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Abstract. This paper presents a novel method for the automated syn-
thesis of probabilistic programs. The starting point is a program sketch
representing a finite family of finite-state Markov chains with related but
distinct topologies, and a reachability specification. The method builds on
a novel inductive oracle that greedily generates counter-examples (CEs)
for violating programs and uses them to prune the family. These CEs
leverage the semantics of the family in the form of bounds on its best-
and worst-case behaviour provided by a deductive oracle using an MDP
abstraction. The method further monitors the performance of the synthe-
sis and adaptively switches between inductive and deductive reasoning.
Our experiments demonstrate that the novel CE construction provides
a significantly faster and more effective pruning strategy leading to an
accelerated synthesis process on a wide range of benchmarks. For challeng-
ing problems, such as the synthesis of decentralized partially-observable
controllers, we reduce the run-time from a day to minutes.

1 Introduction

Background and motivation. Controller synthesis for Markov decision processes
(MDPs [35]) and temporal logic constraints is a well-understood and tractable
problem, with a plethora of mature tools providing efficient solving capabilities.
However, the applicability of these controllers to a variety of systems is limited:
Systems may be decentralized, controllers may not be able to observe the complete
system state, cost constraints may apply, and so forth. Adequate operational
models for these systems exist in the form of decentralized partially-observable
MDPs (DEC-POMDPs [33]). The controller synthesis problem for these models
is undecidable [30], and tool support (for verification tasks) is scarce.

This paper takes a different approach: the controller together with the en-
vironment can be modelled as probabilistic program sketches where “holes” in
the probabilistic program model choices that the controller may make. Concep-
tually, the controllers of the DEC-POMDP are described by a user-defined finite
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family M of Markov chains. The synthesis problem that we consider is to find
a Markov chain M (i.e., a probabilistic program) in the family M, such that
M |= ϕ, where ϕ is the specification. To allow efficient algorithms, the family must
have some structure. In particular, in our setting, the family is parameterized
by a set of discrete parameters K; an assignment K → V of these parameters
with concrete values V from its associated domain yields a family member, i.e.,
a Markov chain (MC). Such a parameterization is naturally obtained from the
probabilistic program sketch, where some constants (or program parts) can be
left open. The search for a family member can thus be considered as the search
for a hole-assignment. This approach fits within the realm of syntax-guided
synthesis [2].

Motivating example. Herman’s protocol [24] is a well-studied randomized dis-
tributed algorithm aimed to obtain fast stabilization on average. In [26], a
family M of MCs is used to model different protocol instances. They considered
each instance separately, and found which of the controllers for Herman’s protocol
performs best. Let us consider the protocol in a bit more detail: It considers
self-stabilization of a unidirectional ring of network stations where all stations
have to behave similarly—an anonymous network. Each station stores a single bit,
and can read the internal bit of one (say left) neighbour. To achieve stabilization,
a station for which the two legible bits coincide updates its own bit based on
the outcome of a coin flip. The challenge is to select a controller that flips this
coin with an optimal bias, i.e., minimizing the expected time until stabilization.
In a setting where the probabilities range over 0.1, 0.2, . . . , 0.9, this results in
analyzing nine different MCs. Does the expected time until stabilization reduce
if the controllers are additionally allowed to have a single bit of memory? In
every step, there are 9·9 combinations for selecting the coin flip and for each
memory cell and coin flip outcome, the memory can now be updated, yielding
2·2·2 possibilities. This one-bit extension thus results in a family of 648 models.
If, in addition, one allows stations to make decisions depending on the token-bits,
both the coin flips and the memory updates are multiplied by a factor 4, yielding
10, 368 models. Eventually, analyzing all individual MCs is infeasible.

Oracle-guided synthesis. To tackle the synthesis problem, we introduce an oracle-
guided inductive synthesis approach [25,39]. A learner selects a family member and
passes it to the oracle. The oracle answers whether the family member satisfies ϕ,
and crucially, gives additional information in case this is not the case. Inspired
by [9], if the family member violates the specification ϕ, our oracle returns a set
K ′ of parameters such that all family members obtained by changing only the
values assigned to K ′ violate ϕ. We argue that such an oracle must (1) induce
little overhead in providing K ′, (2) be aware of the existence of parameters in
the family, and (3) have (resemblance of) awareness about the semantics of the
parameters and their values.

Oracles. With these requirements in mind, we construct a counterexample (CE)-
based oracle from scratch. We do so by carefully exploiting existing methods.
We construct critical subsystems as CEs [1]. Critical subsystems are parts of
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the MC that suffice to refute the specification. If a hole is absent in a CE,
its value is irrelevant. To avoid the cost of finding optimal CEs—an NP-hard
problem [19]—we consider greedy CEs that are similar to [9]. However, our greedy
CEs are aware of the parameters, and try to limit the occurrence of parameters
in the CE. Finally, to provide awareness of the semantics of parameter values,
we provide lower and upper bounds on all states: Their difference indicates how
much varying the value at a hole may change the overall reachability probability.
These bounds are efficiently computed by another oracle. This oracle analyses a
quotient MDP obtained by employing an abstraction method that is part of the
abstraction-refinement loop in [10].

A hybrid variant. The two oracles are significantly different. Abstraction refine-
ment is deductive: it argues about single family members by considering (an
aggregation of) all family members. The critical subsystem oracle is inductive:
by examining a single family member, it infers statements about other family
members. This suggests a middle ground: a hybrid strategy monitors the per-
formance of the two oracles during the synthesis and suggests their best usage.
More precisely, the hybrid strategy integrates the counterexample-based oracle
into the abstraction-refinement loop.

