and 3. We construct examples
for each type where a secure PRG (against uniform distinguishers only,
for Type 3) does not preserve the security/correctness of the original
scheme; and discuss some countermeasures to avoid such an issue.

Keywords: Pseudorandom generators · Public key encryption ·
Multiparty computation

1 Introduction

Randomness is an essential resource for cryptography. While theoretical design
of cryptosystems usually relies on ideal randomness, it is practically expensive to
generate a large amount of (almost) ideal randomness, therefore some efficient
“approximation” of randomness is necessary. When computational security is
sufficient, a standard way is to use cryptographically secure pseudorandom gen-
erators (PRGs) in implementation. Due to the way of defining the security of
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PRGs (i.e., computational indistinguishability of the output from being uni-
formly random), it is widely expected in the area of cryptography that if the
cryptosystem is secure assuming ideal randomness, and the PRG is also secure,
then the cryptosystem implemented by the PRG instead of the ideal random-
ness will be secure as well. Indeed, usually no security caution is given when a
cryptosystem is implemented by using a cryptographically secure PRG; such a
use of PRG is even frequently recommended by professional cryptographers.

However, in fact there exists some situation where (computational) security of
a cryptographic scheme is not preserved by implementation using a secure PRG.
Namely, Barak et al. has shown in Sect. 4.1 of [3] the following. Let Ext(X;S)
be a randomness extractor with source distribution X and random seeds chosen
from S. We consider the situation that a random seed s ← S is replaced by a
PRG’s output R(s0) with shorter seed s0 ← S0. Roughly speaking, their result
gives a pair of a secure extractor Ext(X;S) and a secure PRG R that yields
an insecure extractor Ext(X;R(S0)). A consequence is that the aforementioned
standard methodology of implementing the randomness by secure PRGs does
not always guarantee the security of the implemented scheme. (Some conditions
to avoid such a loss of security are also discussed in their paper.) This fact should
have impact for evaluating security of practically used cryptosystems where the
use of cryptographic PRGs is recommended. Nevertheless, to the author’s best
knowledge, such a phenomenon caused by PRGs has not been systematically
studied in the literature. The present paper aims at pushing ahead the observa-
tion and understanding about such a phenomenon for the case of other kinds of
cryptographic schemes.

1.1 Our Contributions

In this paper, we look at the aforementioned possible phenomenon that some
required property of (computationally secure) cryptographic schemes may be lost
by applying PRGs even if the PRG itself is secure. We point out the following
three types of typical situations where such a phenomenon may happen.

Type 1: The Seed of the PRG is Visible for Adversaries
This includes the known case of randomness extractors Ext mentioned above.
Namely, its security is defined as Ext((X;S), S, Z)

c≈ (U, S, Z) under certain
conditions for X and Z where

c≈ denotes the computational indistinguishability
and U denotes the uniform distribution on some set (see Definition 4 of [3]
for details). The essence is that the adversary in the security notion (i.e., the
distinguisher behind the notation

c≈) can also see the internal randomness S

of Ext. On the other hand, the security definition R(S0)
c≈ U for a PRG R

supposes that the seed (internal randomness) is not visible for the adversary.
Intuitively, as the security of PRGs does not suppose the case where the internal
randomness is visible for the adversary, the security of the PRG may be useless
to preserve the security of the randomness extractor with visible seeds.

Here we point out that such a security notion with visible randomness in fact
also appears in situations closer to real applications (rather than just building
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blocks like randomness extractors). Concretely, the standard security notion for
multiparty computation (MPC) is also of this type (see Sect. 3.1 for details). Here
we focus on two-party computation (2PC) among MPC for the sake of simplicity,
and give the following result.

Theorem 1 (Informal). Under a certain assumption, there is a pair of a 2PC
protocol π and a secure PRG R with the following property: π is secure (in the
semi-honest model) against a party P but the protocol becomes insecure against
the party P when the internal randomness for P is generated by using R.

See Sect. 3 for details. Roughly summarizing, we construct two pairs (π1,R1)
and (π2,R2) as in the statement; π1 is artificially constructed but is very sim-
ple; while π2 is complicated but is a practical protocol chosen from a paper by
Asharov et al. in ACM CCS 2013 [1] (more precisely, Protocol 51 in Sect. 5.2
of its full version [2]). We note that possibilities for such connections between a
party’s randomness and the security against the same party have been suggested
in some previous papers [17,22], but no concrete example of the connection was
given in the literature before the present work. (We also note that the underlying
assumption in the theorem is not a standard one, which is a main drawback of
the result. Nevertheless, the assumption is at least not immediately falsifiable,
which suggests that it would not be able to guarantee in general that a secure
PRG preserves the security of MPC.)

It should be emphasized that there is no contradiction in the theorem where
the semi-honest security is lost by applying a secure PRG, as the semi-honest
model requests each party to follow the protocol precisely, including the ideal
randomness generation. However, the possible gap between security of MPC with
ideal randomness and with PRGs seems to be not recognized in the research area;
our result here gives a caution for this point. In the author’s opinion, the situation
for (semi-honest) MPC with PRGs would have to be similar to cryptography in
the random oracle model (ROM) where most of the cryptographers know the
gap between ROM and the real (cf. Sect. 1.2 below) and they explicitly accept
the rigorous imperfectness as a trade-off with practical efficiency.

We might expect that such a loss of security would not occur for “natural”
cases, especially with “natural” PRGs, as the construction of PRG R in our
theorem above is very artificial and impractical. But the meaning of “natural”
here is not rigorous; it is worthy to establish some sufficient conditions for prov-
ably preventing such a loss of security. Towards this affirmative direction, in this
paper we give the following result. Here we say (roughly) that a simulator S for a
party P in a security proof of a 2PC protocol is with raw randomness, if S gener-
ates the simulated randomness for P by using a part of randomness for S “as is”
(rather than adjusting according to the other part of the output of S); see Defi-
nition 1 in Sect. 3.5 for the precise definition. We also recall that the min-entropy
of a random variable X is defined by H∞(X) = −maxx log2 Pr[X = x].

Theorem 2 (Informal). Let π be a semi-honest 2PC protocol that is informa-
tion-theoretically secure against a party P with raw randomness for simulator
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(see above for the terminology). Let R be a PRG and suppose that the differ-
ence of min-entropy of R’s output distribution from that of ideal randomness is
at most of logarithmic order (with respect to the security parameter). Then by
generating the randomness for P with R, the protocol π remains information-
theoretically secure against semi-honest P with raw randomness for simulator.

See Sect. 3.5 for details. We emphasize that if we remove the condition of
“with raw randomness for simulator” (respectively, “information-theoretically
secure”) from the hypothesis, then the protocol-PRG pair (π1,R1) (respectively,
(π2,R2)) appeared in the proof of Theorem 1 gives a counterexample, therefore
the condition is essential in the statement.

On the other hand, the current condition for PRG in the theorem (which
implies that the PRG has only logarithmic stretch) looks very severe and it
is important to weaken the condition. In particular, it is desirable for such a
theorem to be based on some computational property of PRGs, rather than
information-theoretic one such as min-entropy. Here we intuitively explain a
difficulty behind the problem; let S and SPRG be simulators to be constructed
in the security of an original protocol Π and its variant ΠPRG using a PRG
R, respectively. To show that the security of Π implies the security of ΠPRG, it
suffices to show an implication from S to SPRG, or equivalently, that if the output
of SPRG can be distinguished by an algorithm DPRG then the output of S will
also be distinguished by some algorithm D. When constructing D from DPRG,
a straightforward strategy (using DPRG in a black-box manner) would involve a
process to convert a given input for D into an input for DPRG. However, now
an input for D involves randomness for Π (to be generated by R in the case of
ΠPRG) and an input for DPRG involves a seed for R; hence, such a conversion
as above might require a kind of “inversion” of R from its output to its seed,
which would be difficult due to the security of R. Our proof in this paper escapes
successfully from such a difficulty in the reduction-based proof by utilizing the
extremely high min-entropy for the PRG. It looks a challenging task to handle
such a difficulty by basing on computational security of the PRG.

Type 2: The “Bad” Randomness may be not Efficiently Recognizable
Intuitively, when the security of some cryptosystem against a (polynomial-time)
adversary (who cannot see the internal randomness) is concerned, it suffices
for the PRG to fool this adversary only, therefore the usual security of the
PRG can ensure that the security of the cryptosystem is preserved. In contrast,
here we point out that the security of PRGs may be not sufficient to preserve
the correctness of a cryptosystem; the security is of course important, but the
correctness should be even more important. We focus only on the case of public
key encryption (PKE); to point out the existence of such a phenomenon is a
main purpose of the present work, and more exhaustive studies among other
kinds of cryptographic schemes are future research topics.

When a PKE scheme has perfect (zero-error) correctness, the way of random-
ness generation does not affect the correctness at all. On the other hand, here we
deal with PKE schemes with negligible but non-zero decryption error probability,
and we want to generate the randomness for key generation by using a PRG. The
issue we point out is the following: even if the ratio of “bad” randomness yielding
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a key with high error probability is negligible among the whole space, in general
the set of “bad” randomness may be not efficiently recognizable1. If the set were
efficiently recognizable, the security of a PRG would ensure that the probability
of choosing “bad” randomness is only negligibly changed by the PRG, therefore
the correctness would be preserved. But it is in general not true, therefore the
probability of choosing “bad” randomness may increase non-negligibly even if
the PRG is secure2:

Theorem 3 (Informal). Under a certain assumption, there is a pair of a PKE
scheme and a secure PRG with the following property: the probability of choosing
“bad” randomness in the key generation is exponentially small when the ideal
randomness is used but becomes 1 when the output of the PRG is used instead.

See Sect. 4 for details. Such an issue of “bad” randomness may potentially
occur also in other cryptosystems. Although the example in the theorem is arti-
ficially constructed and the author has not found any such example among the
schemes proposed in the literature, the result still suggests that it might be
important to check if the set of “bad” randomness is efficiently recognizable
when designing a new cryptosystem; such an issue in correctness (rather than
security) has not been noticed in the literature to the author’s best knowledge.

We note that there is a general solution (at least for PKE) to avoid such an
issue, which is a conversion method to make the scheme perfectly correct, pro-
posed by Bitansky and Vaikuntanathan [5]3. But the method has large overhead
and is not very practical. The situation is similar also for the Type 3 below.

Type 3: Non-uniform Distinguishers are Implicitly Related
For example, the standard security notion for MPC (cf. Sect. 7.2 of [16]) is explic-
itly based on the indistinguishability of random variables against non-uniform
distinguishers with advice z = zλ dependent solely on the security parameter λ.
Then it is natural that the PRG should also be secure against non-uniform dis-
tinguishers. In contrast, here we point out that there are cases in cryptography
where non-uniform security (not just the security against uniform distinguish-
ers) is required for the PRG but the relevance of non-uniformity is implicit.
Concretely, we again deal with the correctness with negligible errors for PKE,
but here we focus on the encryption algorithm rather than key generation. To

1 “Performing key generation (using the randomness), encryption, and decryption and
then checking if the result is correct” is in general not an efficient procedure, as the
corresponding “bad” plaintext to be encrypted may be not efficiently samplable.

2 The issue remains even if the PRG is secure against non-uniform distinguishers with
advice. Although the set of “bad” randomness is fixed for each security parameter,
this set may be too complicated to be included in the advice of polynomial length.

3 Such so-called “immunization” methods had also been studied before, e.g., [13,20,
23], but those methods remove the errors only partially. We note also that such meth-
ods did not concern the issue as in the paper and their motivations were different;
e.g., preventing attacks that utilize decryption errors (e.g., [21]).
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the author’s best knowledge, such relevance of non-uniform security for PRGs
to the correctness4 of PKE has not been studied in the literature.

An intuitive explanation is as follows. In a usual definition for correctness,
the decryption error probability has to be negligible for any plaintext. When
falsifying the correctness (under the use of a PRG), the error probability will
be non-negligible for some plaintext. The essence is that such a “bad” plaintext
mλ at each security parameter λ is not necessarily found in polynomial time,
therefore a distinguisher for the PRG that utilizes the plaintexts mλ should be
non-uniform with advice mλ. More precisely, we give the following result.

Theorem 4 (Informal). Under a certain assumption (including the gap bet-
ween uniform and non-uniform security for PRGs5), there is a pair of a PKE
scheme and a (uniformly) secure PRG for which the decryption error probabil-
ity is exponentially small when the ideal randomness is used in encryption but
becomes non-negligible when the output of the PRG is used instead.

See Sect. 5 for details. We note that any non-uniformly secure PRG used
in the encryption algorithm preserves the correctness. But switching from uni-
form to non-uniform security may worsen the security parameter in practical
implementations, due to some results on attacks by non-uniform algorithms,
e.g., [4,7,26]. We also give a possible strategy of avoiding non-uniformly secure
PRGs in ensuring the correctness after the use of a PRG; see Theorem 10 for
details.

1.2 Related Work

One may feel some similarity of the results in this paper to a famous result by
Canetti, Goldreich, and Halevi [6] showing that there is a scheme involving a
(keyless) hash function that is provably secure when the hash function is modeled
as a random oracle but becomes insecure for any concrete implementation of the
hash function. In some sense, both of the present paper and theirs reveal gaps
between cryptography based on idealized frameworks (ideal randomness/ROM)
and that based on real objects (PRGs/hash functions). We emphasize, how-
ever, that there exists the following difference between the two results; the “real
objects” in [6] (hash functions) themselves do not have provable security, while
the present paper shows that even provably secure “real objects” (PRGs) can
cause insecurity in implementation, which may have stronger impact. (On the
other hand, a point of the present paper weaker than theirs is that our result
here shows the existence of at least one “problematic” real object, while [6] shows
that any such real object is “problematic”.)

We also note another related result by Hirose [18] that for any (keyless) hash
function under a certain model of construction that is secure when an ideal block
cipher is used in the construction, there exists a block cipher that is provably
4 For the security of PKE, the theory can be reasonably based on the uniform com-

plexity treatment [14].
5 The issue discussed here will disappear if there is no such gap.
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secure but by which the resulting hash function becomes insecure. This result
also focused on insecurity caused by provably secure building blocks, but our
result in this paper covers wider situations, not just hash functions.

One may also feel that the topic of the present paper seems to be related
to some other topics concerning non-ideal randomness in cryptography, such
as cryptography based on so-called “imperfect randomness” (e.g., [10,12]) and
the security issues caused by “backdoored PRGs” (e.g., [8,9]). But actually, the
former topic above mainly deals with randomness that is significantly far from
being ideal; in contrast, the present paper focuses on the use of randomness that
is significantly close to ideal. On the other hand, the latter topic above studies
the problem of the use of maliciously (and secretly) designed PRGs; while the
main concern of the present paper originates from the practical impossibility of
implementing the ideal randomness even if an engineer is honest and makes a
best effort. Hence our problem setting is significantly different.

Finally, we mention about a previous work by Dodis et al. [11] which also
studies situations where some internal states of a PRG are leaked to an adver-
sary. An advantage of their result is that security notions for PRGs concerning
such situations are established and precise constructions of PRGs satisfying their
conditions are given. However, we emphasize that their security notion in fact
considers only partial leakage of inputs to the PRG; in sequential updates of the
internal state depending on newly supplied random seeds, an adversary obtains
some intermediate states and then the PRG intends to quickly recover an unpre-
dictable state with the help of subsequent unknown seeds. In contrast, Type 1
in our argument here considers more severe cases where the entire input (seed)
to the PRG is known by an adversary; due to the difference of situations, the
affirmative results in [11] would not (straightforwardly) resolve our problem.

2 Preliminaries

For a probabilistic algorithm A, we may write A(x; r) instead of A(x) to empha-
size the choice of randomness r. We adopt a convention that an advice z = zλ

for a non-uniform algorithm A = A(zλ) depends solely on the security param-
eter λ.6 We let “polynomial-time” mean “polynomial-time with respect to λ”.
For a finite set S, let Δ(X,Y ) = (1/2)

∑
z∈S |Pr[z ← X] − Pr[z ← Y ]| be the

statistical distance of random variables X and Y on S. Let U [S] denote the
uniform distribution on S. We write x ←R S to mean that x is sampled from S
uniformly at random. We may identify a bit sequence with an integer via binary
expressions of integers.

Let Iλ (λ ≥ 1) be index sets. Let X = (Xλ,w)λ,w and Y = (Yλ,w)λ,w be
families of random variables indexed by λ ≥ 1 and w ∈ Iλ. We say that X
and Y are uniformly (respectively, non-uniformly) indistinguishable, denoted
by X

u.c≈ Y (respectively, X
nu.c≈ Y ), if for any probabilistic polynomial-time

6 By an appropriate padding to the input, our convention here can be made consistent
with a standard convention where an advice depends solely on the input length.
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(PPT) uniform (respectively, non-uniform) distinguisher D, there is a negligible
function ε(λ) ∈ λ−ω(1) satisfying that the advantage |Pr[D(1λ,Xλ,w) = 1] −
Pr[D(1λ, Yλ,w) = 1]| is at most ε(λ) for any λ and w ∈ Iλ. We say that X and

Y are information-theoretically indistinguishable, denoted by X
i≈ Y , if there is

a negligible function ε(λ) with Δ(Xλ,w, Yλ,w) ≤ ε(λ) for any λ and w ∈ Iλ.
In this paper, we let a pseudorandom generator (PRG) R be a determin-

istic polynomial-time algorithm that takes security parameter 1λ and a seed
s ∈ {0, 1}�in(λ) as input and outputs an element of {0, 1}�out(λ), where �in(λ)
and �out(λ) are some polynomially bounded and polynomial-time computable
functions satisfying that λ ≤ �in(λ) < �out(λ) and �in(λ) is a strictly increas-
ing function7. We say that a PRG R is uniformly (respectively, non-uniformly)
secure, if R(1λ, U [{0, 1}�in(λ)])

u.c≈ (respectively,
nu.c≈ ) U [{0, 1}�out(λ)].

3 Type 1: Schemes with Visible Seeds

In this section, we observe (as mentioned in Sect. 1.1) that the standard security
notion for (semi-honest) two-party computation (2PC) is formalized in a way
that the internal randomness is visible for adversaries; and consequently, the
security of PRGs (where the seed is supposed to be not visible for adversaries)
may be unable to in general preserve the security of a protocol when a PRG is
applied. We state and prove Theorems 1 and 2 in a more precise manner.

3.1 Basic Definitions

Let π be a 2PC protocol with parties P1 and P2 to compute function values
�f(�x) = (f1(�x), f2(�x)) from input pair �x = (x1, x2). Let �r = (r1, r2) be the pair of
randomness for P1 and P2, �mi(1λ, �x;�r) (i = 1, 2) be the list of messages received
by Pi during the protocol, and π(1λ, �x;�r) denote the pair of outputs by P1 and
P2 in π. Following the standard formulation (cf. Sect. 7.2 of [16]), we say that
π is secure against semi-honest Pi, if there is a PPT simulator Si for which(
Si(1λ, xi, fi(�x)), �f(�x)

)

λ,�x

nu.c≈
(
xi, ri, �mi(1λ, �x;�r), π(1λ, �x;�r)

)
λ,�x

(see Sect. 2 for

the notation
nu.c≈ ). We also say “information-theoretically secure”, if the relation

i≈ holds instead of
nu.c≈ .

An important observation is that the internal randomness ri for party Pi

is included in the input to the distinguisher behind the notation
nu.c≈ . This is

practically reasonable, as a corrupted party will be able to see the party’s internal
randomness for the protocol which is stored in the party’s own device.

For a 2PC protocol π, a PRG R, and i ∈ {1, 2}, let π ◦i R denote the
modified version of π where, for internal randomness (r′

1, r
′
2), party Pi executes

the protocol π with randomness ri ← R(1λ, r′
i), while the other party P3−i

executes π by using randomness r3−i ← r′
3−i as is.

7 One may think that the seed length of a PRG should satisfy �in(λ) = λ; but our
seemingly generalized style is just for the sake of technical ease and our argument
can indeed be translated into the more strict style where �in(λ) = λ always holds.
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Algorithm 1: First 2PC protocol π1 for Theorem 1
Input : (P1) Blum integer N (as in the text); and randomness r1 ∈ {0, 1}3λ

(P2) λ-bit prime factors p < q of N ; and randomness r2 ∈ {0, 1}2

Output: none
1 (By P1) y ← r1 mod N and send y to P2

2 (By P2) if y ∈ QRpq then
3 uniformly sample one of the four square roots ξ of y ∈ (Z/pqZ)×

4 send η ← ξ to P1

5 else
6 send η ← ⊥ to P1

7 end

3.2 First Protocol for Theorem 1

We define a 2PC protocol π1 as in Algorithm 1.8 For security parameter λ ≥ 5,
an input pair is given by x1 = N and x2 = (p, q) where N = pq is a Blum integer
with λ-bit primes p < q (i.e., p ≡ q ≡ 3 (mod 4)). Let QRN = QRpq ⊆ (Z/NZ)×

denote the set of quadratic residues modulo N = pq. Note that the computation
by P2 is of polynomial time as P2 has the prime factors p, q of N . Here we focus
only on the security against semi-honest P1, though π1 is also secure against P2.

Proposition 1. π1 is information-theoretically secure against semi-honest P1.

Proof. We consider the PPT simulator S as in Algorithm 2.9 We write η = η(y)
in π1. Moreover, for y′ ∈ Z/NZ, let g(y′) denote the uniform random variable on
the set {r′ ∈ {0, 1}3λ | r′ mod N = y′} (see also Line 9 of Algorithm 2). Then we

have (r1, η(y))
i≈ (g(y), η(y)) by the definition of g. Now, as N is a Blum integer,

±1 and ±a in S are complete representatives for (Z/NZ)×/QRN . Therefore

y′ i≈ U [(Z/NZ)×] and η† = η(y′), while y
i≈ U [(Z/NZ)×] in π1 as r1 is λ-bit

longer than N = pq. Hence y
i≈ y′ and (g(y), η(y))

i≈ (g(y′), η(y′))
i≈ (r†

1, η
†).

Summarizing, we have (N, r1, η)
i≈ (N, r†

1, η
†) = S(1λ, N), which implies the

claim. 
�

3.3 First PRG for Theorem 1

We define a PRG for P1’s randomness in π1. In order to describe the underlying
assumption, first we introduce some terminology. We say that a deterministic
8 Some reader may feel strange because the two parties’ inputs in the protocol are

very correlated and the protocol has no output. This is for the sake of simplifying
the argument, and in fact our protocol can be converted into a more “natural” but
complicated form. See Appendix A for the details.

9 In fact, in order to let the internal randomness for S be a bit sequence, we have to,
and indeed we can, approximate (with exponentially small deviation from the ideal)
the procedures in Lines 1, 2 and 9 by PPT algorithms with random bit sequences.
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Algorithm 2: Simulator S for P1 in protocol π1

Input : 1λ and P1’s local input N
Output: N , simulated randomness r†

1, and simulated message η† from P2

1 x′ ←R (Z/NZ)×

2 take some a ∈ (Z/NZ)× with Jacobi symbol
(

a
N

)
= −1

3 a′ ←R {±1, ±a} and y′ ← (x′)2 · a′ ∈ (Z/NZ)×

4 if y′ = (x′)2 then

5 η† ← x′

6 else

7 η† ← ⊥
8 end

9 sample a value r†
1 ∈ {0, 1}3λ of the uniform random variable, denoted by g(y′),

on the set of all r′ ∈ {0, 1}3λ with r′ mod N = y′

10 return (N, r†
1, η

†)

polynomial-time algorithm B = B(1λ) is a Blum integer generator, if its output
B(1λ) (with λ ≥ 5) is a Blum integer with two λ-bit prime factors10. We say that
B is efficiently factorizable, if there is a PPT uniform algorithm F satisfying
that F(B(1λ)) is a prime factor of B(1λ) with probability Ω(1).11 Then our
assumption here is described as follows.

Assumption 1. There exists a Blum integer generator B that is not efficiently
factorizable; and there exists a non-uniformly secure PRG for any choices of
�in(λ) and �out(λ) (satisfying the constraints in our definition of PRGs)12.

Now let �S(λ) denote the bit length of the randomness for S. We define
R∗

1(1
λ, r∗) for r∗ ∈ {0, 1}�S(λ) to be the second component r†

1 of the output of
S(1λ,B(1λ); r∗). Then our PRG R1 : {0, 1}3λ−1 → {0, 1}3λ is defined as follows:
first it converts r′

1 ∈ {0, 1}3λ−1 to r∗ ∈ {0, 1}�S(λ) by using a PRG R†
1 as in

Assumption 1 (with �in(λ) = 3λ − 1 and �out(λ) = �S(λ)), and then it outputs
R∗

1(1
λ, r∗). The PRG satisfies the following:

Proposition 2. The PRG R1 is non-uniformly secure.

Proof. We have r∗ nu.c≈ U [{0, 1}�S(λ)] by the security of R†
1, therefore we have

R1(1λ, r′
1) = R∗

1(1
λ, r∗)

nu.c≈ R∗
1(1

λ, U [{0, 1}�S(λ)])
i≈ U [{0, 1}3λ] by Proposi-

tion 1 (for
i≈) and the fact that R∗

1 is PPT (for
nu.c≈ ). Hence the claim follows.


�

Now we give a precise version of Theorem 1 as follows:
10 The reason of restricting B to be deterministic is that B will be used as a component

of the desired PRG and hence may not have its own internal randomness.
11 The factorization is trivially easy if F may be non-uniform, as B is deterministic.
12 Such a PRG can be obtained from a PRG with 1-bit stretch by a standard technique

based on hybrid argument (cf. Construction 3.3.2 and Theorem 3.3.3 of [15]).
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Algorithm 3: Non-uniform distinguisher D for the simulator S for π1

Input : 1λ and P1’s view (N, r̂1, η̂), either in real π1 or simulated by S
(also given prime factors pλ < qλ of Nλ ← B(1λ) as advice)

Output: b ∈ {0, 1}
1 always return b ← 0 when N �= Nλ; below we assume N = Nλ

2 emulate the protocol π1 with inputs Nλ and (pλ, qλ) where r̂1 plays the role of
randomness for P1, and get emulated P2’s message η

3 return b ← χ[η̂, η ∈ (Z/NλZ)× and (η̂)2 = (η)2 and η �∈ {η̂, −η̂}]

Theorem 5. Under Assumption 1, the protocol π1 is secure against semi-honest
P1 and the PRG R1 is non-uniformly secure, but the protocol π1 ◦1 R1 is not
secure against semi-honest P1.

Before giving the proof, we first explain an intuitive idea towards the proof
and an outline of the proof. We observe that if π1◦1R1 were secure, then for P1’s
input N = B(1λ) in π1 ◦1 R1, P1 would be unable to obtain any information
that cannot be deduced directly from N . In particular, as B is not efficiently
factorizable by Assumption 1, P1 would be unable to obtain a prime factor of
N . However, in fact a corrupted P1 can factorize N during the protocol π1 ◦1 R1

as follows: (1) Given randomness r′
1 ∈ {0, 1}3λ−1, P1 generates r∗ ∈ {0, 1}�S(λ)

as above, and executes S(1λ, N ; r∗) and obtains (N, r†
1, η

†). (2) P1 executes the
protocol π1 with input N and randomness r†

1, and obtains P2’s message η (note
that this is a correct execution of π1 ◦1 R1). (3) If η† 
= ⊥ and η 
= ±η† mod N ,
then P1 computes p′ ← gcd(η2 − (η†)2, N) and outputs p′.

Now if η† 
= ⊥ (which occurs with probability 1/4), then η† is a square root
of y′ = r†

1 mod N . Hence by the construction of π1, η is one of the four square
roots of y′, therefore η 
= ±η† occurs with probability 1/2. In this case, we have
η2−(η†)2 = (η−η†)(η+η†) and η±η† 
≡ 0 (mod N), therefore η−η† is divisible
by precisely one of the two prime factors of N , which is equal to p′. Hence P1

can factorize N with probability Ω(1), a contradiction. This shows the claim.
We start the proof of Theorem 5. Owing to Propositions 1 and 2, it suffices to

show that π1 ◦1R1 is not secure against P1. This follows from the contraposition
of the following proposition and Assumption 1 on B.

Proposition 3. Suppose that the protocol π1 ◦1 R1 is secure against P1. Then
there exists a PPT uniform algorithm F that outputs a prime factor of B(1λ)
with probability Ω(1).

Proof. Let S̃ denote a simulator for P1 in π1 ◦1 R1 implied by the hypothesis.
First we consider a PPT non-uniform distinguisher D in Algorithm 3 for the
simulator S for the protocol π1, where we let χ[P ] = 1 if a condition P holds
and χ[P ] = 0 otherwise.

When (Nλ, r̂1, η̂) is a view in real π1, y ← r̂1 mod Nλ is in QRN with prob-
ability ≈ 1/4 (where “≈” means “the difference is negligible”). If it is the case,
then η̂ is a square root of y modulo Nλ. Moreover, in the emulation in Line 2
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Algorithm 4: Distinguisher D̃ for the simulator S̃ for π1 ◦1 R1

Input : 1λ and P1’s view (N, s̃, η̃), either in real π1 ◦1 R1 or simulated by S̃
Output: b ∈ {0, 1}

1 always return b ← 0 when N �= Nλ = B(1λ); below we assume N = Nλ

2 (Nλ, r̂1, η̂) ← S(1λ, Nλ; R†
1(1

λ, s̃))
3 return b ← χ[η̂, η̃ ∈ (Z/NλZ)× and (η̂)2 = (η̃)2 and η̃ �∈ {η̂, −η̂}]

using the same randomness r̂1 for P1 and fresh randomness for P2, the emu-
lated P1 sends the same y, while the emulated P2 replies a uniformly random
square root η of y independent of η̂. Therefore, when y ∈ QRN , we have b = 1
with conditional probability 1/2. Hence D outputs 1 with probability ≈ 1/8.
Now Proposition 1 implies that D also outputs 1 with probability ≈ 1/8 when
(Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗) with ideally random s∗.

We regard the process “run D for input (Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗)” as a
PPT non-uniform distinguisher with advice (pλ, qλ) against the non-uniformly
secure PRG R†

1. Then it follows that the probability of b = 1 is still at least
1/8 − negl(λ) ∈ Ω(1) when s∗ ← R†

1(1
λ, s) and s is a uniformly random seed for

R†
1, where negl denotes some negligible function.
For the latter case (Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗) with s∗ ← R†

1(1
λ, s), the

component r̂1 coincides with the output of the PRG R1 with seed s, therefore
the emulated protocol in Line 2 of D is nothing but the protocol π1 ◦1 R1 with
randomness s for P1. Now we consider a PPT distinguisher D̃ in Algorithm 4 for
simulator S̃.

By the argument above, when (Nλ, s̃, η̃) is a view in real π1 ◦1 R1 with
input (pλ, qλ) for P2, the probability distribution of η̃ conditioned on the given
(s̃, r̂1, η̂) coincides with that of η in D for the same (r̂1, η̂), therefore the prob-
ability that D̃ outputs b = 1 is also Ω(1) in this case. Now the hypothesis
on the simulator S̃ implies that the probability of b = 1 is also Ω(1) even when
(Nλ, s̃, η̃) is simulated by S̃. That is, by generating (Nλ, s̃, η̃) ← S̃(1λ,B(1λ)) and
(Nλ, r̂1, η̂) ← S(1λ, Nλ;R†

1(1
λ, s̃)), the conditions η̂, η̃ ∈ (Z/NλZ)×, (η̂)2 = (η̃)2,

and η̃ 
∈ {η̂,−η̂} are satisfied with probability Ω(1); and if it is the case, then
a prime factor of Nλ can be found by computing gcd(η̃ − η̂, Nλ). As the afore-
mentioned process of generating η̃ and η̂ from B(1λ) is PPT and uniform, this
yields the algorithm F as in the statement. Hence Proposition 3 holds. 
�

3.4 Second Protocol and PRG for Theorem 1

We give another pair of a 2PC protocol π2 and a PRG R2 for Theorem 1. An out-
line of the argument is as follows. The protocol π2 is an oblivious transfer (OT)
protocol proposed by Asharov et al. in ACM CCS 2013 [1], or more precisely,
Protocol 51 in Sect. 5.2 of its full version [2]. The key idea of their OT protocol is
to construct a function, denoted here by H, that can sample a random element
h of an underlying cyclic group G = 〈g〉 in a way that the discrete logarithm of
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h with respect to g is unknown even if the seed used for sampling h is known.
Now the Receiver of the 1-out-of-2 OT protocol with input σ ∈ {0, 1} generates
h ∈ G by using H and gα with random α, and sends (gα, h) when σ = 0 and
(h, gα) when σ = 1 to the Sender. The Sender encrypts the two inputs in a way
like the hashed ElGamal encryption where each of the two elements of G given
from the Receiver is used as a public key, and sends the two ciphertexts (c0, c1)
to the Receiver. Then the Receiver can decrypt cσ and obtain the correspond-
ing input of the Sender as the “secret key” α is known; while the other c1−σ

cannot be decrypted (hence the other input remains secret) as the “secret key”
corresponding to h is not known as mentioned above.

Then our construction of the PRG R2 is based on the following observation:
there is a secure PRG R′

2 that can “cancel” the effect of the function H. Namely,
when h ∈ G is sampled by H using an input generated by R′

2 with seed s, now the
discrete logarithm of h can be efficiently recovered from s. Then we construct a
secure PRG R2 that involves R′

2 to convert a part s of the seed (s, α) into R′
2(s).

By using the output (R′
2(s), α) of R2 in π2 instead of the Receiver’s original

randomness, now the Receiver can also decrypt c1−σ and break the security, as
the corresponding “secret key” can be recovered from s as mentioned above.

Now we move to a precise argument. First, we recall the construction of the
OT protocol π2 mentioned above. To make the argument precise, here we explic-
itly state that the internal randomness for the two parties are bit sequences, and
the uniform samplings of objects in the protocol are performed approximately
with exponentially small deviation. The input objects for the protocol (except
the security parameter) can be classified into global parameters that can be
reused for several protocol executions (such as the underlying cyclic group) and
“actual” inputs for each individual protocol execution. For the global parame-
ters, in this paper we put an assumption that a secure global parameter can be
chosen efficiently and deterministically (see Assumption 2 below). This techni-
cal assumption would also have some practical meaning, as it may sometimes
happen that an implementation of a protocol hard-wires such a reusable global
parameter.

In order to specify our choice of global parameters, we quote the following
description from the text in the second paragraph of Sect. 5.2 in [2] (where
“[......]” indicates omission by the author of the present paper):

[......] We also assume that it is possible to sample a random element of
the group, and the DDH assumption will remain hard even when the coins
used to sample the element are given to the distinguisher (i.e., (g, h, ga, ha)
is indistinguishable from (g, h, ga, gb) for random a, b, even given the coins
used to sample h). [......] For finite fields, one can sample a random element
h ∈ Zp of order q by choosing a random x ∈R Zp and computing h =
x(p−1)/q until h 
= 1. [......]

Accordingly, we use the subgroup of a given order q in the multiplicative group
(Fp)× of a finite field Fp (denoted by Zp in the quoted text) as the underlying
group of the protocol, where p is a t-bit prime for some polynomially bounded
t ≥ λ and q is a divisor of p−1. Then the aforementioned sampling method H for
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Algorithm 5: The algorithm H to sample a subgroup element
Input : x′ ∈ {0, 1}2t

Output: an element h in the order-q subgroup of (Fp)×

1 x ← x′ mod p
2 if x �= 0 then

3 return h ← x(p−1)/q mod p
4 else
5 return h ← 1
6 end

the group elements can be realized as in Algorithm 5, where slight modification
is made in order to ensure that it always halts within finite (and polynomial)
time. This algorithm has the following property.

