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Abstract. Parametric Markov chains (pMCs) are Markov chains with
symbolic (aka: parametric) transition probabilities. They are a convenient
operational model to treat robustness against uncertainties. A typical
objective is to find the parameter values that maximize the reachability
of some target states. In this paper, we consider automatically proving
robustness, that is, an ε-close upper bound on the maximal reachability
probability. The result of our procedure actually provides an almost-
optimal parameter valuation along with this upper bound.
We propose to tackle these ETR-hard problems by a tight combination
of two significantly different techniques: monotonicity checking and pa-
rameter lifting. The former builds a partial order on states to check
whether a pMC is (local or global) monotonic in a certain parameter,
whereas parameter lifting is an abstraction technique based on the itera-
tive evaluation of pMCs without parameter dependencies. We explain our
novel algorithmic approach and experimentally show that we significantly
improve the time to determine almost-optimal synthesis.

1 Introduction

Background and problem setting. Probabilistic model checking [3,20] is a well-
established field and has various applications but assumes probabilities to be
fixed constants. To deal with uncertainties, symbolic parameters are used. Para-
metric Markov chains (pMCs, for short) define a family of Markov chains with
uncountably many family members, called instantiations, by having symbolic
(aka: parametric) transition probabilities [10,22]. We are interested in determining
optimal parameter settings: which instantiation meets a given objective the best?
The typical objective is to maximize the reachability probability of a set of target
states. This question is inspired by practical applications such as: what are the
optimal parameter settings in randomised controllers to minimise power consump-
tion?, and what is the optimal bias of coins in a randomised distributed algorithm
to maximise the chance of achieving mutual exclusion? For most applications,
it suffices to achieve parameters that attain a given quality of service that is
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ε-close to the unknown optimal solution. More precisely, this paper concentrates
on automatically proving ε-robustness, i.e., determine an upper bound which is
ε-close to the maximal reachability probability. The by-product of our procedure
actually provides an almost-optimal parameter valuation too.

Existing parameter synthesis techniques. Efficient techniques have been developed
in recent years for the feasibility problem: given a parametric Markov chain, and
a reachability objective, find an instantiation that reaches the target with at
least a given probability. To solve this problem, it suffices to “guess” a correct
family member, i.e., a correct parameter instantiation. Verifying the “guessed”
instantiation against the reachability objective is readily done using off-the-
shelf Markov chain model-checking algorithms. Most recent progress is based on
advanced techniques that make informed guesses: This ranges from using sampling
techniques [14], guided sampling such as particle swarm optimisation [7], by greedy
search [24], or by solving different variants of a convex optimisation problem
around a sample [8, 9]. Sampling has been accelerated by reusing previous model
checking results [25], or by just in time compilation of the parameter function [12].
These methods are inherently inadequate for finding optimal parameter settings.
To the best of our knowledge, optimal parameter synthesis has received scant
attention so far. A notable exception is the analysis (e.g., using SMT techniques) of
rational functions, typically obtained by some form of state elimination [10,12,15],
that symbolically represent reachability probabilities in terms of the parameters.
These functions are exponential in the number of parameters [16] and become
infeasible for more than two parameters. Parameter lifting [5, 6, 25] remedies this
by using an abstraction technique, but due to an exponential blow-up of region
splitting, is limited to a handful of parameters. The challenge is to solve optimal
parameter synthesis problems with more parameters.

Approach. We propose to tackle the optimal synthesis problem by a deep inte-
gration of two seemingly unrelated techniques: monotonicity checking [27] and
parameter lifting [25]. The former builds a partial order on the state space to
check whether a pMC is (local or global) monotonic in a certain parameter, while
the latter is an abstraction technique that “lifts” the parameter dependencies, ob-
taining interval MCs [17,21], and solves them in an iterative manner. To construct
an efficient combination, we extend both methods such that they profit from
each other. This is done by combining them with a tailored divide-and-conquer
component, see Fig. 1. To prove bounds on the induced reachability probability,
parameter lifting has been the undisputed state-of-the-art, despite the increased
attention that parameter synthesis has received over recent years. This paper
improves parameter lifting with more advanced reasoning capabilities that involve
properties of the derivative, rather than the actual probabilities. These reason-
ing methods enable reducing the exponent of the inherently exponential-time
procedure. This conceptual advantage is joined with various engineering efforts.
Parameter lifting is accelerated by using side products of monotonicity analysis
such as local monotonicity and shrinked parameter regions. Furthermore, bounds
obtained by parameter lifting are used to obtain a cheap rule accelerating the
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Divide and Conquer
Sect. 6

Parameter Lifting
Sect. 5

Monotonicity Checking
Sect. 4

local monotonicity

state bounds

region value monotone pars.

region region

Fig. 1. The symbiosis of parameter lifting and monotonicity checking. Red are new
interactions, compared to earlier work. Details are given in Sect. 3.

monotonicity checker. The interplay between the two advanced techniques is
tricky and requires a careful treatment.

Note that we are not the first to exploit monotonicity in the context of
pMCs. Hutschenreiter et al. [16] showed that the complexity of model checking (a
monotone fragment of) PCTL on monotonic pMC is lower than on general pMCs.
Pathak et al. [24] provided an efficient greedy approach to repair monotonic
pMCs. Recently, Gouberman et al. [13] used monotonicity for hitting probabilities
in perturbed continuous-time MCs.

Experimental results. We realised the integrated approached on top of the
Storm [11] model checker. Experiments on several benchmarks show that opti-
mal synthesis is possible: (1) on benchmarks with up to about a few hundred
parameters, (2) on benchmarks that cannot be handled without monotonicity,
(3) while accelerating pure parameter lifting by up to two orders of magnitude.
Our approach induces a bit of overhead on small instances for some benchmarks,
and starts to pay off when increasing the number of parameters.

Main contribution. In summary, the main contribution of this paper is a tight
integration of parameter lifting and monotonicity checking. Experiments indicate
that this novel combination substantially improves upon the state-of-the-art in
optimal parameter synthesis.

Organisation of the paper. Section 2 provides the necessary technical background
and formalises the problem. Section 3 explains the approach—in particular the
meaning of the arrows in Fig. 1. Section 4 discusses how to state bounds can
be exploited in the monotonicity checker. Section 5 details how to exploit local
monotonicity in parameter lifting. Section 6 then considers the tight interplay via
the divide-and-conquer method. Section 7 reports on the experimental results of
our prototypical implementation in Storm while Section 8 concludes the paper.

2 Problem Statement

A probability distribution over a finite or countably infinite set X is a function
μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = 1. The set of all distributions on X is

denoted by Distr(X). Let �a ∈ Rn denote (a1, . . . , an). The set of multivariate
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polynomials over ordered variables �x = (x1, . . . , xn) is denoted Q[�x]. For a
polynomial f and variable x, we write x ∈ f if the variable occurs in the
polynomial f . An instantiation for a finite set V of real-valued variables is a
function u : V → R. We often denote u as a vector �u ∈ Rn with ui := u(xi) for
xi ∈ V . A polynomial f can be interpreted as a function f : Rn → R, where f(�u)
is obtained by substitution, i.e., f [�x ← �u], where each occurrence of xi in f is
replaced by u(xi).

Definition 1 (pMC). A parametric Markov Chain (pMC) is a tuple M =
(S, sI , T , V ,P) with a finite set S of states, an initial state sI ∈ S, a finite set
T ⊆ S of target states, a finite set V of real-valued variables (parameters) and
a transition function P : S × S → Q[V ].

A pMC M is a (discrete-time) Markov chain (MC) if the transition function
yields well-defined probability distributions, i.e., P(s, ·) ∈ Distr(S) for each s ∈ S.
Applying an instantiation �u to a pMCM yieldsM[�u] by replacing each f ∈ Q[V ]
in M by f(�u). An instantiation �u is well-defined (for M) if M[�u] is an MC.
A well-defined instantiation �u is graph-preserving (for M) if the topology is
preserved, i.e., P(s, s′) �= 0 implies P(s, s′)(�u) �= 0 for all states s and s′. A set
of instantiations is called a region. A region R is well-defined (graph-preserving)
if �u is well-defined (graph-preserving) for all �u ∈ R. In this paper, we consider
only graph-preserving regions.

For a parameter-free MC M, PrsM(♦T ) ∈ [0, 1] ⊆ R denotes the probability
that from state s the target T is eventually reached. For a formal definition, we
refer to, e.g., [4, Ch. 10]. For pMC M, PrsM(♦T ) is not a constant, but rather a
function Prs→T

M : V → [0, 1], with Prs→T
M (�u) = PrsM[�u](♦T ). The closed-form of

Prs→T on a graph-preserving region is a rational function over V , i.e., a fraction
of two polynomials over V . On a graph-preserving region, the function Prs→T

is continuously differentiable [25]. We call Prs→T
M the solution function, and for

conciseness, we often omit the subscript M. Graph-preserving instantiations
�u, �u′ preserve zero-one probabilities, i.e., Prs→T (�u) = 0 implies Prs→T (�u′) = 0,
and analogous for =1. We simply write Prs→T = 0 (or =1). Let ( ) denote all
states s ∈ S with Prs→T = 1 (Prs→T = 0). By a standard preprocessing [4], we
may safely assume a single and state.

Problem statement. This paper is concerned with the following questions for a
given pMC M with target states T , and region R:

Optimal synthesis. Find the instantiation �u∗ such that

�u∗ = argmax
�u∈R

PrM[�u](♦T )

ε-Robustness. Given tolerance ε ≥ 0, find an instantiation �u∗ such that

max
�u∈R

PrM[�u](♦T )−ε ≤ PrM[�u∗](♦T ) ≤ max
�u∈R

PrM[�u](♦T ) .
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s0 s1
p 1−p1−p

p

(a) M1

s0 s1
1/3 2/32/3

1/3

(b) M1[�u], �u = {p �→ 1/3}

s0 s1
p p1−p

1−p

(c) M2

Fig. 2. Toy examples for pMCs.

The optimal synthesis problem is ETR-hard [28], i.e., as hard as finding a
root of a multivariate polynomial. It is thus NP-hard and in PSPACE. The same
applies to ε-robustness. The value of λ can be viewed as the optimal reachability
probability of T — up to the robustness tolerance ε — over all possible parameter
values while �u∗ is the instantiation that maximises the probability to reach T .