Major results. We present a novel and dedicated oracle deployed in an efficacious
synthesis loop. We use model-checking results on an abstraction to tailor smaller
CEs. Our greedy and family-aware CE construction is substantially faster than
the use of optimal CEs. Together, these two improvements yield CEs that are on
par with optimal CEs, but are found much faster. The integration of multiple
abstraction-refinement steps yields a superior performance:x We compare our
performance with the abstraction-refinement loop from [10] using benchmarks
from [10]. Benchmarks can be classified along two dimensions: (A) Benchmarks
with a structure good for CE-generation. (B) Benchmarks with a structure good
for abstraction-refinement. A-benchmarks are a natural strength of our novel
oracle. Our simple, efficient hybrid strategy significantly outperforms the state-of-
the-art on A-benchmarks, while it only yields limited overhead for B-benchmarks.
Most importantly, the novel hybrid strategy can solve benchmarks that are
out of reach for pure abstraction-refinement or pure CE-based reasoning. In
particular, our hybrid method is able to synthesize the optimal Herman protocol
with memory—the synthesis time on a design space with 3.1 millions of candidate
programs reduces from a day to minutes.

Related work The synthesis problems for parametric probabilistic systems can
be divided into the following two categories.

Topology synthesis, akin to the problem considered in this paper, assumes a finite
set of parameters affecting the MC topology. Finding an instantiation satisfying
a reachability property is NP-complete in the number of parameters [12], and
can naively be solved by analyzing all individual family members. An alternative
is to model the MC family by an MDP and resort to standard MDP model-
checking algorithms. Tools such as ProFeat [13] or QFLan [40] take this approach
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to quantitatively analyze alternative designs of software product lines [21,28].
These methods are limited to small families. This motivated (1) abstraction-
refinement over the MDP representation [10], and (2) counterexample-guided
inductive synthesis (CEGIS) for MCs [9], mentioned earlier. The alternative
problem of sketching for probabilistic programs that fit given data is studied,
e.g., in [32,38].

Parameter synthesis considers models with uncertain parameters associated to
transition probabilities, and analyses how the system behaviour depends on
the parameter values. The most promising techniques are based on parameter
lifting that treats identical parameters in different transitions independently [8,36]
and has been implemented in the state-of-the-art probabilistic model checkers
Storm [18] and PRISM [27]. An alternative approach based on building rational
functions for the satisfaction probability has been proposed in [15] and further
improved in [22,17,4]. This approach has been also applied to different problems
such as model repair [5,34,11].

Both synthesis problems can be also attacked by search-based techniques that
do not ensure an exhaustive exploration of the parameter space. These include
evolutionary techniques [23,31] and genetic algorithms [20]. Combinations with
parameter synthesis have been used [7] to synthesize robust systems.

2 Problem Statement

We formalize the essential ingredients and the problem statement. See [3] for
more material.

Sets of Markov chains. A (discrete) distribution over a finite set X is a function
μ : S → [0, 1] s.t.

∑
x μ(x) = 1. The set Distr(X) contains all distributions over

X. The support of μ ∈ Distr(X) is supp(μ) = {x ∈ X | μ(x) > 0}.
Definition 1 (MC). A Markov chain (MC) is a tuple D = (S, s0,P ), where
S is a finite set of states, s0 ∈ S is an initial state, and P : S → Distr(S) is
a transition probability function. We write P (s, t) to denote P (s)(t). The state s
is absorbing if P (s, s) = 1.

Let K denote a finite set of discrete parameters with finite domain Vk. For
brevity, we often assume that all domains are the same, and omit the subscript
k. A realization r maps parameters to values in their domain, i.e., r : K → V .
Let RD denote the set of all realizations of a set D of MCs. A K-parameterized
set of MCs D(K) contains the MCs Dr, for every r ∈ RD. In Sect. 3, we give an
operational model for such sets. In particular, realizations will fix the targets of
transitions. In our experiments, we describe these sets using the PRISM modelling
language where parameters are described by undefined integer values.

Properties and specifications. For simplicity, we consider (unbounded) reach-
ability properties1. For a set T ⊆ S of target states, let P[D, s |= ♦T ] denote

1 Our implementation also supports expected reachability rewards.
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the probability in MC D to eventually reach some state in T when starting
in the state s ∈ S. A property ϕ ≡ P��λ[♦T ] with λ ∈ [0, 1] and ��∈ {≤,≥}
expresses that the probability to reach T does relate to λ according to ��. If
��= ≤, then ϕ is a safety property; otherwise, it is a liveness property. Formally,
state s in MC D satisfies ϕ if P[D, s |= ♦T ] ≥ λ. The MC D satisfies ϕ if the
above holds for its initial state. A specification is a set of properties Φ = {ϕi}i∈I ,
and D |= Φ if ∀i ∈ I : D |= ϕi.

Problem statement. The key problem statement in this paper is feasibility :

Given a parameterized set of Markov chains D(K) over parameters K and
a specification Φ, find a realization r : K → V such that Dr |= Φ.

When D is clear from the context, we often write r |= Φ to denote Dr |= Φ.
We additionally consider the optimizing variant of the synthesis problem.

The maximal synthesis problem asks: given a maximizing property ϕmax ≡
P��λ[♦T ], identify r∗ ∈ argmaxr∈RD {P[Dr |= ♦T ] | Dr |= Φ} provided it exists.
The minimal synthesis problem is defined analogously.

As the state space S, the set K of parameters, and their domains are all finite,
the above synthesis problems are decidable. One possible solution, called the
one-by-one approach [14], considers each realization r ∈ RD. The state-space and
parameter-space explosion renders this approach unusable for large problems,
necessitating the usage of advanced techniques that exploit the family structure.