Lemma 1. The output H(x′) for x′ ←R {0, 1}2t is in the unique subgroup of
order q in (Fp)× and its probability distribution is exponentially close to uniform
over this subgroup.

Proof. First, if x = 0 in the algorithm, then the output h is 1; while if x 
= 0,
then h = x(p−1)/q mod p is an element of (Fp)× of order dividing q, as (Fp)×

is a cyclic group of order p − 1. This implies the former part of the statement.
On the other hand, for the latter part of the statement, as the bit length of p is
t ≥ λ, the distribution of x is exponentially close to the uniform distribution over
(Fp)×. Therefore, we may assume without loss of generality that x ←R (Fp)×.
Then h = x(p−1)/q mod p becomes a uniformly random element of the subgroup.
This implies the latter part of the statement. Hence Lemma 1 holds. 
�

Our assumption mentioned above, which is a (possibly nonstandard) variant
of the decisional Diffie–Hellman (DDH) assumption, is the following:

Assumption 2. There exists a deterministic polynomial-time algorithm to
choose a t-bit prime p with t ≥ λ, a divisor q of p − 1, a generator g of the
subgroup of order q in (Fp)×, and a deterministic polynomial-time key deriva-
tion function KDF : 〈g〉 → {0, 1}L for some L, satisfying the following: the two
distributions of

(p, q, g, gr mod p, x′,KDF(H(x′)r mod p))

and
(p, q, g, gr mod p, x′, z)

with r ←R {0, . . . , q − 1}, x′ ←R {0, 1}2t, z ←R {0, 1}L are non-uniformly
indistinguishable.

Then the protocol π2 is described in Algorithm 6; here the global parameters
are chosen as in Assumption 2 (in particular, the choice of global parameters is
deterministic given a security parameter 1λ). The result in the original paper
implies that π2 is secure in the semi-honest model under Assumption 2.

The following is another precise version of Theorem1 to be proved here.
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Algorithm 6: The OT protocol in [2] (called π2 here)
Input : (global parameters) t-bit prime p, divisor q of p − 1, g ∈ (Fp)× of

order q, and KDF : 〈g〉 → {0, 1}L

(P1 (Sender)) (x〈0〉, x〈1〉) ∈ ({0, 1}L)2; and randomness r1 ∈ {0, 1}2t

(P2 (Receiver)) σ ∈ {0, 1}; and randomness (r′
2, r

′′
2 ) ∈ ({0, 1}2t)2

Output: (P1) none
(P2) x ∈ {0, 1}L // To be equal to x〈σ〉

1 (By P2) h ← H(r′
2) and α ← r′′

2 mod q
2 (By P2) if σ = 0 then

3 (h(0), h(1)) ← (gα mod p, h)
4 else

5 (h(0), h(1)) ← (h, gα mod p)
6 end

7 (By P2) send (h(0), h(1)) to P1

8 (By P1) r ← r1 mod q and u ← gr mod p

9 (By P1) (k(0), k(1)) ← ((h(0))r mod p, (h(1))r mod p)

10 (By P1) (v(0), v(1)) ←
(
x(0) ⊕ KDF(k(0)), x(1) ⊕ KDF(k(1))

)

11 (By P1) send u, v(0), and v(1) to P2

12 (By P2) return x ← v(σ) ⊕ KDF(uα mod p)

Theorem 6. Assume that there exists a non-uniformly secure PRG for any
choices of �in(λ) and �out(λ) (satisfying the constraints in PRGs). Assume more-
over that the parameters in the protocol π2 satisfy that (p − 1)/q is coprime to
q, and that a generator g0 of (Fp)× can also be chosen in deterministic poly-
nomial time. Then there is a non-uniformly secure PRG R2 with 1-bit stretch
�out(λ) − �in(λ) = 1 satisfying that π2 ◦2 R2 is not secure against P2.

As mentioned above, the basic strategy for constructing R2 is to enable P2 to
know the discrete logarithm of h(1−σ) ← H(r′

2) from the seed for R2 generating
the input r′

2 for H. Then the party P2 using the PRG R2 will be able to also
unmask v(1−σ) by using the seed for R2 and hence obtain the other x(1−σ) as
well, violating the security of the OT.

To make the argument precise, we first recall the current assumptions
described above: the global parameters p, q, g, and KDF, as well as a gen-
erator g0 of (Fp)×, can be deterministically chosen in polynomial time, and
(p − 1)/q is coprime to q. We construct a prototype algorithm R∗

2 for our
PRG as in Algorithm7; our PRG R2 is then constructed as the composition
R2 = R∗

2 ◦ R†
2 : {0, 1}4t−1 → {0, 1}4t where R†

2 : {0, 1}4t−1 → {0, 1}9t is a non-
uniformly secure PRG implied by the hypothesis of Theorem6. Now we have the
following result on the R∗

2.

Proposition 4. For s = (s1, s2, s3, s4) ←R {0, 1}9t, the output distribution of
R∗

2(1
λ, s) is exponentially close to U [{0, 1}2t × {0, 1}2t], and the e and r† com-

puted in R∗
2 satisfy that H(r†) = ge mod p.
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Algorithm 7: The prototype R∗
2 of our PRG

Input : 1λ and seed
s = (s1, s2, s3, s4) ∈ {0, 1}2t × {0, 1}2t × {0, 1}3t × {0, 1}2t

Output: (r′
2, r

′′
2 ) ∈ {0, 1}2t × {0, 1}2t

1 choose p, q, g, KDF, and g0 deterministically as in the text
2 compute the multiplicative inverse d of (p − 1)/q modulo q
3 e ← s1 mod q

4 h† ← ge mod p
5 e′ ← s2 mod (p − 1)

6 h†† ← (h†)d · g0
qe′

mod p

7 r† ← h†† + (s3 mod K) · p where K = �(22t − 1 − h††)/p� + 1

// we have 0 ≤ r† ≤ 22t − 1

8 return (r′
2, r

′′
2 ) ← (r†, s4) // identify r† with a 2t-bit sequence

Proof. For the latter part of the statement, we have r† mod p = h†† and

(h††)(p−1)/q = (h†)d·(p−1)/q · g0
qe′·(p−1)/q = h† · g0

e′(p−1) = h† = ge in (Fp)×

as h† ∈ 〈g〉 and d · (p − 1)/q ≡ 1 (mod q). Hence we have H(r†) = ge mod p by
the construction of H, as desired.

For the former part of the statement, it suffices to show that the distribution
of r† is exponentially close to uniform over {0, 1}2t. Let f ∈ {0, . . . , p − 2} be
the discrete logarithm of g with respect to g0. Then f is a multiple of (p − 1)/q
as gq = 1 in Fp; we put f = f ′(p − 1)/q with 1 ≤ f ′ ≤ q − 1. Now both f ′ and
(p − 1)/q are coprime to q, so is f .

As s1 and s2 are of 2t-bit lengths and t ≥ λ, the distributions of e and e′ are
exponentially close to uniform over {0, . . . , q−1} and {0, . . . , p−2}, respectively.
Hence we assume from now that e ←R {0, . . . , q − 1} and e′ ←R {0, . . . , p − 2}
without loss of generality.

We have h†† = ged · g0
qe′

= g0
fed+qe′

in Fp. Let β = fed + qe′ mod (p − 1).
Then we have β mod q = e · fd mod q ∈ {0, . . . , q − 1}. As fd is coprime to q by
the argument above, β mod q is uniformly random (as well as e) and independent
of e′. On the other hand, we have �β/q� = e′ + �fed/q� mod ((p − 1)/q). As
e′ ←R {0, . . . , p − 2}, it follows that the pair (β mod q, �β/q�) is also uniformly
random, so is β. Hence h†† = g0

β is uniformly random over (Fp)×.
Moreover, as s3 has 3t-bit length and t ≥ λ, it follows that, given an h††,

the conditional distribution of r† is exponentially close to uniform over the set
{r′

2 ∈ {0, 1}2t | r′
2 mod p = h††}. This implies that, if the distribution of r′

2 mod p
with r′

2 ←R {0, 1}2t were identical to the uniform distribution of h††, then the
distribution of r† would be exponentially close to uniform over {0, 1}2t. In fact,
as p has t-bit length and t ≥ λ, the distribution of r′

2 mod p is exponentially
close to uniform; therefore the distribution of r† is indeed exponentially close to
uniform, as desired. Hence the former part of the statement holds. This completes
the proof of Proposition 4. 
�
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The former part of Proposition 4 and the non-uniform security of R†
2 imply

that our PRG R2 = R∗
2 ◦R†

2 is also non-uniformly secure. Moreover, when party
P2 in the protocol π2 uses the PRG R2 with seed s̃ to generate the internal
randomness (r′

2, r
′′
2 ) = (r†, s4) ← R∗

2(1
λ, s) with s ← R†

2(1
λ, s̃), the element h is

equal to H(r′
2) = H(r†) = ge mod p and its discrete logarithm e can be recovered

from the seed s̃ for R2 by computing s ← R†
2(1

λ, s̃) and then computing e from
s as in Line 3 of Algorithm 7. This enables P2 to obtain x(1−σ) as well as x(σ) as
explained above, which means that now the protocol is not secure against P2.
This completes the proof of Theorem 6.