Like [28], we assume pMCs to be simple, i.e., P(s, s′) ∈ {x, 1−x | x ∈ V } ∪Q
for all s, s′ ∈ S and

∑
s′ P(s, s′) = 1. Theoretically, the above problem for simple

pMCs is as hard as for general pMCs, and practically, most pMCs are simple.
For simple pMCs, the graph-preserving instantiations are in (0, 1)|V |. Regions are
assumed to be well-defined, rectangular and closed, i.e., a region is a Cartesian
product of closed intervals, R =×x∈V

[�x, ux]. Let R(x) denote the interval
[�x, ux] and occur(s) the set of variables {x ∈ V | ∃s′ ∈ S. x ∈ P(s, s′)}. For
simple pMCs, this set has cardinality at most one. A state s is called parametric,
if occur(s) �= ∅; we write occur(s) = x if {x} = occur(s).

Example 1. Fig. 2(a) depicts a pMC. A region R is given by p ∈ [1/4, 1/2]. An
instantiation �u = {p �→ 1/3} ∈ R yields the pMC in Fig. 2(b). The solution
function is Prs0→T

M1
= p · (1− p). Indeed Prs0→T

M1
(�u) = 2/9 = PrM1[�u](♦T ).

3 Main Ingredients in a Nutshell

To solve the problem statement, we consider an iterative method which analyzes
regions, and, if necessary, splits these regions. In particular, we combine two
approaches — parameter lifting and monotonicity checking — as shown in Fig. 1.

3.1 The Monotonicity Checker

We consider local and global monotonicity. We start with defining the latter.

Definition 2 (Global monotonicity). A continuously differentiable function f

on region R is monotonic increasing in variable x, denoted f↑Rx , if
∂

∂x
f(�u) ≥ 0 for

all �u ∈ R3. The pMC M = (S, sI , T , V ,P) is monotonic increasing in parameter
x ∈ V on graph-preserving region R, written M↑Rx , if PrsI→T ↑Rx .
3 To be precise, on the interior of the closed set R.
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s0 s1
p 1−q1−p

q

(a) M3

s0 s1
[1/3, 1/2] [1/4, 3/5][1/2, 2/3]

[2/5, 3/4]

(b) M3, R s.t. p ∈ [1/3, 1/2], q ∈ [2/5, 3/4]

Fig. 3. Simple pMC that indeed is an iMC.

Monotonic decreasing, written M↓Rx , is defined analogously. Let succ(s) = {s′ ∈
S | P(s, s′) �= 0} be the set of direct successors of s. Given the recursive equation

Prs→T =
∑

s′∈succ(s) P(s, s′) · Pr
s′→T for state s �= , , we have

M↑Rx iff
∂

∂x

⎛⎝ ∑
s′∈succ(s)

P(s, s′) · Prs
′→T

⎞⎠(�u) ≥ 0 ,

for all �u ∈ R. Rather than checking global monotonicity, the monotonicity checker
determines a subset of the locally monotone state-parameter pairs. Such pairs
intuitively capture monotonicity of a parameter only locally at a state s.

Definition 3 (Local monotonicity). Function Prs→T is locally monotonic
increasing in parameter x (at state s) on region R, written Prs→T ↑�,Rx , if

∀�u ∈ R.

⎛⎝ ∑
s′∈succ(s)

(
∂

∂x
P(s, s′)

)
· Prs

′→T

⎞⎠ (�u) ≥ 0.

Thus, while global monotonicity considers the derivative of the entire solution
function, local monotonicity (in s) only considers the derivative of the first
transition (emanating from s). Local monotonicity of parameter x in every state
implies global monotonicity of x, as shown in [27]. As checking global monotonicity
is co-ETR hard [27], a practical approach is to check sufficient conditions for
monotonicity. These conditions are based on constructing a pre-order on the
states of the pMC; this is explained in detail in Section 4.

Example 2. For R = {�u(p) ∈ [1/10, 9/10]}, pMC M1 in Fig. 2(a) is locally mono-
tonic increasing in p at s0 and locally monotonic decreasing in p at s1. From
this, we cannot conclude anything about global monotonicity of p on R. In-
deed, the pMC is not globally monotonic on R. M1 is globally monotonic on
R′ = {�u(p) ∈ [1/10, 1/2]}, but this cannot be concluded from the statement above.
Contrarily, the pMC M2 in Fig. 2(c) is locally monotonic increasing in p at both
s0 and s1, and is therefore globally monotonic increasing in p.

3.2 The Parameter Lifter

The key idea of parameter lifting [25] is to drop all parameter dependencies—
parameters that occur at multiple states in a pMC—by introducing fresh param-
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eters. The outcome is an interval Markov chain [17, 21], which can be considered
a special case of pMCs in which no parameter occurs at multiple states.

Definition 4 (Interval MC). A pMC is a (simple) interval MC (iMC), if
occur(s) ∩ occur(s′) = ∅ for all states s �= s′.

All iMCs in this paper are simple. We typically label transitions emanating from
state s in an iMC with x = occur(s) by R(x) = [�x, ux].

Example 3. The pMC in Fig. 3(a) is an iMC. For a fixed R, the typical notation
is given in Fig. 3(b). For the pMC M1 in Fig. 2(a), the parameter p occurs at
states s0 and s1, so that this pMC is not an iMC.

Definition 5 (Relaxation). The relaxation of simple pMC M=(S,sI , T , V ,P)
is the iMC relax(M) = (S, sI , T, V

′,P ′) with V ′ = {xs | s ∈ S, occur(s) �= ∅},
P ′(s, s′) = P(s, s′)[occur(s)← xs].

For state s with occur(s) = x, let relax(R)(xs) = R(occur(s)). Likewise, an
instantiation in �u ∈ R is mapped to relax(�u) by relax(�u)(xs) = �u(occur(s)).

Extremal reachability probabilities on iMCs are reached at the extremal
values of a region. Formally [25], for each state s and region R in pMC M:

max
�u∈R

Prs→T
M (�u) ≤ max

�u∈relax(R)
Prs→T

relax(M)(�u). (1)

This result is a direct consequence of local monotonicity at all states implying
global monotonicity. The extremal values for the reachability probabilities in the
obtained iMCs are obtained by interpreting the iMCs as MDPs and applying
off-the-shelf MDP model checking. We denote the right-hand side of (1) as upper
bound on R, denoted UR(s). Analogously we define a lower bound LR(s).

Example 4. The pMC M3 in Fig. 3(a) is the relaxation of the pMC M1 in
Fig. 2(a). Indeed, for R = {�u(p) ∈ [1/4, 3/4]}:

max
�u∈R

Prs0→T
M1

(�u) = 1/4 ≤ 9/16 = max
�u∈relax(R)

Prs0→T
M3

(�u).

3.3 Divide and Conquer

Figure 4 shows how the extremal value for region Rι, pMC M, reachability
property ϕ and precision ε can be computed using only parameter lifting [25]:
This paper extends this iterative approach to include monotonicity checking. The
main idea is to analyze regions and split them if the result is inconclusive. The
approach uses a queue of regions that need to be checked and the current extremal
value CurMax found so far. In particular, we maintain a lower bound on CurMax

and know a (potentially trivial) upper bound: (CurMax+ε) ≥ maxR̂∈Q UR̂(sI ).
We iteratively check regions and improve both bounds until a satisfactory solution
is found. Initially, the queue only contains Rι. For a selected R from the queue
we compute an upper bound UR with parameter lifting. If UR at the initial state
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Queue Q

Parameter Lifting

Guess �u ∈ R
update CurMax

Split R

Result: CurMax

R

if UR(sI ) ≤ CurMax, ∅

else, R

else, R

R1, . . . , Rn

if CurMax+ε ≥ maxR̂∈Q∪{R} UR̂(sI )

Fig. 4. Divide and conquer with pure parameter lifting

is below the current optimum, we can safely discard R. Otherwise, we want
attempt to improve CurMax by guessing u ∈ R and computing Prs→T

M (�u) using
model checking4. If Prs→T

M (�u) exceeds CurMax, we update CurMax. Now, we check
whether we can terminate:

In particular, let the maximum so far be bounded by maxR̂∈Q∪{R} UR̂(sI ). If
the upper bound is below CurMax+ε, we are done, and return CurMax together
with the u associated with CurMax. Otherwise, we continue and split R into
smaller regions. By default, parameter lifting splits R along all dimensions. This
algorithm converges in the limit [25].

Example 5. Reconsider Ex. 4, and assume we want to show max�u∈R Prs0→T
M1

(�u) ≤
1/4, with ε = 1/8. We sample in (the middle of) R and obtain CurMax = 1/4,
while the upper bound UR(sI ) from Ex. 4 is 9/16. We split R into two regions
R1 = {�u(p) ∈ [1/4, 1/2]} and R2 = {�u(p) ∈ [1/2, 3/4]}. Parameter lifting reveals
that for both regions the bound is 3/8. Thus, 1/4 is an epsilon-close instance.

The remainder of this paper integrates monotonicity checking in this loop.

This paper addresses three challenges: (Sect. 4): Using state bounds in
the monotonicity checker. (Sect. 5): Using local monotonicity in parameter
lifting. (Sect. 6) Integrating monotonicity in the divide and conquer loop.

4 A New Rule for Sufficient Monotonicity

As discussed in Section 3.1, we aim to analyse whether for a given region R,
parameter x is locally monotonic at state s. The key ingredient is a pre-order
on the states of the pMC at hand that is used for checking sufficient conditions
for being local monotonic. We define the pre-order and recap the “cheap” rules
for efficiently determining the pre-order as adopted from [27]. We add a new,
simple rule to this repertoire that lets us avoid the computationally “expensive”

4 Using an instantiation checker that reuses model-checking results from the last guess.
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rules using assumptions from [27]. The information needed to apply this new rule
readily comes from parameter lifting as we will see.

Ordering states for local monotonicity. Let us consider a conceptual example
showing how a pre-order on states can be used for determining local monotonicity.

Example 6. Consider the pMC M2 in Fig. 2(c). We reason backwards that both
states are locally monotone increasing in p. First, observe that has a higher
probability to reach the target (1) than (0). Now, in s1, increasing p will move
more probability mass to , and hence, it is locally monotone. Furthermore, we
know that the probability from s1 is between and . Now, for s0 we can use
that increasing p moves more probability mass to s1, which we know has a higher
probability to reach the target than .

As in [27], we determine local monotonicity by ordering states according to their
reachability probability.