3 Counterexample-Guided Inductive Synthesis

In this section, we recap a baseline for a counterexample-guided inductive syn-
thesis (CEGIS) loop, as put forward in [9]. In particular, we first instantiate an
oracle-guided synthesis method, discuss an operational model for families, giving
structure to the parameterized set of Markov chains, and finally detail the usage
of CEs to create an oracle.

Learner Oracle

R D, Φ

r ∈ R

r ∈ R′ ⊆ R,

R′ all violate Φ r |= Φno r |= Φ

Fig. 1. Oracle-guided synthesis

Consider Fig. 1. A learner takes a
set R of realizations, and has to find a
realization Dr satisfying the specifica-
tion Φ. The learner maintains (a sym-
bolic representation of) a set Q ⊆ R
of realizations that need to be checked.
It iteratively asks the oracle whether
a particular r ∈ Q is a solution. If it is
a solution, the oracle reports success.
Otherwise, the oracle returns a set R′ containing r and potentially more realiza-
tions all violating Φ. The learner then prunes R′ from Q. In Section 4, we focus
on creating an efficient oracle that computes a set R′ (with r ∈ R′) of realizations
that are all violating Φ. In Section 5, we provide a more advanced framework
that extends this method. The remainder of this section lays the groundwork for
these sections.
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Families of Markov chains To avoid the need to iterate over all realizations,
an efficient oracle exploits some structure of the family. In this paper, we focus on
sets of Markov chains having different topologies. We explain our concepts using
the operational model of families given in [10]. Our implementation supports
(more expressive) PRISM programs with undefined integer constants.

Definition 2 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,B)
with S and s0 as before, K is a finite set of parameters with domains Vk ⊆ S for
each k ∈ K, and B : S → Distr(K) is a family of transition probability functions.

Function B of a family D of MCs maps each state to a distribution over parame-
ters K. In the context of the synthesis of probabilistic models, these parameters
represent unknown options or features of a system under design. Realizations are
now defined as follows.

Definition 3 (Realization). A realization of a family D = (S, s0,K,B) of MCs
is a function r : K → S s.t. r(k) ∈ Vk, for all k ∈ K. We say that realization r
induces MC Dr = (S, s0,Br) iff Br(s, s

′) =
∑

k∈K,r(k)=s′ B(s)(k) for any pair of

states s, s′ ∈ S. The set of all realizations of D is denoted as RD.

The set RD =
∏

k∈K Vk of all possible realizations is exponential in |K|.

Counterexample-guided oracles We first consider the feasibility synthesis for
a single-property specification and later, cf. Remark 1, generalize this to multiple
properties and to optimal synthesis. The notion of counterexamples is at the
heart of the oracle from [9] and Sect. 4.

If an MC D �|= ϕ, a counterexample (CE) based on a critical subsystem can
serve as diagnostic information about the source of the failure. We consider the
following CE, motivated by the notion of critical subsystem in [37].

Definition 4 (Counterexample). Let D = (S, s0,P ) be an MC with s⊥ �∈ S.
The sub-MC of D induced by C ⊆ S is the MC D↓C = (S ∪ {s⊥}, s0,P ′), where
the transition probability function P ′ is defined by:

P ′(s) =

{
P (s) if s ∈ C,

[s⊥ �→ 1] otherwise.

The set C and the sub-MC D↓C are called a counterexample (CE) for the property
P≤λ[♦T ] on MC D, if D↓C �|= P≤λ[♦(T ∩ (C ∪ {s0}))].

Let Dr be an MC violating the specification ϕ. To compute other realizations
violating ϕ, the oracle computes a critical subsystem Dr↓C, which is then used
to deduce a so-called conflict for Dr and ϕ.

Definition 5 (Conflict). For family of MCs D = (S, s0,K,B) and C ⊆ S, the
set KC of relevant parameters (called conflict) is given by

⋃
s∈C supp(B(s)).
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Fig. 2. Counterexamples for smaller conflicts.

It is straightforward to compute a set of violating realizations from a conflict. A
generalization of realization r induced by the set KC ⊆ K of relevant parameters
is the set r↑KC = {r′ ∈ R | ∀k ∈ KC : r(k) = r′(k)}. We often use the term
conflict to refer to its generalization. The size of a conflict, i.e., the number
|KC | of relevant parameters KC is crucial. Small conflicts potentially lead to
generalizing r to larger subfamilies r↑KC . It is thus important that the CEs
contain as few parameterized transitions as possible. The size of a CE in terms
of the number of states is not of interest. Furthermore, the overhead of providing
CEs should be bounded from below by the payoff: Finding a large generalization
may take some time, but small generalizations should be returned quickly. The
CE-based oracle in [9] uses an off-the-shelf CE procedure [16,41], and mostly
does not provide small CEs.

4 A Smart Oracle with Counterexamples and Abstraction

This section develops an oracle based on CEs, tailored for the use in an oracle-
guided inductive synthesis loop described in Sect. 3. Its main features are:
– a fast greedy approach to compute CEs that provide small conflicts: We

achieve this by taking into account the position of the parameters.
– awareness about the semantics of parameters by using model-checking results

from an abstraction of the family.
Before going into details, we provide some illustrative examples.