3.5 Sufficient Conditions for Preserving the Security

To prevent the loss of security as in Theorem 1, here we give some sufficient
conditions for a 2PC protocol π and a PRG R to ensure that π ◦i R is also
secure, as in Theorem 2 in Sect. 1.1. We introduce the following notion.

Definition 1. We say that a simulator Si for party Pi is with raw randomness,
if the randomness for Si is of the form (ri, τi) where ri is the same as the ran-
domness for Pi, and we have Si(1λ, xi, fi(�x); ri, τi) = 〈ri, TSi

(1λ, xi, fi(�x), ri; τi)〉
for a PPT algorithm TSi

, where the notation 〈ri, Vi〉 denotes the simulated view
for Pi consisting of the randomness ri and the remaining part Vi (here the com-
ponents in 〈ri, Vi〉 are appropriately reordered to keep consistency with the syntax
in the definition of a party’s view).

Namely, such a simulator Si generates the randomness part of Pi’s view by
just outputting a part ri of Si’s own randomness, and then Si generates the
other parts of Pi’s view by using the remaining part τi of the randomness (in a
way specified by the algorithm TSi

). For example, the simulator S in the proof
of Proposition 1 for the security of protocol π1 is not with raw randomness (as
it generates the randomness part r†

1 according to the other part), while the
simulator in the security proof of protocol π2 above given in the original paper
[2] is in fact with raw random tape. We give a precise version of Theorem2.

Theorem 7. Let π be a 2PC protocol that is information-theoretically secure
against a party P in the semi-honest model where the corresponding simulator is
with raw randomness (see above for the terminology). Let R be a PRG to generate
the randomness for P. Suppose moreover that �out(λ)−H∞(R(1λ, ∗)) ∈ O(log λ)
with uniformly random seed for R where λ denotes the security parameter and
�out(λ) denotes the bit length of outputs of R. Then, even by generating the ran-
domness for P using R, the protocol π remains information-theoretically secure
against semi-honest P and the corresponding simulator is with raw randomness.

Proof. Let S be the simulator with raw randomness in the hypothesis. By sym-
metry, we suppose P = P1, and we give a simulator S̃ for P1 in the protocol
π ◦1 R as stated. Put I = {0, 1}�in(λ) and O = {0, 1}�out(λ).

Given 1λ, �x = (x1, x2), a local output o1 of P1, and randomness r1 ∈ O for
P1 in π, the simulated view for P1 in π is given by 〈r1, TS(1λ, x1, o1, r1)〉 (see
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Definition 1 for the notations). On the other hand, let Vreal(1λ, �x, r1) denote the
random variable of the view for P1 except the randomness r1 in a real execution
of π with input pair �x and randomness r1 for P1. Then the view for P1 in a real
π is 〈r1, Vreal(1λ, �x, r1)〉. Now we define the simulator S̃ in π ◦1 R as follows:

– Given 1λ and a local input/output pair (x1, o1) as input, S̃ chooses r̃1 ←R I,
computes r1 ← R(1λ, r̃1), and outputs 〈r̃1, TS(1λ, x1, o1, r1)〉.

This S̃ is with raw randomness by the construction.
Note that the view for P1 in real π◦1R is given by 〈r̃1, Vreal(1λ, �x,R(1λ, r̃1))〉.

Now let Δ and Δ̃ denote the statistical distances between the real and simulated
views for P1 in π and in π ◦1 R, respectively, for given 1λ, �x = (x1, x2), and o1.
Then we have the following (where notations 1λ are omitted):

2Δ̃ =
∑

s̃1∈I,V1

|Pr[〈r̃1, TS(x1, o1,R(r̃1))〉 = 〈s̃1, V1〉]

−Pr[〈r̃1, Vreal(�x,R(r̃1))〉 = 〈s̃1, V1〉]|

=
∑

s̃1∈I,V1

∣
∣
∣
∣

1
|I| Pr[TS(x1, o1,R(s̃1)) = V1] − 1

|I| Pr[Vreal(�x,R(s̃1)) = V1]
∣
∣
∣
∣

=
1
|I|

∑

s1∈O,V1

|Is1 | · |Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]|

where we write Is1 = {s̃1 ∈ I | R(s̃1) = s1}. Now we have |Is1 |/|I| ≤ 2−H∞(R)

for each s1 (where H∞(R) = H∞(R(1λ, ∗))) by the definition of min-entropy,
therefore

2Δ̃ ≤ 2−H∞(R)
∑

s1∈O,V1

|Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]| .

On the other hand, we have

2Δ

=
∑

s1∈O,V1

|Pr[〈r1, TS(x1, o1, r1)〉 = 〈s1, V1〉] − Pr[〈r1, Vreal(�x, r1)〉 = 〈s1, V1〉]|

=
∑

s1∈O,V1

∣
∣
∣
∣

1
|O| Pr[TS(x1, o1, s1) = V1] − 1

|O| Pr[Vreal(�x, s1) = V1]
∣
∣
∣
∣

=
1

|O|
∑

s1∈O,V1

|Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]| .

Hence we have Δ̃ ≤ 2−H∞(R) · |O| ·Δ = 2�out(λ)−H∞(R) ·Δ. By the hypothesis, Δ
is negligible due to the information-theoretic security of π, and 2�out(λ)−H∞(R) ∈
2O(log λ) is polynomially bounded in λ. This implies that Δ̃ is also negligible, as
desired. This completes the proof of Theorem 7. 
�
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4 Type 2: Non-recognizable “Bad” Randomness

In this and the next sections, we focus on the correctness for PKE schemes13 with
negligible but non-zero decryption error probability, and point out (as mentioned
in Sect. 1.1) that the use of a secure PRG may violate the correctness.

First we introduce some terminology. A PKE scheme Π = (Gen,Enc,Dec)
consists of three PPT algorithms as follows; Gen(1λ) outputs a pair (pk, sk)
of a public key pk and a secret key sk; Encpk(m) for a plaintext m outputs
a ciphertext c; and Decsk(c) deterministically outputs either a plaintext or a
“decryption failure” symbol ⊥. We say that a key pair (pk, sk) for a PKE scheme
Π = (Gen,Enc,Dec) is α(λ)-correct, if

Pr[Decsk(Encpk(m)) = m] ≥ α(λ) for any plaintext m

where the probability is taken for the randomness in Enc. Here “perfectly correct”
means 1-correct; we also say that Π is perfectly correct, if all key pairs are
perfectly correct. On the other hand, we say that (pk, sk) is β(λ)-erroneous, if

Pr[Decsk(Encpk(m)) 
= m] ≥ β(λ) for at least one plaintext m.

Here we show the following result, which is a precise version of Theorem 3:

Theorem 8. Assume that there exist a perfectly correct PKE scheme Π∗ for
any (polynomially bounded) choice of plaintext length14 and a (uniformly or
non-uniformly) secure PRG R∗ for any choices of �∗

in(λ) and �∗
out(λ) (satis-

fying the constraints in PRGs). Then there exists a pair of a PKE scheme
Π = (Gen,Enc,Dec) and a secure PRG R with the following two properties:

– The original Gen generates a not perfectly correct key pair with only exponen-
tially small probability.

– When the PRG R is used in Gen, all key pairs generated by the resulting Gen
are 1-erroneous.

Proof. We assume that �∗
out(λ) − �∗

in(λ) ≥ λ for the PRG R∗ and that the PKE
scheme Π∗ = (Gen∗,Enc∗,Dec∗) has plaintext space {0, 1}�∗

in(λ) in the hypothesis
of the theorem. We construct the PKE scheme Π in the theorem by modifying
Π∗ as follows:

– A public key pk for Π consists of a public key pk∗ for Π∗ and r ←R

{0, 1}�∗
out(λ); pk = (pk∗, r). The secret key sk = sk∗ is not changed.

– For a plaintext m ∈ {0, 1}�∗
in(λ), the encryption algorithm Enc first checks

if R∗(1λ,m) = r or not. If R∗(1λ,m) 
= r, then encryption and decryption
are performed in the same way as Π∗. If R∗(1λ,m) = r, then Enc outputs a
broken ciphertext (say ⊥) which always yields decryption error.

13 As the security is not the central topic here, we just implicitly assume IND-CPA
security for the PKE schemes in the following arguments.

14 Again, such a PKE scheme can be obtained via a hybrid argument (cf. Sect. 5.2.5.3
of [16]) from a perfectly correct PKE scheme with 1-bit plaintexts.
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As �∗
out(λ) − �∗

in(λ) ≥ λ, the probability that the component r of pk is in the
range of R∗ is at most 2−λ. As the behavior of Π coincides with Π∗ whenever
r is not in the range of R∗, the requirement for correctness of Π is satisfied.

