Skip to main content

Improved Upper and Lower Bounds for LR Drawings of Binary Trees

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12590))

Included in the following conference series:

  • 560 Accesses

Abstract

In SODA’99, Chan introduced a simple type of planar straight-line upward order-preserving drawings of binary trees, known as LR drawings: such a drawing is obtained by picking a root-to-leaf path, drawing the path as a straight line, and recursively drawing the subtrees along the paths. Chan proved that any binary tree with n nodes admits an LR drawing with \(O(n^{0.48})\) width. In SODA’17, Frati, Patrignani, and Roselli proved that there exist families of n-node binary trees for which any LR drawing has \(\varOmega (n^{0.418})\) width. In this paper, we improve Chan’s upper bound to \(O(n^{0.437})\) and Frati et al.’s lower bound to \(\varOmega (n^{0.429})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, that survey asks about a different but related function: \(W^{**}(n) = \max _T \min _\pi \max _{\alpha ,\beta } (W^{**}(|\alpha |) + W^{**}(|\beta |) + 1)\), where the outer maximum is over all n-node binary trees T. This function may be larger than \(\max _{T: |T|=n} W^*(T)\).

  2. 2.

    All edges have slope from \(\{0,\pm 1,\pm \infty \}\).

  3. 3.

    All edges are horizontal or vertical.

  4. 4.

    Hölder’s inequality states that \(\sum _i |x_iy_i|\le \left( \sum _i |x_i|^s\right) ^{1/s} \left( \sum _i |y_i|^t\right) ^{1/t}\) for any \(s,t>1\) with \(\frac{1}{s}+\frac{1}{t}=1\). In our applications, it is more convenient to set \(s=\frac{1}{p}\), \(t=\frac{1}{1-p}\), \(x_i=X_i^p\), and \(y_i=c_i\), and rephrase the inequality as: \(\sum _i c_iX_i^p \le \left( \sum _i c_i^{1/(1-p)}\right) ^{1-p} \left( \sum _i X_i\right) ^p\) for any \(0<p<1\) and \(c_i,X_i\ge 0\).

References

  1. Bachmaier, C., Brandenburg, F., Brunner, W., Hofmeier, A., Matzeder, M., Unfried, T.: Tree drawings on the hexagonal grid. In: Proceedings of 16th International Symposium on Graph Drawing (GD), pp. 372–383 (2008). https://doi.org/10.1007/978-3-642-00219-9_36

  2. Biedl, T.: Ideal drawings of rooted trees with approximately optimal width. J. Graph Algorithms Appl. 21, 631–648 (2017). https://doi.org/10.7155/jgaa.00432

    Article  MathSciNet  MATH  Google Scholar 

  3. Biedl, T.: Upward order-preserving 8-grid-drawings of binary trees. In: Proceedings of 29th Canadian Conference on Computational Geometry (CCCG), pp. 232–237 (2017)

    Google Scholar 

  4. Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13 (2002). https://doi.org/10.1007/s00453-002-0937-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.M.: Tree drawings revisited. Discrete Comput. Geom. 63(4), 799–820 (2019). https://doi.org/10.1007/s00454-019-00106-w

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ration in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–162 (2002). https://doi.org/10.1016/S0925-7721(01)00066-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992). https://doi.org/10.1016/0925-7721(92)90021-J

    Article  MathSciNet  MATH  Google Scholar 

  8. Crescenzi, P., Penna, P.: Minimum-area h-v drawings of complete binary trees. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 371–382. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_82

    Chapter  Google Scholar 

  9. Crescenzi, P., Penna, P.: Strictly-upward drawings of ordered search trees. Theor. Comput. Sci. 203(1), 51–67 (1998). https://doi.org/10.1016/S0304-3975(97)00287-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  11. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009). https://doi.org/10.1007/s00453-007-9117-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Battista, G., Frati, F.: Drawing trees, outerplanar graphs, series-parallel graphs, and planar graphs in small area. In: Pach, J. (ed.) Geometric Graph Theory, pp. 121–165. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-0110-0_9

    Chapter  Google Scholar 

  13. Frati, F.: Straight-line orthogonal drawings of binary and ternary trees. In: Proceedings of 15th International Symposium on Graph Drawing (GD), pp. 76–87 (2007). https://doi.org/10.1007/978-3-540-77537-9_11

  14. Frati, F., Patrignani, M., Roselli, V.: LR-drawings of ordered rooted binary trees and near-linear area drawings of outerplanar graphs. J. Comput. Syst. Sci. 107, 28–53 (2020). https://doi.org/10.1016/j.jcss.2019.08.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal area. Int. J. Comput. Geometry Appl. 6(3), 333–356 (1996). https://doi.org/10.1142/S0218195996000228

    Article  MathSciNet  MATH  Google Scholar 

  16. Garg, A., Rusu, A.: Area-efficient order-preserving planar straight-line drawings of ordered trees. Int. J. Comput. Geometry Appl. 13(6), 487–505 (2003). https://doi.org/10.1142/S021819590300130X

    Article  MathSciNet  MATH  Google Scholar 

  17. Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and arbitrary aspect ratio. In: Proceedings of 3rd International Conference on Computational Science and its Applications (ICCSA), Part III, pp. 876–885 (2003). https://doi.org/10.1007/3-540-44842-X_89

  18. Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. J. Graph Algorithms Appl. 8(2), 135–160 (2004)

    Article  MathSciNet  Google Scholar 

  19. Garg, A., Rusu, A.: Area-efficient planar straight-line drawings of outerplanar graphs. Discrete Appl. Math. 155(9), 1116–1140 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lee, S.: Upward octagonal drawings of ternary trees. Master’s thesis, University of Waterloo (2016). (Supervised by T. Biedl and T. M. Chan.) https://uwspace.uwaterloo.ca/handle/10012/10832

  21. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proceedings of 21st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 270–281 (1980). https://doi.org/10.1109/SFCS.1980.13

  22. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. 7(2), 223–228 (1981). https://doi.org/10.1109/TSE.1981.234519

    Article  Google Scholar 

  23. Shiloach, Y.: Linear and Planar Arrangement of Graphs. Ph.D. thesis, Weizmann Institute of Science (1976). https://lib-phds1.weizmann.ac.il/Dissertations/shiloach_yossi.pdf

  24. Shin, C., Kim, S.K., Chwa, K.: Area-efficient algorithms for straight-line tree drawings. Comput. Geom. 15(4), 175–202 (2000). https://doi.org/10.1016/S0925-7721(99)00053-X

    Article  MathSciNet  MATH  Google Scholar 

  25. Shin, C., Kim, S.K., Kim, S., Chwa, K.: Algorithms for drawing binary trees in the plane. Inf. Process. Lett. 66(3), 133–139 (1998). https://doi.org/10.1016/S0020-0190(98)00049-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Trevisan, L.: A note on minimum-area upward drawing of complete and Fibonacci trees. Inf. Process. Lett. 57(5), 231–236 (1996). https://doi.org/10.1016/0020-0190(96)81422-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981). https://doi.org/10.1109/TC.1981.6312176

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, T.M., Huang, Z. (2020). Improved Upper and Lower Bounds for LR Drawings of Binary Trees. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics