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Abstract We introduce a generalization of the bisimulation game that
can be employed to find all relevant distinguishing Hennessy—Milner logic
formulas for two compared finite-state processes. By measuring the use of
expressive powers, we adapt the formula generation to just yield formulas
belonging to the coarsest distinguishing behavioral preorders/equivalences
from the linear-time—branching-time spectrum. The induced algorithm
can determine the best fit of (in)equivalences for a pair of processes.
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1 Introduction

Have you ever looked at two system models and wondered what would be the finest
notions of behavioral equivalence to equate them—or, conversely: the coarsest
ones to distinguish them? We run into this situation often when analyzing models
and, especially, when devising examples for teaching. We then find ourselves
fiddling around with whiteboards and various tools, each implementing different
equivalence checkers. Would it not be nice to decide all equivalences at once?

Ezample 1. Consider the following CCS process P; = a.(b+ ¢) + a.d. It describes
a machine that can be activated (a) and then either is in a state where one can
choose from b and ¢ or where it can only be deactivated again (d). Py shares
a lot of properties with P, = a.(b + d) + a.(c 4+ d). For example, they have the
same traces (and the same completed traces). Thus, they are (completed) trace
equivalent.

But they also have differences. For instance, P; has a run where it executes a
and then cannot do d, while P, does not have such a run. Hence, they are not
failure equivalent. Moreover, Py may perform a and then choose from b and c,
and P, cannot. This renders the two processes also not simulation equivalent.
Failure equivalence and simulation equivalence are incomparable—that is, neither
one follows from the other one. Both are coarsest ways of telling the processes
apart. Other inequivalences, like bisimulation inequivalence, are implied by both.

In the following, we present a uniform game-based way of finding the most fitting
notions of (in)equivalence for process pairs like in Ex. 1.
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Our approach is based on the fact that notions of process equivalence can be
characterized by two-player games. The defender’s winning region in the game
corresponds to pairs of equivalent states, and the attacker’s winning strategies
correspond to distinguishing formulas of Hennessy—Milner logic (HML).

Each notion of equivalence in van Glabbeek’s famous linear-time—branch-
ing-time spectrum [10] can be characterized by a subset of HML with specific
distinguishing power. Some of the notions are incomparable. So, often a process
pair that is equivalent with respect to one equivalence, is distinguished by a
set of slightly coarser or incomparable equivalences, without any one of them
alone being the coarsest way to distinguish the pair. As with the spectrum of
light where a mix of wave lengths shows to us as a color, there is a “mix” of
distinguishing capabilities involved in establishing whether a specific equivalence
is finest. Our algorithm is meant to analyze what is in the mix.

Contributions. This paper makes the following contributions:

— We introduce a special bisimulation game that neatly characterizes the
distinguishing formulas of HML for pairs of states in finite transition systems
(Subsection 3.1 and 3.2).

— We show how to enumerate the relevant distinguishing formulas using the
attacker’s winning region (Subsection 3.3).

— We give a way of constructing a finite set of distinguishing formulas guaranteed
to contain observations of the weakest possible observation languages, which
can be seen as a “spectroscopy” of the differences between two processes
(Subsection 3.4).

— We present a small web tool that is able to run the algorithm on finite-state
processes and output a visual representation of the game (Section 4). We
also report on the distinctions it finds for all the finitary examples from the
report version of the linear-time-branching-time spectrum [12].

We frame the contributions by a roundtrip through the basics of HML, games and
the spectrum (Section 2), a discussion of related work (Section 5), and concluding
remarks on future lines of research (Section 6).

2 Preliminaries: HML, Games, and the Spectrum

We use the concepts of transition systems, games, observations, and notions of
equivalence, largely due to the wake of Hennessy and Milner’s seminal paper [14].

2.1 Transition Systems and Hennessy—Milner Logic

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes to future states.

Definition 1 (Labeled transition system). A labeled transition system is a
tuple S = (P, X, —) where P is the set of states, X is the set of actions, and
— C P x X x P is the transition relation.
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Hennessy—Milner logic [14] describes finite observations (or “tests”) that one can
perform on such a system.

Definition 2 (Hennessy—Milner logic). Given an alphabet X, the syntax of
Hennessy—Milner logic formulas, HML[X], is inductively defined as follows:

Observations If ¢ € HML[X] and a € X, then {(a)p € HML[X].