A motivating example First, we illustrate what it means to take CEs that
lead to small conflicts. Consider Fig. 2, with a family member Dr (left), where
the superscript of a state identifier si denotes parameters relevant to si. Consider
the safety property ϕ ≡ P≤0.4[♦{t}]. Clearly, Dr �|= ϕ, and we can construct
two CEs: C1 = {s0, s3, t} (center) and C2 = {s0, s1, s2, t} (right) with conflicts
KC1

= {X,Y } and KC2
= {X}, respectively. It illustrates that a smaller CE

does not necessarily induce a smaller conflict.
We now illustrate awareness of the semantics of parameters. Consider the

family D = (S, s0,K
′,B), where S = {s0, s1, s2, t, f}, the parameters are K ′ =

{X,Y, T ′, F ′} with domains VX = {s1, s2}, VY = {t, f}, VT ′ = {t}, VF ′ = {f},
and a family B of transition probability functions defined in Fig. 3 (left). As the
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B(s0) = [X �→ 1],

B(s1) = [T ′ �→ 0.6, Y �→ 0.2, F ′ �→ 0.2],

B(s2) = [T ′ �→ 0.2, Y �→ 0.2, F ′ �→ 0.6],

B(t) = [T ′ �→ 1],

B(f) = [F ′ �→ 1]

0.8

0.4

0.8

0.4

0.6

0.2

0.6

0.2

Fig. 3. A family D of four Markov chains (unreachable states are grayed out).

parameters T ′ and F ′ each can take only one value, we consider K = {X,Y }
as the set of parameters. There are |VX | × |VY | = 4 family members, depicted
in Fig. 3(right). For conciseness, we omit some of the transition probabilities
(recall that transition probabilities sum to one). Only realization r3 satisfies the
safety property ϕ ≡ P≤0.3[♦{t}].

CEGIS [9] illustrated : Consider running CEGIS, and assume the oracle gets
realization r0 first. A model checker reveals P[Dr0 , s0 |= ♦T ] = 0.8 > 0.3. The
CE for Dr0 and ϕ contains the (only) path to the target: s0→s1→ t having
probability 0.8 > 0.3. The corresponding CE C = {s0, s1, t} induces the conflict
KC = {X,Y }. None of the parameters is generalized. The same argument applies
to any subsequent realization: the constructed CEs do not allow for generalization,
the oracle returns only the passed realization, and the learner keeps iterating
until accidentally guessing r3.

Can we do better? To answer this, consider CE generation as a game: The
Pruner creates a critical subsystem C. The Adversary wins if it finds a MC
satisfying ϕ containing C, thus refuting that C is a counterexample. In our
setting, we change the game: The Adversary must select a family member rather
than an arbitrary MC. Analogously, off-the-shelf CE generators construct a
critical subsystem C that for every possible extension of C is a CE. These
are CEs without context. In our game, the Adversary may not extend the MC
arbitrarily, but must choose a family member. These are CEs modulo a family.

Back to the example: Observe that for a CE for Dr0 , we could omit states t
and s1 from the set C of critical states: we know for sure that, once Dr0 takes
transition (s0, s1), it will reach target state t with probability at least 0.6. This
exceeds the threshold 0.3, regardless of the value of the parameter Y . Hence, for
family D, the set C ′ = {s0} is a critical subsystem. The immediate advantage is
that this set induces conflict KC′ = {X} (parameter Y has been generalized).
This enables us to reject all realizations from the set r0↑KC′ = {r0, r1}. It is
‘easier’ to construct a CE for a (sub)family than for arbitrary MCs. More generally,
a successful oracle needs to have access to useful bounds, and effectively integrate
them in the CE generation.
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Counterexample construction We develop an algorithm using bounds on
reachability probabilities, similar to the bounds used above. Let us assume that for
some set of realizations R and for every state s, we have bounds lbR(s), ubR(s),
such that for every r ∈ R we have lbR(s) ≤ P[Dr, s |= ♦T ] ≤ ubR(s). Such
bounds always exist (take 0 and 1). We see later how we compute these bounds.
In what follows, we fix r and denote Dr = (S, s0,P ). Let us assume Dr violates
a safety property ϕ ≡ P≤λ[♦T ]. The following definition is central:

Definition 6 (Rerouting). Let MC D = (S, s0,P ) with s�, s⊥ �∈ S, C ⊆ S
a set of expanded states and γ : S \C → [0, 1] a rerouting vector. The rerouting
of MC D w.r.t. C and γ is the MC D↓C[γ] = (S ∪ {s⊥, s�}, s0,PC

γ ) with:

PC
γ (s) =

⎧⎪⎨⎪⎩
P (s) if s ∈ C,

[s� �→ γ(s), s⊥ �→ (1−γ(s))] if s ∈ S\C,
[s �→ 1] if s ∈ {s�, s⊥}.

Essentially, D↓C[γ] extends the MC D with additional sink states s� and s⊥
and replaces all outgoing transitions of any non-expanded state s ∈ S\C by
a transition leading to s� (with probability γ(s)) and a complementary one to s⊥.
We consider s� to be the new target and let ϕ′ denote the updated property. The

transition s
γ(s)−−−→ s� may be considered a ‘shortcut’ that by-passes successors of

s and leads straight to target s� with probability γ(s). To ensure that D↓C[γ]
is a CE, the value γ(s) must be a lower bound on the reachability probability
from s in D. When constructing a CE for a singular MC, we pick γ = 0, whereas
when this MC is induced by a realization r ∈ R, we can safely pick γ = lbR. The
CE will be valid for every r′ ∈ R. It is a CE-modulo-R.

Algorithmically, we employ a state-exploration approach and therefore start
with C(0) = ∅, i.e., all states are initially rerouted. If this is a CE, we are
done. Otherwise, if the rerouting D↓C(0)[γ] satisfies ϕ′, then we ‘expand’ some
states to obtain a CE. Naturally, we must expand reachable states to change the
satisfaction of ϕ. By expanding some state s ∈ S, we abandon the abstraction

associated with the shortcut s
γ(s)−−−→ s� and replace it with concrete behavior that

was inherent to state s in MC D. Expanding a state cannot decrease the induced
reachability probability as lbR is a valid lower bound. This gradual expansion
of the reachable state space continues until for some C ⊆ S the corresponding
rerouting D↓C[γ] violates ϕ′. This gradual expansion process terminates as
D↓S[γ] ≡ D and our assumption is D �|= ϕ. We show this process on an example.