Definition 6 (Reachability order). A relation (R,T ⊆ S×S is a reachability
order with respect to T ⊆ S and region R if for all s, t ∈ S:

s (R,T t implies
(
∀�u ∈ R. Prs→T (�u) ≤ Prt→T (�u)

)
.

The order (R,T is called exhaustive if the reverse implication also holds.

The relation (R,T is a reflexive (aka: non-strict) pre-order. The exhaustive
reachability order is the union of all reachability orders, and always exists. Unless
stated differently, let ( denote the exhaustive reachability order. If the successor
states of a state s are ordered, we can conclude local monotonicity in s:

Lemma 1. Let s, s1, s2 ∈ S with P(s, s1) = x and P(s, s2) = 1−x. Then:

for each region R: s2 (R,T s1 implies Prs→T ↑�,Rx .

This result suggests to look for a so-called “sufficient” reachability order:

Definition 7 (Sufficient reachability order). A reachability order ( is
sufficient for parameter x if for all states s with occur(s) = {x} and s1, s2 ∈
succ(s) it holds: (s1 ( s2 ∨ s2 ( s1).

Phrased differently, the reachability order ( is sufficient for x ∈ V if (succ(s),()
is a total order for all s that have transitions labelled with x. Observe that in
contrast to an exhaustive order, a sufficient order does not need to exist.

Ordering states efficiently. Def. 6 provides a conceptually simple scheme to order
states s1 and s2: compute the rational functions Prs1→T and Prs2→T , and compare
them. As the size of these multivariate rational functions can be exponential in
the number of parameters [16], this is not practically viable. To avoid this, [27]
has identified a set of rules that provide sufficient criteria to order states. Some
of these rules are conceptually based on the underlying graph of a pMC and are
computationally cheap; other rules reason about (a partial representation of) the
full rational function Prs1→T and are computationally expensive.
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(a) M4
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2/3

1/3

1/2

1/2

(b) M5

Fig. 5. Non-trivial pMCs for deducing monotonicity.

Example 7. Using bounds avoids expensive rules: See M4 in Fig. 5(a). Let
R = {�u(q) ∈ [1/2, 3/4], �u(p) ∈ [1/2, 2/3]}. Using the solution functions p2 + (1−p) · q
and q · (1−q) for s1 and s2 yields s2 ( s1 on R. Such a rule is expensive, but the
cheaper graph-based rules analogous to Ex. 6 are not applicable. However, when
we use bounds from parameter lifting, we obtain UR(s2) = 3/8 and LR(s1) = 1/2,
we observe UR(s2) ≤ LR(s1) and thus s2 ( s1 on R. Bounds also just simplify
graph-based reasoning, in particular in the presence of cycles. Consider M5: As
LR(s3) ≥ UR(s4), with reasoning similar to Ex. 6, it follows that s2 ( s1, and
we immediately get results about monotonicity.

Our aim is to avoid applying the expensive rules from [27] by imposing a new —
and thanks to parameter lifting — cheap rule. To obtain this rule, we assume for
state s and region R to have bounds LR(s) and UR(s) at our disposal satisfying

LR(s) ≤ Prs→T (�u) ≤ UR(s) for all �u ∈ R .

Such bounds can be trivially assumed to be 0 and 1 respectively, but the idea is
to obtain tighter bounds by exploiting the parameter lifter. This will be further
detailed in Section 5. A simple observation on these bounds yields a cheap rule
(provided these bounds can be easily obtained).

Lemma 2. For s1, s2 ∈ S and region R: LR(s1) ≥ UR(s2) implies s2 (R,T s1.

In the remainder of this section, we elaborate some technical details.

Algorithmic reasoning. The pre-order ( is stored by a representation of its Hasse
diagram, referred to as RO-graph. Evaluating whether two states are ordered
amounts to a graph search in the RO-graph. We start off with the initial order
( . Then we attempt to apply one of the cheap rules to a state s. Lemma 2

provides us with more potential to apply a cheap rule. The typical approach
is to do this in a reverse topological order over the RO-graph, such that the
successors of s are already ordered as much as possible. If the successor states
of s are ordered, then s can be added as a vertex and directed edges can be
added between s and its successors. Otherwise, state s is added between and .
This often allows for reasoning analogous to the example. To deal with strongly
connected components, rules exist [27] that add states to the order even when not



Finding Provably Optimal Markov Chains 183

all successors are in the graph. If no cheap rule can be applied, more expensive
rules using the rational functions from above or SMT-solvers are applied5.

5 Parameter Lifting with Monotonicity Information

Recall that our aim is to compute some λ ≥ max�u∈R Prs→T
M (�u)− ε for some fixed

region R. In order to do so, we compute λ̂ := max�u∈relax(R) Pr
s→T
relax(M)(�u) on the

iMC relax(M) obtained by relaxing the pMC M. We discuss how to speed up
this computation using local monotonicity information. In the remainder, let D
denote relax(M) and I denote relax(R). As we consider simple iMCs, let state s
with P(s, s1) = xs and P(s, s2) = 1−xs where the parameter xs does not occur
on other transitions. Assume the lower (upper) bound on xs is ls (us).

Analyzing (simple) iMCs. An iMC induces a maximal reachability bound by
substituting every xs with either ls or us. Formally, let V(I) denote the corner
points of the interval I. Then,

max
�u∈I

Prs→T
D (�u) = max

�u∈V(I)
Prs→T

D (�u).