Conjunctions If ¢; € HML[Y] for all i from an index set I, then \;c i €
HML[].

Negations If ¢ € HML[Y], then —¢ € HML[X].

We often just write A{wo, @1,...} for A\,c;¢i. T denotes A(), the nil-element of
the syntax tree, and (a) is a short-hand for (a)T. Let us also implicitly assume
that formulas are flattened in the sense that conjunctions do not contain other
conjunctions as immediate subformulas. We will sometimes talk about the syntax
tree height of a formula and consider the height of T to equal 0.

Intuitively, (a)y means that one can observe a system transition labeled by a
and then continue to make observation(s) ¢. Conjunction and negation work as
known from propositional logic. We will provide a common game semantics for
HML in the following subsection.

2.2 Games Semantics of HML

Let us fix some notions for Gale-Stewart-style reachability games where the
defender wins all infinite plays.

Definition 3 (Games). A simple reachability game Glgo] = (G, G4, —, g0)
consists of

— a set of game positions G, partitioned into
e a set of defender positions G4 C G
e and attacker positions G, =G\ Gy,
— a graph of game moves — C G X G, and
— an initial position gy € G.

Definition 4 (Plays and wins). We call the paths gogi... € G with g; — gi+1
plays of Glgo]. The defender wins infinite plays. If a finite play go . .. gn # is
stuck, the stuck player loses: The defender wins if g, € G,, and the attacker wins
Zf gn € Gd-

Definition 5 (Strategies and winning strategies). A (positional, nondeter-
ministic) strategy is a subset of the moves, F' C . If (fairly) picking elements
of strateqy F ensures a player to win, F is called a winning strategy for this
player. The player with a winning strategy for Glgo| is said to win G|go].

Definition 6 (Winning regions). The set W, C G of all positions g where
the attacker wins Glg] is called the attacker winning region (defender winning
region W4 analogous).
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All Gale-Stewart-style reachability games are determined, that is, W, U W, = G.
The winning regions of finite simple reachability games can be computed in linear
time of the number of game moves (cf. [13]). This is why the spectroscopy game
of this paper can easily be used in algorithms. It derives from the following game.

Definition 7 (HML game). For a transition system S = (P, X, —), the HML
game Gy lgo] = (G,Ga,—,g0) is played on G = P x HML[X], where the
defender controls observations and negated conjunctions, that is (p, {a)p) € Gq4
and (p, = \;cri) € Ga (for all p,p, 1), and the attacker controls the rest. There
are five kinds of moves:

— (p,{a)p) — .9) ifp>p,
— (p,~la)p) — (@,—) ifpp,
= (0, Nierwi) — (i) withi€l,
(pv _‘/\161301) — (pv _'501') with 1 € I’ and
- @) = (D).

Like in other logical games in the Ehrenfeucht—Fraissé tradition, the attacker
plays the conjunctions and universal quantifiers, whereas the defender plays the
disjunctions and existential quantifiers. For instance, (p,(a)y) is declared as
defender position, since (a)p is meant to become true precisely if there exists a
state p’ reachable p = p’ where ¢ is true.

As every move strictly reduces the height of the formula, the game must be
finite-depth (and cycle-free), and, for image-finite systems and formulas, also
finite. It is determined and the following semantics is total.

Definition 8 (HML semantics). For a transition system S = (P, X, —), the
semantics of HML is given by defining that ¢ is true at p in S, written [[go]]i, iff
the defender wins G5y [(p, ¢)]-

Ezample 2. Continuing Ex. 1, [[<a>ﬂ<d>T]]§§S is false: No matter whether the
defender plays to (b+d, —(d)T) or to (c+d, ~(d)T), the attacker wins by moving
to the stuck defender position (0,—T). (Recall that T is the empty conjunction
and that 0 is the completed process!)

2.3 The Spectrum of Behavioral Equivalences

Definition 9 (Distinguishing formula). A formula ¢ distinguishes state p
from q iff [¢],, is true and [¢], is not.!

Ezample 3. (a)—(d)T distinguishes P; from P, in Ex. 1 (but not the other way
around). (a) A{(b)T, (d)T} distinguishes P, from P;.

Definition 10 (Observational preorders and equivalences). A set of 0b-
servations, Ox C HML[X], preorders two states p,q, written p Cx q, iff no
formula ¢ € Ox distinguishes p from q. If p Cx q and q Cx p, then the two are
X -equivalent, written p =x q.

! In the following, we usually leave the transition system S implicit.
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Definition 11 (Linear-time—branching-time languages [12]). The linear-
time—branching-time spectrum is a lattice of observation languages (and of entailed
process preorders and equivalences). Every observation language Ox can perform
trace observations, that is, T € Ox and, if ¢ € Ox, then {a)p € Ox. At the
more linear-time side of the spectrum we have:

— trace observations Or: Just trace observations,

— failure observations Op: A, ;~(a;) € Op,

— readiness observations Or: A\, ;i € Or with each @; of form —=(a;) or {(a;),

— failure trace observations O pyp: /\ieﬂ’i € Opr with pg € Opr and, fori > 0,
PYi = _'<ai>7

— ready trace observations Ogyp: /\z’eI‘Pi € Orr with wg € Orr and, fori >0,
wi of form —(a;) or {(a;),

— impossible futures Op: /\ielﬁ% € Orr with all p; € O, and

— possible futures Opp: \;c;0: € Opp with all p; € {—, i} and ¥; € Orp.2

At the more branching-time side, we have simulation observations. Every simula-
tion observation language Oxs, has full conjunctive capacity, that is, if p; € Oxs
foralli € I, then \,c;¢i € Oxs.

— simulation observations O;g: Just simulation (and trace) observations,

— n-nested simulation observations O,s: =9 € Ops with ¢ € O,_1)s,

— ready simulation observations Ogg: —(a) € Ogs, and

— bisimulation observations Op: The same as Oxg, which is exactly HML[Z].

The observation languages of the spectrum differ in how many of the syntactic
features of HML one will encounter when descending into a formula’s syntax tree.
We will come back to this in Subsection 3.4.

Note that we consider A{p} to be an alias for ¢. With this aliasing, all the
listed observation languages are closed in the sense that all subformulas of an
observation are themselves part of that language. They thus are inductive in the
sense that all observations must be built from observations of the same language
with lower syntax tree height.

3 Distinguishing Formula Games

This section introduces our main contribution: the spectroscopy game (Def. 13),
and how to build all interesting distinguishing HML formulas from its winning
region (Def. 14). To justify our construction and to prove that we indeed find
distinguishing formulas (Thm. 1), let us first examine the formula preorder game
(Def. 12), which is closer to the problem whether formulas are (non-)distinguishing.

2 Like Kucera and Esparza [17], who studied the properties of “good” observation
languages, we glimpse over completed trace, completed simulation and possible worlds
observations here, because these observations need a special exhaustive A, cop- While
it could be provided for with additional operators, it would add another case in each
of the upcoming definitions and would break the closure property of observation
languages, without giving much in return.
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3.1 The Formula Preorder Game

Def. 10 entails a straightforward way of turning the problem whether a set of
observations O C Ox preorders two states p, q into a game: Have the attacker
pick a supposedly distinguishing formula ¢ € O, and then have the defender
choose whether to play the HML game (Def. 7) for [=¢],, or for [],. This direct
route will yield infinite games for infinite O—and all the languages from Def. 11
are infinite!

To bypass the infinity issue, we will introduce a variation of this game where
the attacker gradually chooses their attacking formula. In particular, this means
that the attacker now decides which observations to play. In return, the defender
does not need to pick a side in the beginning and may postpone the decision where
(on the right-hand side) an observation leads. Postponing decisions here means
that the defender may play non-deterministically, moving to multiple states at
once. The mechanics are analogous to the standard powerset construction when
transforming non-deterministic finite automata into deterministic ones.

Definition 12 (Formula preorder game). For a transition system S =
(P,X,—) and a set of observations Ox, the formula preorder game G$ [go] =
(G,Gq,—,go) consists of

— attacker positions (p, @, 0), € G, withp € P, Q € 27, and O C Ox,

— defender conjunction positions (p,QJ’))Q € G4 where the defender has to

answer to conjunction challenges, and
— defender negation positions (p, @, 0), € G4 where the defender has to answer
to negation challenges,

and five kinds of moves

— observation moves (p,Q,0), — (p,Q,0),

ifp=p withQ ={q |39 € Q.q ¢} and 0" ={p| (a)p € O},
— conjunct challenges (p,Q,0), — (p,Q,{yilic I})Q

if Niertpi € O,
— conjunct answers  (p,@,0)y — (p,{q},0),

ifq€Q,

— negation challenges (p,Q,0), — (0,Q,{¢})4
if ~¢p € O, and

— negation answers (p,Q,O); — (g, {p},0),
ifq€Q.

The formula preorder game precisely characterizes whether an observation lan-
guage is distinguishing:

Lemma 1. For a closed observation language Ox, the formula preorder game
g;%[(p,Q,O)a} with O C Ox is won by the defender precisely if, for every
observation ¢ € O with [] ,, there is a ¢ € Q such that [],.

Proof (Sketch). By induction over the height of formulas in Oy with arbitrary
p and @, and strengthening the induction predicate to not only consider ¢ but
also partial conjunctions AO” with O” C O’ whenever ¢ = AO’. To prove the
right-to-left direction, exploiting the determinacy of the game is convenient.
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Figurel. Schematic spectroscopy game Ga of Def. 13. Boxes stand for attacker
positions, circles for defender positions, arrows for moves. From the dashed boxes, the
moves are analogous to the ones of the connected solid positions.

3.2 The Spectroscopy Game

Let us now remove the formulas from the formula game (Def. 12). The idea is
to look at the game for the whole of HML, called Gp. Only attack moves in the
formula game change the current set of observations, and they are completely
guided by the context-free grammar of HML (Def. 2). Therefore, we can® assume
O to equal HML[X] in every reachable position of Gg. Effectively, O can be
canceled out of the game, without losing any information. We call the remaining

game the “spectroscopy game.” Figure 1 gives a graphical representation.

Definition 13 (Spectroscopy game). For a transition system S = (P, X, —),
the L-labeled spectroscopy game G2 [go] = (G, Ga, >'—>,go) with L = {—, A, %, (a)}
consists of

— attacker positions (p,Q), € G, withp € P, Q € 27,
— defender positions (p, Q), € Gq where the defender has to answer to conjunc-
tion challenges,

and four kinds of moves:

. (a) )
— observation moves (p,Q), - W {d |3¢€Q.q> Y. ifp S

— conjunct challenges (p, @), 2 (P, Q)45
conjunct answers  (p, Q)4 - (»,{a}), if g € Q, and
negation moves (p, {q}), — (g, {P}),-

We have already introduced two tricks in this definition to ease formula recon-
struction in the next subsection. (1) The attack moves are labeled with the

3 To be precise: Finite conjunctions may only lead to arbitrarily large subsets of
HML[X]. If the attacker has a way of winning by playing a conjunction, we can as
well approximate this move as playing AHML.
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syntactic constructs from which they originate. This does not change expressive
power. (2) Negation moves are restricted to situations where Q@ = {q}. After all,
winning attacker strategies will pay attention to only playing a negation after
minimizing the odds of being put on a bad position, anyways.

Note that, like in the formula game with arbitrary-depth formulas, the attacker
could force infinite plays by cycling through conjunction moves (and also negation
moves). However, they will not do this, as infinite plays are won by the defender.

Lemma 2. The spectroscopy game Ga[(p, {q}),] is won by the defender precisely
if p and q are bisimilar.

This fact is a corollary of the well-known Hennessy—Milner theorem (HML char-
acterizes bisimilarity), given that G is constructed as a simplification of Gp.
Comparing Ga to the standard bisimulation game from the literature (with
symmetry moves, see e.g. [3]), we can easily transfer attacker strategies from there.
In the standard game, the attacker will play (p,q) — (a,p’,q) with p = p’ and

the defender has to answer by (a,’,q) — (p',¢') with ¢ ¢’. In the spectroscopy
game, the attacker can enforce analogous moves by playing (p, {q}), ><i>> ,Q", .
(»',Q")4, which will make the defender pick (p’,Q’), - @' A{d'}).-

The opposite direction of transfer is not so easy, as the attacker has more
ways of winning in Ga. But this asymmetry is precisely why we have to use the
spectroscopy game instead of the standard bisimulation game if we want to learn
about, for example, interesting failure-trace attacks.

Due to the subset construction over P, the game size clearly is exponential in
the size of the state space. Going exponential is necessary, as we want to also
characterize weaker preorders like the trace preorder, where exponential P-subset
or X*-word constructions cannot be circumvented. However, for moderate real-
world systems, such constructions will not necessarily show their full exponential
blow-up (cf. [6]).

For concrete implementations, the subset construction also means that the
costs of storing game nodes and of comparing two nodes is linear in the state space
size. Complexity-wise this factor is dominated by the overall exponentialities.

3.3 Building Distinguishing Formulas from Attacker Strategies

Definition 14 (Strategy formulas). Given an attacker strategy F C (G, x
L x G) for the spectroscopy game Ga, the set of strategy formulas, Stratp(g,),
18 inductively defined by:

— If ¢ € Stratp(g),) and (ga, (b),9g,) € F, then (b)¢ € Stratr(ga),
— if ¢ € Stratp(g,,) and (gq, . g,) € F, then =p € Stratp(g,), and

— if ¢y, € Stratp(g,) for all g € I ={g, | ga—n g}, and (ga, A, a) € F,
then /\g‘,zelcpg;l € Stratp(g,)-
(a) A % = (d) A
Ezample 4. The attacks (P1,{P2}),—(b+ ¢, {b+d,c+ d}) ————(0,0),—
give rise to the formula (a) A{—(d)T}, which can be written as (a)—(d).
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Definition 15 (Winning strategy graph). Given the attacker winning region
W, and a starting position gy € W,, the attacker winning strategy graph Fj is
the subset of the —-graph that can be visited from go when following all —-edges
unless they lead out of W,,.

This graph can be cyclic. However, if the attacker plays inside their winning region
according to F,, they will always have paths to their final winning positions. So
even though the attacker could loop (and thus lose), they can always end the
game and win in the sense of Def. 5.

Theorem 1. If W, is the attacker winning region of the spectroscopy game Ga,
every ¢ € Stratg, ((p, {q}),) distinguishes p from q.

Proof. Due to Lem. 1, it suffices to show that ¢ € Stratp, ((p, @),) implies that
the attacker wins Gp[(p, @, {¢})]. We proceed by induction on the structure of
Stratp, with arbitrary p, Q.

— Assume ¢ € Stratg, ((p/,Q’),) and ((p,Q),, (b), (»',Q"),) € F,. By induction
hypothesis, the attacker wins Gg[(p’, @', {})]. By moving there, the attacker
also wins Gg|(p, @, {(b)¢)}], which must be a valid move as F, is a strategy
for Ga.

— Assume ¢ € Stratg, ((p',Q’),) and ((p,Q),,—, (?',Q’),) € F,. By induction
hypothesis, the attacker wins Gg[(p, @', {¢})]. By the construction of Ga,
Q = {p'}. So the attacker can win Gg[(p, @, {—¢})] by moving to this position
(with the defender having no choice when picking from Q).

— Assume ¢, € Stratp, (g,) for all g, = (', {¢'}), € I = {g, | 9a .
g.}, and ((p,@),, N\ 9d) € Fa. Due to the construction of Ga, Q = {¢' |
(v, {d'}), € I} and p’ = p. By induction hypothesis, the attacker wins all
Gel(¥' . {d'}, {wy })] and, as they can always focus on consuming just one
formula, also all Gg[(p, {q'}, {wgr | g, € I})]. This matches all the positions
the defender can move to after (p,Q,{wg | g4 € I}),- Moving there, the

attacker wins Gg[(p, Q, {/\ggeI‘ng Dl

Note that the theorem is only one-way, as every distinguishing formula can
neutrally be extended by saying that some additional clause that is true for both
processes does hold. Def. 14 will not find such bloated formulas.

Due to cycles in the game graph, Stratp, will usually yield infinitely many
formulas. But we can become finite by injecting some way of discarding long
formulas that unfold negation cycles or recursions of the underlying transition
system. The next section will discuss how to do this without discarding the
formulas that are interesting from the point of view of the spectrum.

3.4 Retrieving Cheapest Distinguishing Formulas

In our quest for the coarsest behavioral preorders (or equivalences) distinguishing
two states, we actually are only interested in the ones that are part of the smallest
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observation languages from the spectrum (Def. 11). We can think of the amount
of HML-expressiveness used by a formula as its price.

Let us look at the price structure of the spectrum from Def. 11. Table 1
gives an overview of how many syntactic HML-features the observation languages
may use at most. (If formulas use fewer, they still are considered part of that
observation language.) So, we are talking budgets, in the price analogy.

Conjunctions: How often may one run into a conjunction when descending
down the syntax tree. Negations in the beginning or following an observation
are counted as implicit conjunctions.