Example 1. Reconsider D in Fig. 3 with ϕ ≡ P≤0.3[♦{t}]. Using the method

outlined below we get: lbR = [s0 �→ 0.2, s1 �→ 0.6, s2 �→ 0.2, t �→ 1, f �→ 0]. In
absence of any bounds, the CE is {s0, s1, t}. Consider the gradual rerouting
approach: We set γ = lbR, C(0) = ∅ and have D(0) := Dr0↓C(0)[γ], see Fig. 4(a).
Verifying this MC against ϕ′ = P≤0.3[♦T ∪{s�}] yields P[D(0), s0 |= ♦T ∪{s�}] =
γ(s0) = 0.2 ≤ 0.3, i.e., the set C(0) is not a CE. We now expand the initial state,
i.e., C(1) = {s0} and let D(1) := Dr0↓C(1)[γ], see Fig. 4(b). Verifying D(1) yields
P[D(1), s0 |= ♦T ∪ {s�}] = 1 · γ(s1) = 0.6 > 0.3. Thus, the set C(1) is critical
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Fig. 4. Finding a CE to Dr0 and ϕ from Fig. 3 using the rerouting vector γ = lbR.

Algorithm 1: Counterexample construction based on rerouting.

Input :An MC Dr a property ϕ ≡ P��λ[♦T ] s.t. Dr �|= ϕ, a rerouting vector γ.
Output :A conflict K for Dr and ϕ.

1 i ← 0, K(i) ← ∅
2 while true do

3 C(i), H(i) ← reachableViaHoles(Dr,K
(i))

4 D(i) ← Dr↓C(i)[γ]

5 if P[D(i) |= ♦T ∪ {s�}] �
� λ then return K(i);

6 s ← chooseToExpand(H(i),K(i))

7 K(i+1) = K(i) ∪ supp(B(s))
8 i ← i+ 1

9 end while

and the corresponding conflict is KC(1) = supp(s0) = {X}. This is smaller than
the naively computed conflict {X,Y }.

Greedy state expansion strategy Recall from Fig. 2 that for an MC Dr

with Dr �|= ϕ, multiple CEs may exist inducing different conflicts. An efficient
expansion strategy should yield a CE that induces a small amount of relevant
parameters (to prune more family members) and this CE is preferably obtained
by a small number of model-checking queries. The method presented in Alg. 1
meets these criteria. The algorithm expands multiple states between subsequent
model checks, while expanding only states that are associated with parameters
that are relevant. In particular, in each iteration, we keep track of the set K(i)

of relevant parameters optimistically starting with K(0) = ∅. We compute (see
line 3) the set C(i) of states that are reachable from the initial state via states
which are associated only with relevant parameters in K(i), i.e., via states for
which supp(B(s)) ⊆ K(i). Here, H(i) represents a state exploration ‘horizon’: the
set of states reachable from C(i) but containing some (still) irrelevant parameters.
We then construct the corresponding rerouting D↓C(i)[γ] and check whether it is
a CE. Otherwise, we greedily choose a state s from the horizon H(i) containing
the least number of irrelevant parameters and add these parameters to our
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Learner CE-OracleAbstr-Oracle

R D, ΦD, Φ

r ∈ R+bounds

R′ ⊆ R violate Φ

R′ ⊆ R

bounds or R′ violates

r |= Φeach r ∈ R′, r |= Φ no r |= Φ

Fig. 5. Conceptual hybrid (dual-oracle) synthesis
.

conflict (see line 7). The resulting conflict may not be minimal, but is computed
fast. Our algorithm applies to probabilistic liveness properties2 too using γ = ubR.

Computing bounds We compute lbR and ubR using an abstraction [10]. The
method considers some set R of realizations and computes the corresponding
quotient Markov decision process (MDP) that over-approximates the behavior of
all MCs in the family R. Model checking this MDP yields an upper and a lower
bound of the induced probabilities for all states over all realizations in R. That
is, Bound(D,R) computes lbR ∈ RS and ubR ∈ RS such that for each s ∈ S:

lbR(s) ≤ min
r∈R

P[Dr, s |= ♦T ] ≤ max
r∈R

P[Dr, s |= ♦T ] ≤ ubR(s).

To allow for refinement, two properties are crucial (with point-wise inequalities):

1. lbR ≤ lbR
′
∧ ubR ≥ ubR

′
for R′ ⊆ R and 2. lb{r} = ub{r} for r ∈ R.

In [10], the abstraction and refinement together define an abstraction-refinement
loop (AR) that addresses the feasibility problem. In the worst case, this loop
analyses 2 · |R| quotient MDPs, which (as of now) may be arbitrarily larger than
the number of family members they represent.

5 Hybrid Dual-Oracle Synthesis

We introduce an extended synthesis loop in which the abstraction-based reasoning
is used to prune the family R, and to accelerate the CE-based oracle from Sect. 4.
The intuitive idea is outlined in Fig. 5. Note that if the CE-based oracle is not
exploited, we emulate AR (explained in computing bounds above), whereas if
the abstraction oracle is not used, we emulate CEGIS (with the novel oracle).