We define the PRG R in a way that, it ideally samples the internal ran-
domness rgen for Gen∗ and samples r ∈ {0, 1}�∗

out(λ) by r ← R∗(1λ, s) with
s ←R {0, 1}�∗

in(λ); (rgen, r) ← R(1λ, (rgen, s)).15 Then the modified key genera-
tion algorithm chooses the components pk∗ and r of pk by using the two output
components of R, respectively. Note that the security of R∗ implies the security
of R straightforwardly. Now for any public key pk = (pk∗, r) in Π generated by
using R with seed (rgen, s) as above, we have r = R∗(1λ, s) by the construction,
therefore decryption error will occur with probability 1 for plaintext m = s.
Hence, now any key pair for Π is 1-erroneous, and the claim holds. 
�

5 Type 3: Implicit Non-uniform Distinguishers

In this section, we continue to focus on the correctness for PKE schemes with
negligible errors, but here we deal with the randomness in the encryption algo-
rithm instead of the key generation studied in the previous section. We point out
the implicit relation to non-uniform security of PRGs, and show the following
result which is a precise version of Theorem 4.

Theorem 9. Assume that there exist a perfectly correct PKE scheme Π∗ for
any (polynomially bounded) choice of plaintext length. Assume moreover that
there exists a uniformly secure PRG R∗ that is not non-uniformly secure, for
any choices of �∗

in(λ) and �∗
out(λ) (satisfying the constraints in PRGs). Then

there exist a PKE scheme Π = (Gen,Enc,Dec) and a uniformly secure PRG R
with the following two properties:

– All key pairs of Π are (1 − ε(λ))-correct for an exponentially small ε(λ).
– When the PRG R is used in Enc of Π, all key pairs are β(λ)-erroneous with

respect to the resulting Enc for a non-negligible β(λ).

We explain an outline of the proof. First, by the hypothesis on R∗, there
is a PPT non-uniform distinguisher D∗ for R∗ with non-negligible advantage.
We assume that the PKE scheme Π∗ = (Gen∗,Enc∗,Dec∗) in the hypothesis has
plaintext space involving the advice for D∗. The PKE scheme Π has the same
key generation and decryption algorithms as Π∗.

The encryption algorithm Enc for Π is defined by modifying Enc∗ as follows.
For the internal randomness, two blocks called Block k (k = 0, 1) of polynomi-
ally many random bit sequences is added, each of which follows a probability
distribution Xk. Originally, X0 and X1 are identical and uniform. Then, given a
plaintext m, Enc first tries to distinguish the distributions X0 and X1 by using
the polynomially many random samples provided in Blocks 0 and 1. Here Enc
uses the distinguisher D∗ with advice m. If D∗ detects a significant bias between
15 The technical constraint for R that the seed length should be a strictly increasing

function of λ can be ensured by adjusting the seed length of R∗.
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the two blocks then Enc outputs a broken ciphertext (say ⊥) that always yields
decryption error; otherwise Enc encrypts m in the same way as Enc∗.

In the original Enc, X0 and X1 are identical, therefore (if the size of two
blocks is sufficiently large) D∗ detects a significant bias with only exponentially
small probability whatever the plaintext (the advice for D∗) is. This implies the
first condition in the statement. On the other hand, we construct the PRG R
in a way that R replaces the distribution X0 with the output distribution of
R∗ while it keeps the distribution X1 unchanged (the standard hybrid argument
implies that R is uniformly secure as well as R∗). When the R is applied to
Enc (denoted by Enc′), D∗ with the correct advice m can distinguish the output
distribution X0 of R∗ from the uniform distribution X1, therefore (if the size of
two blocks is sufficiently large) the D∗ inside Enc′ detects a significant bias with
non-negligible probability. As this case yields decryption error, the decryption
error probability of Enc′ for the plaintext m becomes non-negligible, implying
the second condition in the statement. Hence the claim holds.

Now we move to a precise proof of the theorem.

Proof (Theorem 9). First, by the hypothesis on R∗, there is a PPT non-uniform
distinguisher D∗ for R∗ with non-negligible advantage; that is, there are an
integer k ≥ 1 and infinitely many λ’s for which the advantage is larger than
λ−k. We focus on those λ’s from now on. Let Q(λ) be a polynomial bound
for the length of advice which the PPT D∗ can read. We assume that the PKE
scheme Π∗ = (Gen∗,Enc∗,Dec∗) in the hypothesis has plaintext space {0, 1}Q(λ).
The PKE scheme Π has the same key generation and decryption algorithms as
Π∗.

The encryption algorithm Enc for Π is defined as in Algorithm 8, where
we set ρ(λ) = 16λ2k+1 and θ(λ) = 8λk+1. Roughly summarizing, the internal
randomness for Enc involves (besides the other components) uniformly random
�∗
out(λ)-bit sequences ri,j with i ∈ {0, 1} and 1 ≤ j ≤ ρ(λ). Before encrypting

plaintext m, for each i, Enc runs D∗ (with randomly fixed prefix m∗ of m as
advice) ρ(λ) times independently for inputs ri,1, . . . , ri,ρ(λ) and counts the num-
ber μi of output bits being 1. If the numbers μ0 and μ1 differ at most θ(λ),
then Enc encrypts m in the same way as Π∗. Otherwise, Enc outputs a broken
ciphertext (say ⊥) that always yields decryption error.

Intuitively, when the ri,j ’s are ideally random, all the corresponding output
distributions of D∗ are identical, therefore the difference of the numbers of 1’s
in “i = 0 part” and “i = 1 part” will be small with high probability, implying
the required correctness for Π. Precisely, the opposite condition |μ0−μ1| > θ(λ)
implies that |μi −ρ(λ) ·p1| > θ(λ)/2 for at least one i ∈ {0, 1}, where p1 denotes
the probability that D∗ outputs 1 for a uniformly random input from {0, 1}�∗

out(λ).
By Hoeffding’s Inequality (Lemma 2 below) with n = ρ(λ) = 16λ2k+1 and nt =
θ(λ)/2 = 4λk+1 (hence nt2 = (nt)2/n = λ), the latter condition holds with
probability at most 2 · 2 exp(−2nt2) = 4e−2λ. Hence the behavior of Π deviates
from the correct Π∗ with exponentially small probability, as desired.

Lemma 2 (Hoeffding’s Inequality [19]). Let X1, . . . , Xn be independent
random variables, each taking the value 1 with probability p and the value 0
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Algorithm 8: Encryption algorithm Enc for our PKE scheme Π

Input : 1λ and plaintext m ∈ {0, 1}Q(λ)

(the internal randomness involves components ri,j ∈ {0, 1}�∗
out(λ)

with i ∈ {0, 1} and 1 ≤ j ≤ ρ(λ), as well as the other components)
Output: (possibly broken) ciphertext c

1 choose a prefix m∗ of m uniformly at random
2 for i ← 0 to 1 do
3 μi ← 0
4 for j ← 1 to ρ(λ) do

5 if D∗(m∗)(1λ, ri,j) (with fresh randomness) outputs 1 then
6 μi ← μi + 1
7 end

8 end

9 end
10 if |μ0 − μ1| ≤ θ(λ) then
11 return c ← Enc∗(m)
12 else
13 return a broken ciphertext c (yielding decryption error)
14 end

with probability 1 − p for a common p. Then for any t > 0, we have

Pr
[∣
∣
∣
∣
X1 + · · · + Xn

n
− p

∣
∣
∣
∣ ≥ t

]

≤ 2 exp
(
−2nt2

)
.

On the other hand, the seed for our PRG R is the same as the internal ran-
domness for Enc except that the components r0,1, . . . , r0,ρ(λ) are replaced with
independent and uniformly random s1, . . . , sρ(λ) ∈ {0, 1}�∗

in(λ). When R gener-
ates the internal randomness for Enc, each r0,j is chosen by r0,j ← R∗(1λ, sj),
while the other components, including the r1,j ’s, are ideally sampled. By a stan-
dard hybrid argument, the uniform security of R∗ implies the uniform security
of R. (We note that, the technical constraint for the seed length to be a strictly
increasing function of λ can be ensured by adding some dummy components to
the seed.) Intuitively, as D∗ can distinguish the PRG R∗ from ideal randomness,
now the difference of the numbers of 1’s in the pseudorandom “i = 0 part” and
the ideally random “i = 1 part” will be large with high probability, which yields
a broken ciphertext with high probability as well.

To make the argument precise, let m∗ be a prefix of some plaintext m that is
the correct advice for D∗ to distinguish R∗. Let p0 denotes the probability that
D∗ outputs 0 for an input R∗(1λ, s) with s ←R {0, 1}�∗

in(λ), while p1 is the same
as above. Then the hypothesis on D∗ implies that |p0 − p1| > λ−k and hence
|ρ(λ) · p0 − ρ(λ) · p1| > ρ(λ)λ−k = 2θ(λ) for this choice of m∗. Now the opposite
condition |μ0 − μ1| ≤ θ(λ) implies that |μi − ρ(λ) · pi| > θ(λ)/2 for at least one
i ∈ {0, 1}. Hoeffding’s Inequality with the same parameters n, t as above also
implies that the latter condition holds with probability at most 4e−2λ. By taking
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into account the choice of m∗ among the Q(λ) + 1 candidates, it follows that
decryption error occurs for the m with probability at least

β(λ) =
1 − 4e−2λ

Q(λ) + 1
.