Positive deep branches: How many positive deep branches may appear in
each conjunction? We call subformulas of the form (a) or —(a) flat branches,
and the others deep branches.

Positive flat branches: How many positive flat branches may appear in each
conjunction?*

Negations: How many negations may be visited when descending?

Negations height: How high can the syntax trees under each negation be?

We say that a formula ¢ dominates @o if 1 has lower or equal values than o
in each dimension of the metrics with at least one entry strictly lower. Let us
note the following facts:

4 There is a special case for failure-traces where 1 positive flat branch may be counted
as deep, if there are no other deep branches. Hence the * in Table 1.

Table 1. Dimensions of observation expressiveness.

& S
~ 5
¢ & 9 &

.9 & > Nz

& ks X & o

5 L 2 .9 Q

X ~ ~ X X
N B B > >
§ & § S

Observations O o R S S
trace O 0 0 0 0
failure Op 1 0 0 1 1
readiness Or 1 0 00 1 1
failure-trace Opr 00 1 0* 1 1
ready-trace Opr 00 1 00 1 1
impossible-future Orp 1 0 0 1 o)
possible-future Opp 1 [ee) 00 1 [ee)
ready-simulation Ogrg 00 o) 00 1 1
(n+1)-nested-simulation O¢,41)s o0 0 00 n 0
bisimulation Og 00 0 00 0 0
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1 def game spectroscopy(S, po, qo):
2 G2 = (G,Gq,—) 1= construct _spectroscopy _game(S)
3 W, := compute_winning_region(G2)
a | if (po,{q0}), € Wa :
5 F, := winning_graph(G2, Wa, (po, {¢0}),)
6 strats|] := ()
7 todo := [(po, {q0}),]
8 while todo # [|:
9 g := todo.dequeue()
10 sg := strats[g]
11 if sg = undefined :
12 | strats[sg] := ()
13 gg' :={4d' | (g,-,9') € Fu Astrats(g') = undefined}
14 if gg' =0:
15 sg’ = nonDominatedOrIF (Strat’, qais(8))
16 if sg £ sg’ :
17 strats(g) := sg’
18 todo.enqueueEachEnd({g" | (¢*,-,8) € Fa AN g* ¢ todo})
19 else:
20 ‘ todo.enqueueEachFront(gg’)
21 return strats((po, {qo}),)
22 else:
23 R:={(p,a) | (p.{a}), € Ga \ Wa}
24 return R

Algorithm 1: Spectroscopy procedure.

1. When formulas are constructed recursively, like the strategy formulas in
Def. 14, they can only contribute to dominating (i.e. more expensive) or
equivalently valued formulas with respect to the metrics.

2. Formulas can be incomparable. For example, (a) \{(b), (¢)} and (a)—(a),
corresponding to coordinates (1,0,2,0,0) and (1,0,0,1,1), are incomparable.

3. A locally more expensive formula may pay off as part of a bigger global
formula. For example, if two states are distinguished by —(a) and (b), the
dominated formula —(a) may later be handy to construct a (comparably
cheap) failure formula.

These observations justify our algorithm to prune all formulas from the set
Stratp, (g) that are dominated with respect to the metrics by any other formula
in this set, unless they are impossible trace futures of the form —(aq)(as).... We
moreover add formula height in terms of observations as a dimension in the
metric, which leads to loop unfoldings being dominated by the shorter paths.
Algorithm 1 shows all the elements in concert. It constructs the spectroscopy
game G2 (Def. 13) and computes its attacker winning strategy graph F, (Def. 15).
If the attacker cannot win, the algorithm returns a bisimulation relation. Other-
wise, it constructs the distinguishing formulas: It keeps a map strats of strategy
formulas that have been found so far and a list of game positions todo that have
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P2 distinguished from P1 under readiness,simulation preorder
by (a)A{{d)T,(c)T}
P2 distinguished from P1 under readiness,simulation preorder
by (a)A{{b)T,(d)T}
P2 distinguished from P1 under readiness,failure-trace
preorder by (a)A{~(b)T,(c)T}
« 2: P1 preordered to P2 by traces
« 3: P2 preordered to P1 by impossible-future

a.d.0)

+
+a.(c.0 +d.0))

Figure 2. Screenshot of a linear-time—branching-time spectroscopy of the processes
from Ex. 1.

to be updated. In every round, we take a game position g from todo. If some
of its successors have not been visited yet, we add them to the top of the work
list. Otherwise we call Straty, . ..(g) to compute distinguishing formulas using
the follow-up formulas found so far strats. This function mostly corresponds
to Def. 14 with the twist, that partial follow-ups are used instead of recursion,
and that the construction for conjunctions is split onto attacker and defender
positions. Of the found formulas, we keep only the non-dominated ones and
impossible future traces. If the result changes strats(g), we enqueue each game
predecessor to propagate the update there.