Let us motivate combining these oracles in a flexible way. The naive version
outlined in the previous section assumed a single abstraction step, and invokes
CEGIS with the bounds obtained from that step. Evidently, the better (tighter)
the bounds γ, the better the CEs. However, the abstraction-based bounds for R
may be very loose. These bounds can be improved by splitting the set R and
using the bounds on the two sub-families. The idea is to run a limited number of

2 Some care is required regarding loops, see [9].
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Algorithm 2: Hybrid (dual-oracle) synthesis.

Input :A family D, a reachability property ϕ.
Output :Either a member r in D with r |= ϕ, or no such r exists in D

1 R ← {RD} ; // each analysed (sub-)family also holds bounds

2 δCEGIS ← 1 ; // time allocation factor for CEGIS

3 while true do

4 result,R′
, σAR, tAR ←AR.run(R, ϕ)

5 if result.decided() then return result;
6 CEGIS.setTimeout(tAR · δCEGIS)

7 result, σCEGIS ,R
′′ ← CEGIS.run(R′

, ϕ)
8 if result.decided() then return result;
9 δCEGIS ← σCEGIS/σAR

10 R ← R′′

11 end while

AR steps and then invoke CEGIS. Our experiments reveal that it can be crucial
to be adaptive, i.e., the integrated method must be able to detect at run time
when to switch.

The proposed hybrid method switches between AR and CEGIS, where we
allow for refining during the AR phase and use the obtained refined bounds
during CEGIS. Additionally, we estimate the efficiency σ (e.g., the number of
pruned MCs per time unit) of the two methods and allocate more time t to the
method with superior performance. That is, if we detect that CEGIS prunes
sub-families twice as fast as AR, we double the time in the next round for
CEGIS. The resulting algorithm is summarized in Alg. 2. Recall that AR (at
line 5) takes one family from R, either solves it or splits it and returns the set

of undecided families R′
. In contrast, CEGIS processes multiple families from

R′
until the timeout and then returns the set of undecided families R′′

. This
workflow is motivated by the fact that one iteration of AR (i.e., the involved
MDP model-checking) is typically significantly slower that one CEGIS iteration.

Remark 1. Although the developed framework for integrated synthesis has been
discussed in the context of feasibility with respect to a single property ϕ, it
can be easily generalized to handle multiple-property specifications as well as
to treat optimal synthesis. Regarding multiple properties, the idea remains the
same: Analyzing the quotient MDP with respect to multiple properties yields
multiple probability bounds. After initiating a CEGIS-loop and obtaining an
unsatisfiable realization, we can construct a separate conflict for each unsatisfied
property, while using the corresponding probability bound to enhance the CE
generation process. Optimal synthesis is handled similarly to feasibility, but, after
obtaining a satisfiable solution, we update the optimizing property to exclude this
solution: e.g., for maximal synthesis this translates to increasing the threshold of
the maximizing property. Having exhausted the search space of family members,
the last obtained solution is declared to be the optimal one.
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model |K| |RD| MDP size avg. MC size

Grid 8 65k 11.5k 1.2k
Maze 20 1M 9k 5.4k
DPM 16 43M 9.5k 2.2k

model |K| |RD| MDP size avg. MC size

Pole 17 1.3M 6.6k 5.6k
Herman 8 0.5k 48k 5.2k
Herman∗ 7 3.1M 6k 1k

Table 1. Summary of the benchmarks and their statistics

6 Experimental evaluation

Implementation. We implemented the hybrid oracle on top of the probabilistic
model checker Storm [18]. While the high-performance parts were implemented
in C++, we used a python API to flexibly construct the overall synthesis loop.
For SMT solving, we used Z3 [29]. The tool chain takes a PRISM [27] or JANI [6]
sketch and a set of temporal properties, and returns a satisfying realization, if
such exists, or outputs that such realization does not exist. The implementation
in the form of an artefact is available at https://zenodo.org/record/4422543.

Set-up. We compare the adaptive oracle-guided synthesis with two state-of-the-art
synthesis methods: program-level CEGIS [9] using a MaxSat CE generation [16,41]
and AR [10]. These use the same architecture and data structures from Storm.
All experiments are run on an Ubuntu 19.04 machine with Intel i5-8300H (4
cores at 2.3 GHz) and using up to 8 GB RAM, with all the algorithms being
executed on a single thread. The benchmarks consists of five different models,
see Table 1, from various domains that were used in [9,10]. As opposed to the
benchmark considered in [9,10], we use larger variants of Grid and Herman to
better demonstrate differences in the performance of individual methods.

To investigate the scalability of the methods, we consider a new variant of the
Herman model, that allows us to scale the number of randomization strategies
and thus the family size. In particular, we will compare performance on two
instances of different sizes: small Herman∗ (5k members) and large Herman∗

(3.1M members, other statistics are reported in Table 1).
To reason about the pruning efficiency of different synthesis methods, we

want to avoid feasible synthesis problems, where the order of family exploration
can lead to inconsistent performance. Instead, we will primarily focus on non-
feasible problems, where all realizations need to be explored in order to prove
unsatisfiability. The experimental evaluation is presented in three parts. (1) We
evaluate the novel CE construction method and compare it with the MaxSat-based
oracle from [9]. (2) We compare the hybrid synthesis loop with the two baselines
AR and CEGIS. (3) We consider novel hard synthesis instances (multi-property
synthesis, finding optimal programs) on instances of the model Herman∗.