Thus, to maximise the probability to reach T , in every state s either the lower or
the upper bound of parameter xs has to be chosen. This induces O(2|S|) choices.
They can be efficiently navigated by interpreting these choices as nondeterministic
choices, interpreting the iMC as a Markov decision process (MDP) [25].

Local monotonicity helps. Assume local monotonicity establishes s1 ( s2, i.e., the
reachability probability from s2 is at least as high as from s1. To maximise the
reachability probability from s, the parameter xs should be minimised. Contrary,
if s2 ( s1, parameter xs should be maximised. Thus, every local monotonicity
result halves the amount of vertices that we are maximising over.

Example 8. Consider the iMCM3 in Fig. 3(a), which is the relaxation of the pMC
M1 in Fig. 2(a). There are four combinations of lower and upper bounds that
need to be investigated to compute the upper bound. Using local monotonicity,
we deduce that q should be as low as possible and p as high as possible. Rather
than evaluating a MDP, we thus obtain the same upper bound on the reachability
probability in M1 by evaluating a single parameter-free Markov chain.

Accelerating value iteration. Parameter lifting [25] creates a single MDP — a
comparatively expensive operation — and instantiates this MDP based on the
region R to be checked. For computing the bound λ̂, specifically, it uses value
iteration. Roughly, this means that for each state we start with either its lower
or upper bound. The instantiated MC is then checked. Then, all bounds that can

5 In an attempt to reduce the cost of these rules, the algorithm allows for deferring
proof obligations in the form of assumptions. This is detailed in [27]. For this paper,
however, the only relevant aspect is that these rules are computationally expensive.
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Queue Q (2) Monotonicity Checking
Sect. 4

(3) Shrink

(4) Parameter Lifting
Sect. 5

(6) Guess �u ∈ R′

update CurMax

(8) Split R′

Result: CurMax

(1) R,LR, UR R, X↓, X↑

R′

local mon.

(5) if U
R′ (sI ) ≤ CurMax, ∅

else, R′, LR′ , UR′else, R′, LR′ , UR′

R1, LR′ , UR′
. . .

Rn, LR′ , UR′

RO-graph

(7) if CurMax + ε ≥ maxR̂∈Q∪{R′} UR̂(sI )

Fig. 6. The symbiosis of monotonicity checking and parameter lifting. Red are new
elements compared to the vanilla approach in Fig. 4.

be improved by switching from lower to upper bound or vice versa are swapped.
This procedure terminates with the optimal assignment to all bounds. We exploit
the local monotonicity in this value iteration procedure by fixing the chosen
bounds at locally monotonic states.

6 Lifting and Monotonocity, Together

In this section, we give a more detailed account of our approach, i.e., we will zoom
in into Fig. 1 resulting in Fig. 6. In particular, we detail the divide-and-conquer
block. This loop is a refinement (indicated in red in Fig. 6) of Fig. 4. We first
give an overview, before discussing some aspects in greater detail.

Overall algorithm The approach considers extended regions, i.e., a region R
is equipped with state bounds LR(s) and UR(s) such that LR(s) ≤ Prs→T

M (�u) ≤
UR(s) for every state s, and with monotonicity information about the monotonic
increasing (and decreasing) parameters on R. Initially the input region R is
extended with LR(s) = 0, UR(s) = 1 for every s, and empty monotonicity
information. Additionally, we initialize a conservative approximation for the
maximum probability CurMax so far as 0. Extended regions are stored in the
priority queue Q where UR(sI ) are used as priority. We discuss details below. Once
initialised, we start an iterative process to update the conservative approximation
of LR and UR.

First, (1) a region R and the associated reachability order stored as RO-graph
is taken from the queue Q and (2) its monotonicity is computed while using the
annotated bounds LR and UR. Let XR

↑ denote globally monotonic increasing

parameters on R, and similarly, XR
↓ denote decreasing parameters on R. For

brevity, we omit the superscript R in the following.
As a next step, we (3) shrink a region based on global monotonicity. We

define the region ShrinkX↑,X↓(R) as follows: ShrinkX↑,X↓(R)(x) = �x if x ∈ X↓,
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Shrink(R)(x) = ux if x ∈ X↑, and Shrink(R)(x) = R(x) otherwise. In the
remainder of this section, let R′ denote ShrinkX↑,X↓(R). Observe that we can

safely discard instantiations in R\R′, as max�u∈R Prs→T
M (�u) = max�u∈R′ Prs→T

M (�u).
Next, we (4) analyse the region R′ to get bounds LR′ , UR′ using parameter

lifting and using the local monotonicity information from the monotonicity
check. We make two observations: First, it holds that LR(s) ≤ LR′(s) and
UR′(s) ≤ UR(s) for every s: Thus, there is no regret in analysing R′ rather than
R. Also, consider that if all parameters are globally monotone, the region R′ is a
singleton and straightforward to analyse.