The algorithm structure is mostly usual fixed point machinery. It terminates
because, for each state in a finite transition system, there must be a bound on the
distinguishing mechanisms necessary with respect to our metrics, and Strat” will
only generate finitely many formulas under this bound. Keeping the impossible
future formulas unbounded is alright, because they have to be constructed from
trace formulas, which are subject to the bound.

4 A Webtool for Equivalence Spectroscopy

We have implemented the game and the generation of minimal distinguishing for-
mulas in the “Linear-time-Branching-time Spectroscope”, a Scala.js program that
can be run in the browser on https://concurrency-theory.org/ltbt-spectroscope/ .

The tool (screenshot in Fig. 2) consists of a text editor to input basic CCS-style
processes and a view of the transition system graph. When queried to compare
two processes, the tool yields the cheapest distinguishing HML-formulas it can
find for both directions. Moreover, it displays the attacker-winning part of the
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spectroscopy game overlayed over the transition system. The latter can also
enlighten matters, at least for small and comparably deterministic transition
systems. From the found formulas, the tool can also infer the finest fitting
preorders for pairs of processes (Fig. 3).

To “benchmark” the quality of the distinguishing formulas, we have run the
algorithm on all the finitary counterexample processes from the report version
of “The Linear-time-Branching-time Spectrum” [12]|. Table 2 reports the output
of our tool, on how to distinguish certain processes. The results match the
(in)equivalences given in [12]. In some cases, the tool finds slightly better ways of
distinction using impossible futures equivalence, which was not known at the time
of the original paper. All the computed formulas are quite elegant / minimal.

For each of the examples (from papers) we have considered, the browser’s
capacities sufficed to run the algorithm in 30 to 250 milliseconds. This does not
mean that one should expect the algorithm to work for systems with thousands
of states. There, the exponentialities of game and formula construction would
hit. However, such big instances would usually stem from preexisting models
where one would very much hope for the designers to already know under which
semantics to interpret their model. The practical applications of our browser tool
are more on the research side: When devising compiler optimizations, encodings,
or distributed algorithms, it can be very handy to fully grasp the equivalence
structure of isolated instances. The Linear-time-Branching-time Spectroscope
supports this process.

Table 2. Formulas found by our implementation for some interesting processes from [12].

D q Cheapest distinguishing formulas found |From
P1 P2 (a)A\{{(c), (b)} € Or N Os, Ex. 1
(a)~(d) € Or
ab+a a.b (a)—(b) € OF p. 13
ab+a.(b+c) a.(b+c) (a)y—(c) € Op p. 16
a.(b+cd) + a.(b+ce)+ (a)N{{c)(d),(b)} € Orr N Opr N Os, p- 21
a.(f +c.e) a.(f +c.d) (a) AN{{c){d), =(f)} € Orr N Okpr,
(@Y N{=(b), ~(c)(d)} € Orr (+3 variants)
a.b+a.(b+c)+a.cla.b+ a.c (a)A\{{c), ()} € Or N Osg p. 24
a.(b+a.(b+c.d)Ha.(a.(b+ c.d) + Eai b), (a) A{{c)(d), (b)}} € Orr N Og, |p. 27

A
A=), (@A) {d), ~(0)}} € Orr

a.c.e) + a.(a.c.d +Ha.c.e) + a.(a.c.d H(a

a.(c.e +b)) a.(c.e+b)+b)

a.(b.c+b.d) a.b.c+a.b.d (@) AN{{b){c), (b){d)} € Opr N Osg p. 31
a.b.ct+a.(b.c+b.d)|a.(b.c + b.d) (a)y—(b)(d) € Orr p. 34
a.b+a+a.c a.b+a.(b+c)+a.cl{a) AN{—(b),—(c)} € OF p. 38
a.b.c+ a.(b.c+0)la.(b.c+b) (a)y—(b)—(c) € Op p. 42
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Figure 3. Tool output of finest preorders for transition systems. (Left: Ex. 1; right:
ab+a.(b+c)+acvs ab+a+a.c.