Comparing CE construction methods We consider the quality of the CEs
and their generation time. In particular, we want to investigate (1) whether using
CEs-modulo-families yields better CEes, (2) how the quality of CEs from the smart
oracle compares to the MaxSat-based oracle, and how their time consumption
compares. As a measure of quality of a CE, the average number of its relevant
parameters w.r.t. the total number of its parameters is taken. That is, smaller

https://zenodo.org/record/4422543
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model
CE quality performance

MaxSat [16]
state expansion (new) CEGIS [9] AR [10] Hybrid (new)

trivial non-trivial iters time iters time iters time

Grid
0.59 (0.025) 0.50 (0.001) 0.50 613 30 5325 486 (285, 11) 6

∗ 0.74 (0.026) 0.65 (0.001) 0.65 1801 93 6139 540 (2100, 127) 33

Maze
0.21 (0.247) 0.55 (0.009) 0.38 290 5449 49 17 (105, 13) 7

∗ 0.24 (2.595) 0.63 (0.012) 0.46 301 6069 63 26 (146, 17) 9

DPM
0.32 (0.447) 0.61 (0.007) 0.53 2906 2488 299 25 (631, 143) 23

∗ 0.33 (0.525) 0.49 (0.006) 0.42 3172 2782 1215 81 (2374, 545) 76

Pole
- 0.87 (0.062) 0.16 - - 309 12 (3, 5) 1

∗ - 0.54 (0.041) 0.29 - - 615 23 (80, 61) 6

Herman
- 0.91 (0.011) 0.50 - - 171 86 (24, 1) 9

∗ - 0.88 (0.016) 0.87 - - 643 269 (485, 13) 29

Table 2. CE quality for different methods and performance of three synthesis methods.
For each model/property, we report results for two different thresholds where the
symbol ‘∗’ marks the one closer to the feasibility threshold, representing the more
difficult synthesis problem. Symbol ‘-’ marks a two-hour timeout. CE quality: The
presented numbers give the CE quality (i.e., the smaller, the better). The numbers in
parentheses represent the average run-time of constructing one CE in seconds (run-times
for constructing CE using non-trivial bounds are similar as for trivial ones and are thus
not reported). Performance: for each method, we report the number of iterations (for
the hybrid method, the reported values are iterations of the CEGIS and AR oracle,
respectively) and the run-time in seconds.

ratios imply better CEs. To measure the influence of using CEs-modulo-families,
two types of bounds are used: (i) trivial bounds (i.e., γ = 0 for safety and γ = 1
for liveness properties), and (ii) non-trivial bounds corresponding to the entire
family RD representing the most conservative estimate. The results are reported
in (the left part of) Table 2. In the next subsection, we investigate this same
benchmark from the point of view of the performance of the synthesis methods,
which also shows the immediate effect of the new CE generation strategy.

The first observation is that using non-trivial bounds (as opposed to trivial
ones) for the state expansion approach can drastically decrease the conflict
size. It turns out that the CEs obtained using the greedy approach are mostly
larger than those obtained with the MaxSat method. However (see Grid), even
for trivial bounds, we may obtain smaller CEs than for MaxSat: computing
a minimal-command CE does not necessarily induce an optimal conflict. On
the other hand, comparing the run-times in the parentheses, one can see that
computing CEs via the greedy state expansion is orders of magnitude faster than
computing command-optimal ones using MaxSat. It is good to realize that the
greedy method makes at most |K| model-checking queries to compute CEs, while
the MaxSat method may make exponentially many such queries. Overall, the
greedy method using the non-trivial bounds is able to obtain CEs of comparable
quality as the MaxSat method, while being orders of magnitude faster.
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Performance comparison with AR/CEGIS We compare the hybrid synthe-
sis loop from Sect. 5 with two state-of-the-art baselines: CEGIS and AR. The
results are displayed in (the right half of) Table 2. In all 10 cases, the hybrid
method outperforms the baselines. It is up to an order of magnitude faster.

Let us discuss the performance of the hybrid method. We classify benchmarks
along two dimensions: (1) the performance of CEGIS and (2) the performance of
AR. Based on the empirical performance, we classify (Grid) as good-for-CEGIS
(and not for AR), Maze, Pole and DPM as good-for-AR (and not for CEGIS),
and Herman as hard (for both). Roughly, AR works well when the quotient
MDP does not blow up and its analysis is precise due to consistent schedulers,
i.e., when the parameter dependencies are not crucial for a precise analysis.
CEGIS performs well when the CEs are small and fast to compute. On the other
hand, synthesis problems for which neither pure CEGIS nor pure AR are able to
effectively reason about non-trivial subfamilies, inherently profit from a hybrid
method. The main point we want to discuss is how the hybrid method reinforces
the strengths of both methods, rather than their weaknesses.

In the hybrid method, there are two factors that determine the efficiency:
(i) how fast do we get bounds on the reachability probability that are tight enough to
enable construction of good counterexamples? and (ii) how good are the constructed
counterexamples? The former factor is attributed to the proposed adaptive scheme
(see Alg. 2), where the method will prefer AR-like analysis and continue refinement
until the computed bounds allow construction of small counterexamples. The
latter is reflected above. Let us now discuss how these two aspects are reflected
in the benchmarks.

In good-for-CEGIS benchmarks like Grid, after analyzing a quotient MDP
for the whole family, the hybrid method mostly profits from better CEs yielding
better bounds, thus outperforming CEGIS. Indeed, the CEs are found so fast
that the bottleneck is no longer their generation. This also explains why the
speedup is not immediately translated to the speedup on the overall synthesis
loop. In the good-for-AR benchmark DPM, the hybrid method provides only a
minor improvement as it has to perform a large number of AR-iterations before
the novel CE-based pruning can be effectively used. This can be considered as the
worst-case scenario for the hybrid method. On other good-for-AR benchmarks
like Maze and Pole, the good performance on AR allows to quickly obtain tight
bounds which can then be exploited by CEGIS. Finally, in hard models like
Herman, abstraction-refinement is very expensive, but even the bounds from the
first round yield bounds that, as opposed to the trivial bounds, now enable good
CEs: CEGIS can keep using these bounds to quickly prune the state space.