If (5) UR′(sI ) ≤ CurMax, then we discard R′ altogether and go to (1). Other-
wise, we (6) guess a candidate �u ∈ R′, and set CurMax to max(CurMax,Prs→T

M (�u)).
If (7) CurMax + ε ≥ maxR̂∈Q∪{R′} UR̂(sI ), then we have solved our problem
statement by returning CurMax. Otherwise, we cannot yet give a conclusive
answer, and need to refine our analysis. To that end, we (8) split the region R′

into smaller (rectangular) regions R1, . . . , Rn. Note that these sub-regions first
inherit the bounds of the region R′; their bounds are refined in a subsequent
iteration (if any). Termination in the limit (i.e., convergence of the lower and
upper bound to the limit) follows from the termination of monotonicity checking
and the termination of the loop in Fig. 4.

Incrementality A key aspect in tuning iterative approaches is the concept of
incrementality; i.e., reusing previously computed information in later computation
steps. Parameter lifting is already incremental [25] by reusing the MDP structure
in an efficient manner. Let us address incrementality for the monotonicity checker.
Notice that all monotonicity information and all bounds that are computed for
region R carry over to any R̂ ⊆ R. In particular, s (R,T s′ implies s (R̂,T s′

. Furthermore, our monotonicity checker may give up in an iteration if no
cheap rules to determine monotonicity can be applied. In that case, we annotate
the current reachability order such that after refining bounds, in a subsequent
iteration, we can quickly check where we gave up in a last iteration, and whether
refined bounds allow progress in constructing the reachability order. Notice that
in principle, we have to duplicate the order for each region. However, we do this
only until the monotonicity checker does not stabilize. The checker stabilizes,
e.g., if an order is sufficient. Once the checker stabilized, we do not duplicate the
order anymore (as no more local or global monotonicity can be deduced).

Heuristics Our approach allows for several choices in the implementation.
Whereas the correctness of the approach does not depend on how to resolve these
choices, they have a significant influence on the performance. We discuss (what
we believe to be) the most important choices, and how we resolved these choices
in the current implementation.

Initialising CurMax. Previously Storm was applicable only to few parameters and
generously initialized CurMax by sampling all vertices V(R), which is exponential
in the number of parameters. To scale to more parameters, we discard this
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sampling. Instead, we sample for each parameter independently to find out which
parameters are definitely not monotone. Naturally, we skip parameters already
known to be monotone. We select sample points as follows. We distribute the
50 points evenly along the dimension of the parameter. All other parameter
values are fixed: Non-monotonic parameters are set to their middle point in their
interval (as described by the region). Monotone parameters are set at the upper
(lower) bound when possibly monotone increasing (decreasing).

Updating CurMax. To prove that CurMax is close to the maximum, it is essential to
find a large value for CurMax fast. In our experience, sampling at too many places
within regions yields significant overhead, but taking L(sI ) is a too pessimistic
way to update CurMax. To update CurMax, we select a single �u ∈ R′ in the middle
of region R′. As we may have shrunk the region R, the middle of R′ does not
need to coincide with the middle of R, which yields behavior different from the
vanilla refinement loop.

How and where to split? There are two important splitting decisions to be made.
First, we need to select the dimensions (aka: parameters) in which we split.
Second, we need to decide where to split along these dimensions. We had little
success with trivial attempts to split at better places, so the least informative
split in the middle remains our choice for splitting. However, we have changed
where (in which parameter or dimensions) to split. Naturally, we do not (need
to) split in monotonic parameters. Previously, parameter lifting split in every
dimension at once. Let us illustrate that this quickly becomes infeasible: Assume
10 parameters. Splitting the initial region once yields 1024 regions. Splitting half
of them again yields > 500,000 regions. Instead, we use region estimates, which
are heuristic values for every parameter, based on the implementation of [19].
These estimates, provided by the parameter lifter, essentially consider how well
the policy on the MDP (selecting upper or lower bounds in the iMC) agrees with
the dependencies induced by a parameter: The more it agrees, the lower the
value. The key idea is that one obtains tighter bounds if the policy adheres to
the dependencies induced by the parameters6. We split in the dimension with
the largest estimate. If the region estimate is smaller than 10−4, then we split in
the dimension of R with the widest interval.

Priorities in the region queue. Contrary to [25], we want to find the extremal value
within the complete region, rather than partitioning the state space. Consequently,
the standard technique splits based on the size of the region, and de-facto, a
breadth-first search. When we split a region, we prioritize the subregions R̂ ⊆ R′

with UR′(sI ), as UR̂(sI ) ≤ UR′(sI ). We use the age of a region to break ties.
Here, a wild range of exploration strategies is possible. To avoid overfitting, we
refrain in the experiments from weighting different aspects of the region, but the
current choice is likely not the final answer.

6 Technically, the value is computed as the sum of the differences between the local
lower and upper bound on the reachability probability over all states with this
parameter.
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Table 1. Overview of the experimental results comparing vanilla parameter lifting to
the integrated approach

ε: 0.1 ε: 0.05
integrated vanilla integrated vanilla

name instance #states #trans |V | # i # ib t #i t # i # ib t #i t
NRP (5,1) 56 75 5 469 2 <1 2575 <1 5143 2 <1 48701 3

(10,1) 186 250 10 66219 2 11 512909 85 7168029 2 1594 TO
(12,1) 259 348 12 425643 2 98 3304325 757 TO TO
(13,1) 300 403 13 1103811 2 299 TO TO TO
(14,1) 344 462 14 2608869 2 718 MO MO MO
(15,1) 391 525 15 TO MO MO MO