We moreover set β(λ) = 0 for the remaining λ’s not focused in the argument
above; the resulting β(λ) is still a non-negligible function. Hence all key pairs
are β(λ)-erroneous when the PRG R is applied, as desired. This completes the
proof of Theorem9. 
�

From now, given an individual correct PKE scheme Π = (Gen,Enc,Dec),
we provide a possible strategy to generically convert (depending on the Π) a
uniformly secure PRG R into a uniformly secure PRG R that preserves the
correctness when applied to generate the randomness for Enc.

We introduce some notations. Let (pk, sk) be a key pair for Π with security
parameter λ, let m be a plaintext, and let r ∈ {0, 1}L(λ) where L(λ) is the length
of randomness for Enc. We define a function Fλ,pk,sk,m,r : {0, 1}L(λ) → {0, 1} by

Fλ,pk,sk,m,r(r†) =

{
0 if Decsk(Encpk(m; r ⊕ r†)) = m ,

1 if Decsk(Encpk(m; r ⊕ r†)) 
= m .

We say that a PRG R† with output length �†
out(λ) = L(λ) η(λ)-fools the function

family F , if for any ind = (λ, pk, sk,m, r) as above, we have
∣
∣
∣Pr

[
Find(R†(1λ, U [{0, 1}�†

in(λ)])) = 1
]

− Pr
[
Find(U [{0, 1}L(λ)]) = 1

]∣
∣
∣ ≤ η(λ) .

Then we define the PRG16 R with seed s = (s, s†) ∈ {0, 1}�in(λ) × {0, 1}�†
in(λ) by

R(1λ, s) = R(1λ, s) ⊕ R†(1λ, s†) .

Such an XOR-ing construction of a PRG combining two PRGs of different types
has been studied in the literature in some different contexts; for example, this
is similar to the “dual-mode PRG” in [25]. Now if R† is PPT, then the security
R(1λ, U [{0, 1}�in(λ)])

u.c≈ U [{0, 1}L(λ)] of R implies that

R(1λ, U [{0, 1}�in(λ)])
u.c≈ U [{0, 1}L(λ)] ⊕ R†(1λ, U [{0, 1}�†

in(λ)]) = U [{0, 1}L(λ)] ,

i.e., R is uniformly secure. Moreover, we have the following result.

Theorem 10. Suppose that the PRG R† η(λ)-fools the function family F (see
above for the terminology) and a key pair (pk, sk) of Π with security parameter
λ is α(λ)-correct. Then, when the randomness for Enc is generated by the PRG
R, the key pair (pk, sk) becomes (α(λ) − η(λ))-correct.

16 We assume that the PRG R satisfies the constraint �in(λ) = �in(λ) + �†
in(λ) <

�out(λ) = L(λ) for input/output lengths.
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Proof. Let m be any plaintext. We have to evaluate the probability

ε = Pr[Decsk(Encpk(m;R(1λ, U [{0, 1}�in(λ)]))) 
= m]

=
∑

s

2−�in(λ) Pr[Decsk(Encpk(m;R(1λ, s) ⊕ R†(1λ, U [{0, 1}�†
in(λ)]))) 
= m]

=
∑

s

2−�in(λ) Pr[FR(1λ,s)(R†(1λ, U [{0, 1}�†
in(λ)])) = 1]

where s runs over {0, 1}�in(λ) and we write Fr = Fλ,pk,sk,m,r. Now, as R† η(λ)-
fools the function family F by the hypothesis, we have

ε ≤ 2−�in(λ)
∑

s

(
Pr[FR(1λ,s)(U [{0, 1}L(λ)]) = 1] + η(λ)

)

= η(λ) + 2−�in(λ)
∑

s

Pr[Decsk(Encpk(m;R(1λ, s) ⊕ U [{0, 1}L(λ)])) 
= m] .

As each R(1λ, s) ⊕ U [{0, 1}L(λ)] is identical to U [{0, 1}L(λ)], it follows that

ε ≤ η(λ) + Pr[Decsk(Encpk(m)) 
= m] ≤ η(λ) + (1 − α(λ)) = 1 − (α(λ) − η(λ))

by the hypothesis on (pk, sk). This implies the claim. 
�

Theorem 10 reduces our task to develop a “special-purpose” PRG R† that
fools the explicitly restricted function family F . The complexity of each function
in the family is almost the sum of complexity of Enc, Dec, and the given PRG
R, which will be fairly small when the PKE scheme Π and the PRG R are
efficient. Developing a PRG fooling this function family might be a relatively
easier task than developing a non-uniformly secure PRG, the latter having to
fool any non-uniform distinguisher with arbitrarily large (polynomially bounded)
complexity. To develop such a special-purpose PRG R†, some techniques in the
area of derandomization such as those in [24,27] would be useful.
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A A “Natural” Variant of Algorithm 1

Here we give a “natural” variant of 2PC protocol π1 defined in Sect. 3.2 (Algo-
rithm1) where the inputs for two parties are not correlated and the parties have
outputs in the protocol. The modified protocol is given in Algorithm9. Here
FEQ denotes an ideal functionality for two-party equality test, where the com-
mon output β = 1 (respectively, β = 0) means that the two inputs are equal
(respectively, not equal).
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Algorithm 9: A variant of protocol π1

Input : (P1) a non-negative integer N < 22λ

(P2) λ-bit integers p, q
Output: (common to P1 and P2) an integer ι ∈ {0, 1, 2}

1 (By P2) if p ≥ q, or p or q is not a prime ≡ 3 (mod 4) then
2 halt the protocol, where both parties output ι = 2
3 end
4 (By P1 and P2) execute FEQ(N, pq) and obtain common output β
5 if β = 0 then
6 halt the protocol, where both parties output ι = 1
7 end
8 (By P1 and P2) execute the protocol π1 with inputs N and (p, q)
9 halt the protocol, where both parties output ι = 0

In the part of the protocol before executing π1, the two parties check if their
inputs satisfy the required conditions in the original protocol π1. More precisely,
first, the input (p, q) for P2 in π1 should satisfy that p < q, p and q are primes,
and p ≡ q ≡ 3 (mod 4). In the protocol here, P2 first checks if these conditions
hold, and if it fails then the protocol halts at this step. Secondly, assuming the
conditions for P2’s input, the input N for P1 should satisfy that N = pq. This
condition is checked by using FEQ, and if it fails then the protocol halts at
this step. Once these conditions have been verified, the parties can execute the
protocol π1 with the correct input pair. By focusing on the input pairs satisfying
the conditions in π1, the protocol here inherits from π1 the property that the
security will be lost by applying a certain secure PRG to the randomness for P1.

For the security against P1, if the output is ι = 2, then P1 receives no message
and hence the security holds trivially. If ι = 1, then P1 just participates in the
execution of FEQ and obtains the output β = 0, therefore the security follows
from the security of FEQ. Finally, if ι = 0, then P1 participates in the execution
of FEQ with output being always β = 1 and also participates in π1, therefore the
security also follows from the security of FEQ and π1.

For the sake of completeness, we describe in Algorithm 10 a well-known imple-
mentation of FEQ using the lifted-ElGamal cryptosystem. Here � and � denote
the homomorphic addition and homomorphic scalar multiplication, respectively.
We analyze the behavior of the protocol as follows:

– If x1 = x2, then the ciphertext c in the protocol is a random ciphertext of
plaintext r(x2−r1) = 0 (note that the randomness in c has also been perfectly
rerandomized, as a random ciphertext Enc(0) was homomorphically added).
Hence the protocol outputs the correct value β = 1, and now the message
received by P1 is a random ciphertext Enc(0) as mentioned above, which can
be perfectly simulated.

– If x1 
= x2, then x2 − x1 ∈ (FP )× by the property P > 22λ+1, while r ←R

(FP )×. Therefore the plaintext r(x2 − x1) for c is also uniformly random
over (FP )× and hence the protocol outputs the correct value β = 0 (note
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Algorithm 10: Implementation of the functionality FEQ

Input : (Pi (i = 1, 2)) a non-negative integer xi < 22λ

Output: (common to P1 and P2) a bit β
1 (By P1) generate a key pair (pk, sk) for the lifted-ElGamal cryptosystem

(Gen,Enc,Dec) with plaintext space FP of prime order P > 22λ+1

2 (By P1) send pk and Enc(−x1) to P2

3 (By P2) generate r � (Enc(x2) � Enc(−x1)) � Enc(0) = Enc(r(x2 − x1)) for
r ←R (FP )×, and send c ← Enc(r(x2 − x1)) to P1

4 (By P1) if c is a ciphertext of plaintext 0 then
5 halt the protocol, where both parties output β = 1
6 else
7 halt the protocol, where both parties output β = 0
8 end

that, though r(x2 − x1) can be large and the lifted-ElGamal cryptosystem
enables to efficiently decrypt small plaintexts only, the protocol just checks
if the ciphertext c has plaintext 0 or not, which is still efficiently checkable).
Moreover, in this case, the received message c is a random ciphertext for a
uniformly random non-zero plaintext, which can be perfectly simulated.

Hence the correctness and the security (against P1) of the implemented FEQ

have been verified. In particular, the security against P1 is information-theoretic.
Therefore, as well as the original protocol π1, the variant of π1 given here also
has information-theoretic security against P1, as desired.
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