More complicated synthesis problems Our new approach can push the
limits of synthesis benchmarks significantly. We illustrate this by considering a
new variant of the Herman model, Herman∗, and a property imposing an upper
bound on the expected number of rounds until stabilization. We put this bound
just below the optimal (i.e., the minimal) value, yielding a hard non-feasible
problem. The synthesis results are summarized in Table 3. As CEGIS performs
poorly on Herman, it is excluded here.
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synthesis AR Hybrid
problem iters time iters time

feasibility 81 30s (274, 1) 7s
two properties 97 38s (274, 1) 8s
optimality 531 150s (571, 7) 12s

synthesis AR Hybrid
problem iters time iters time

feasibility 69k 47h (14280, 2) 13.4m
optimality 83k 55h (16197, 3) 16.8m
5%-optimality 60k 42h (6421, 7) 5.1m

Table 3. The impact of scaling the family size (of the Herman∗ model) and handling
more complex synthesis problems. The left part shows the results for the smaller variant
(5k members), the right part for the larger one (3.1M members).

First, we investigate on small Herman∗ how the methods can handle the
synthesis for multi-property specifications. We add one feasible property to the
(still non-feasible) specification (row ‘two properties’). While including more
properties typically slows down the AR computation, the performance of the
hybrid method is not affected as the corresponding overhead is mitigated by
additional pruning opportunities. Second, we consider optimal synthesis for the
property as used in the feasibility synthesis. The hybrid method requires only
a minor overhead to find an optimal solution compared to checking feasibility.
This overhead is significantly larger for AR.

Next, we consider larger Herman∗ model having significantly more randomiza-
tion strategies (3.1M members) that include solutions leading to a considerably
faster stabilization. This model is out of reach for existing synthesis approaches:
one-by-one enumeration takes more than 27 hours and the AR performs even
worse—solving the feasibility and optimality problems requires 47 and 55 hours,
respectively. On the other hand, the proposed hybrid method is able to solve
these problems within minutes. Finally, we consider a relaxed variant of optimal
synthesis (5%-optimality) guaranteeing that the found solution is up to 5% worse
than the optimal. Relaxing the optimally criterion speeds up the hybrid synthesis
method by about a factor three.

These experiments clearly demonstrate that scaling up the synthesis problem
several orders of magnitude renders existing synthesis methods infeasible: they
need tens of hours to solve the synthesis problems. Meanwhile, the hybrid method
tackles these difficult synthesis problems without significant penalty and is capable
of producing a solution within minutes.

7 Conclusion

We present a novel method for the automated synthesis of probabilistic programs.
Pairing the counterexample-guided inductive synthesis with the deductive oracle
using an MDP abstraction, we develop a synthesis technique enabling faster
construction of smaller counterexamples. Evaluating the method on case studies
from different domains, we demonstrate that the novel CE construction and the
adaptive strategy lead to a significant acceleration of the synthesis process. The
proposed method is able to reduce the run-time for challenging problems from
days to minutes. In our future work, we plan to investigate counterexamples on
the quotient MDPs and improve the abstraction refinement strategy.
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10. Češka, M., Jansen, N., Junges, S., Katoen, J.P.: Shepherding hordes of Markov
chains. In: TACAS (2). LNCS, vol. 11428, pp. 172–190. Springer (2019)

11. Chatzieleftheriou, G., Katsaros, P.: Abstract model repair for probabilistic systems.
Inf. Comput. 259(1), 142–160 (2018)

12. Chonev, V.: Reachability in augmented interval Markov chains. In: RP’2019. LNCS,
vol. 11674, pp. 79–92. Springer (2019)
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J.P., Ábrahám, E.: PROPhESY: A PRObabilistic ParamEter SYNnthesis Tool. In:
CAV’15. LNCS, vol. 9206, pp. 214–231. Springer (2015)

18. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: CAV. LNCS, vol. 10427, pp. 592–600. Springer
(2017)



208 R. Andriushchenko et al.

19. Funke, F., Jantsch, S., Baier, C.: Farkas certificates and minimal witnesses for
probabilistic reachability constraints. In: TACAS (1). LNCS, vol. 12078, pp. 324–345.
Springer (2020)

20. Gerasimou, S., Calinescu, R., Tamburrelli, G.: Synthesis of probabilistic models for
quality-of-service software engineering. Autom. Softw. Eng. 25(4), 785–831 (2018)

21. Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. & Softw. Technol. 55(3), 508–524 (2013)

22. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. on Softw. Tools for Technol. Transf. 13(1), 3–19 (2011)

23. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends,
techniques and applications. ACM Comp. Surveys 45(1), 11:1–11:61 (2012)

24. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)

25. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE. p. 215–224. ACM (2010)

26. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic verification of Herman’s
self-stabilisation algorithm. Formal Aspects of Computing 24(4), 661–670 (2012)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011)

28. Lanna, A., Castro, T., Alves, V., Rodrigues, G., Schobbens, P.Y., Apel, S.: Feature-
family-based reliability analysis of software product lines. Inf. and Softw. Technol.
94, 59–81 (2018)

29. Lindemann, C.: Performance modelling with deterministic and stochastic Petri nets.
SIGMETRICS Perform. Eval. Rev. 26(2), 3 (1998)

30. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: AAAI/IAAI.
pp. 541–548. AAAI Press / The MIT Press (1999)

31. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW. pp. 105–116. ACM (2010)

32. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of
probabilistic programs. In: PLDI’14. pp. 208–217. ACM (2015)

33. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs.
Springer Briefs in Intelligent Systems, Springer (2016)
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