EVADE (1,2,0,1) 129 249 40 0 2 <1 2410 2 0 2 <1 4619 4
(1,2,3,1) 513 993 160 0 2 3 MO 0 2 3 MO
(1,2,0,2) 425 842 141 0 2 2 MO 0 2 2 MO
(1,2,3,2) 1697 3362 561 0 2 21 MO 0 2 22 MO

Herman (11,10) 21500 242926 1 3 3 3 3 2 9 3 14 9 3
(11,15) 31740 369706 1 5 3 14 5 3 11 3 25 11 5
(13,15) 126888 1713246 1 7 5 44 7 18 11 6 440 11 24
(13,25) 208808 2889206 1 7 5 91 7 31 11 6 1415 11 41
(13,35) 290728 4065166 1 5 4 128 5 35 TO 11 54

Maze (25) 360 660 24 0 2 <1 1 <1 0 2 <1 40 <1
(1000) 14985 26985 999 0 2 1 1 <1 0 2 1 MO
(10000) 149985 269985 9999 0 2 166 1 <1 0 2 182 TO

Obtaining bounds for the monotonicity checker. While the baseline loop only
computes upper-bounds, we use lower bounds to boost the monotonicity checking.
We currently run these bounds until the monotonicity checker has stabilized. We
observe that, mostly due to numerical computations, the time that the lower
bounds take can be significant, but the overhead and the merits of getting larger
lower bounds are hard to forecast.

7 Empirical Evaluation

Setup. We investigate the performance of the extended divide-and-conquer
approach presented in Fig. 6. We have implemented the algorithm explained
above in the probabilistic model checker Storm [11]. We compare its performance
with vanilla parameter lifting, outlined in Fig. 4, as baseline. Both versions use
the same underlying data structures and version of Storm. All experiments were
executed on a single core Intel Xeon Platinum 8160 CPU. We did neither use
any parallel processing nor randomization. We used a time out of 1800s and a
memory limit of 32GB. We exclude model-building times from all experiments
and emphasize that they coincide for the vanilla and new implementations.

Benchmarks and results. The common benchmarks Crowds, BRP, and Zeroconf
have only globally monotonic parameters (and only two). Using monotonicity,
they become trivial. The structure of NAND and Consensus makes them not
amenable to monotonicity checking, and the performance mostly resembles the
baseline. We selected additional benchmarks from [2], [23], and [18], see below.
The models from the latter two sources are originally formulated as partially
observable MDPs and were translated into pMC using the approach in [19].

Table 1 summarizes the results for benchmarks identified by their name and
instance. We list the number of states, transitions and parameters of the pMC.
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For each benchmark, we consider two values for ε: ε=0.05 and ε=0.1. For each
ε, we consider the time t required and the number (i) of iterations that the
integrated loop and the baseline require. For the integrated loop, we additionally
provide the number (ib) of extra (lower bound) parameter lifting invocations
needed to assist the monotonicity checker.

Discussion of the results. We make the following observations.

– NRP: this model is globally monotonic in all its parameters. Our monotonicity
checker can find this one parameter. The integrated approach is an order of
magnitude faster on all instances, scaling to more parameters.

– Evade: this model is globally monotonic in some of its parameters. Our
monotonicity check can find this monotonicity for a subset. The integrated
approach is faster on all instances, as a better initial CurMax is guessed based
on the results from the monotonicity checker.

– Herman’s protocol: this is a less favourable benchmark for the integrated
approach as only one parameter is not globally monotonic. The calculation
of the bounds for the monotonicity checking yields significant overhead.

– Maze: this model is globally monotonic in all its parameters. This can be
found directly by the monotonicity checker, so we are left to check a single
valuation. This valuation is also provably the optimal valuation.

In general, for ε=0.1, the number of regions that need to be considered is relatively
small and guessing an (almost) optimal value is not that important. This means
that the results are less volatile to changes in the heuristic. For ε=0.05, it is
significantly trickier to get this right. Monotonicity helps us in guessing a good
initial point. Furthermore, it tells us in which parameters we should and should
not split. Therefore, we prevent unnecessary splitting in some of the parameters.

8 Conclusion and Future Work

This paper has presented a new technique for tackling the optimal synthesis
problem: what is the instance of a parametric Markov chain that satisfies a
reachability objective in an optimal manner? The key concept is a deep interplay
between parameter lifting, the favourable technique so far for this problem, and
monotonicity checking. Experiments showed encouraging results: speed ups of up
to two orders of magnitude for various benchmarks, and an increased number
of parameters. Future work consists including advanced sampling techniques
and applying this approach to other application areas such as optimal synthesis
and monotonicity in probabilistic graphical models [26] and hyper-properties in
security [1].
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24. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.P.: A greedy approach
for the efficient repair of stochastic models. In: NFM. LNCS, vol. 9058 (2015)

25. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter
synthesis for Markov models: Faster than ever. In: ATVA. LNCS, vol. 9938 (2016)

26. Rietbergen, M.T., van der Gaag, L.C.: Attaining monotonicity for Bayesian networks.
In: ECSQARU. LNCS, vol. 6717, pp. 134–145. Springer (2011)

27. Spel, J., Junges, S., Katoen, J.: Are parametric Markov chains monotonic? In: Proc.
of ATVA. LNCS, vol. 11781, pp. 479–496. Springer (2019)
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