5 Related Work and Alternatives

The game and the algorithm presented fill a blank spot in between the following
previous directions of work:

Distinguishing formulas in general. Cleaveland [5]| showed how to restore
(non-minimal) distinguishing formulas for bisimulation equivalence from the
execution of a bisimilarity checker based on the splitting of blocks. There, it has
been named as possible future work to extend the construction to other notions of
the spectrum. We are not aware of any place where this has previously been done
completely. But there are related islands like the encoding between CTL and
failure traces by Bruda and Zhang [7]. There is also more recent work like Jasper
et. al [15] extending to the generation of characteristic invariant formulas for
bisimulation classes. Previous algorithms for bisimulation in-equivalence tend to
generate formulas that alternate (a) and [b] observations while pushing negation
to the innermost level. Such formulas can not as easily be linked to the spectrum
as ours.

Game-characterizations of the spectrum. After Shukla et al. [18] had shown
how to characterize many notions of equivalence by HORNSAT games, Chen and
Deng [4] presented a hierarchy of games characterizing all the equivalences of the
linear-time—branching-time spectrum. The games from [4] cannot be applied as
easily as ours in algorithms because they allow word moves and thus are infinite
already for finite transition systems with cycles. Constructing distinguishing
formulas from attacker strategies of these games would be less convenient than
in our solution. Their parametric approach is comparable to fixing maximal price
budgets ex ante. Our on-the-fly picking of minimal prices is more flexible.
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Using game-characterizations for distinguishing formulas. There is
recent work by Mika-Michalski et al. [16] on constructing distinguishing formulas
using games in a more abstract coalgebraic setting focussed on the absence of
bisimulation. The game and formula generation there, however, cannot easily be
adapted for our purpose of performing a spectroscopy also for weaker notions.

Alternatives. One can also find the finest notion of equivalence between two
states by gradually minimizing the transition system with ever coarser equiv-
alences from bisimulation to trace equivalence until the states are conflated
(possibly also trying branches). Within a big tool suite of highly optimized algo-
rithms this should be quite efficient. We preferred the game approach, because it
can uniformly be extended to the whole spectrum and also has the big upside of
explaining the in-equivalences by distinguishing formulas.

An avenue of optimization for our approach, we have already tried, is to run
the formula search on a directed acyclic subgraph of the winning strategy graph.
For our purpose of finding most fitting equivalences, DAG-ification may preclude
the algorithm from finding the right formulas. On the other hand, if one is mainly
interested in a short distinguishing formula for instance, one can speed up the
process with DAG-ification by the order of remaining game rounds.

6 Conclusion

In this paper, we have established a convenient way of finding distinguishing
formulas that use a minimal amount of expressiveness.

System analysis tools can employ the algorithm to tell their users in more
detail how equivalent two process models are. While the generic approach is
costly, instantiations to more specific, symbolic, compositional, on-the-fly or
depth-bounded settings may enable wider applications. There are also some
algorithmic tricks (like building the concrete formulas only after having found the
price bounds and heuristics in handling the game graph) we have not explored in
this paper.

So far, we have only looked at strong notions of equivalence [10]. We plan to
verify the game in Isabelle/HOL and to extend our algorithm, so it also deals
with weak notions of equivalence [11]. These equivalences abstract over T-actions
representing “internal activity” and correspond to observation languages with a
special temporal (e)-observation (cf. [9]). This would generalize work on weak
game characterizations such as de Frutos-Escrig et al.’s [8] and our own [2,3]. The
vision is to arrive at one certifying algorithm that can yield finest equivalences
and cheapest distinguishing formulas as witnesses for the whole discrete spectrum.

On a different note, our group is also working on an educational computer
game about process equivalences.® The (theoretical) game of this paper can likely

5 A prototype featuring equivalences between strong bisimulation and coupled sim-
ulation (result of Dominik Peacock’s bachelor thesis) can be played on https:
/ /www.concurrency-theory.org/rvg-game/.
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be adapted to go in the other direction: from formulas to distinguished transition
systems. It may thereby synthesize levels for the (computer) game. So, in the
end, all this might actually contribute to actual people having actual fun.
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