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Abstract. Network-Based Biocomputation Circuits (NBCs) offer a new
paradigm for solving complex computational problems by utilizing bio-
logical agents that operate in parallel to explore manufactured planar
devices. The approach can also have future applications in diagnostics
and medicine by combining NBCs computational power with the ability
to interface with biological material. To realize this potential, devices
should be designed in a way that ensures their correctness and robust
operation. For this purpose, formal methods and tools can offer signifi-
cant advantages by allowing investigation of design limitations and detec-
tion of errors before manufacturing and experimentation. Here we define
a computational model for NBCs by providing formal semantics to NBC
circuits. We present a formal verification-based approach and prototype
tool that can assist in the design of NBCs by enabling verification of a
given design’s correctness. Our tool allows verification of the correctness
of NBC designs for several NP-Complete problems, including the Subset
Sum, Exact Cover and Satisfiability problems and can be extended to
other NBC implementations. Our approach is based on defining transi-
tion systems for NBCs and using temporal logic for specifying and prov-
ing properties of the design using model checking. Our formal model can
also serve as a starting point for computational complexity studies of the
power and limitations of NBC systems.

Keywords: Biological computation + Network-based biocomputation -
Model checking - Subset sum problem - Exact cover - Satisfiability

1 Introduction

Engineering biological devices to perform computation is of major interest due
to the potential of utilizing inherent parallelism in biological components to
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speed up computation, construct low energy consuming devices and interface
with biological material, opening up potential diagnostic and medical appli-
cations. Network-Based Biocomputation Circuits (NBCs) [4,20] offer a new
paradigm for solving complex computational problems by utilizing biological
agents that operate in parallel to explore manufactured planar devices. Devices
should be designed to ensure correctness and robust operation, for which for-
mal reasoning tools can offer significant advantages by assisting in identification
of limitations and errors in the design before device manufacturing. Here we
define a computational model for NBCs [20] by providing formal semantics, and
present a formal verification-based approach and tool that can prove correctness
of the design. The tool can be used to verify that a given design contains no
logical errors, and allows evaluation of different designs prior to manufacturing.
Similar verification tools are now commonplace in the hardware industry, where
early identification of design flaws can lead to significant savings in cost (money,
development time and reputation).

NBC is an alternative parallel-computation method that was proposed in
[20] and solves a given combinatorial problem by encoding it into a graphical,
molecular network that is embedded in a nanofabricated planar device. The app-
roach can be applied for solving NP-Complete problems [14] and other types of
combinatorial problems. In addition, since biological agents are utilized in NBC,
the technology can be used in the future to carry cells through the devices and
perform complex computational processing with medical and diagnostic applica-
tions. In the NBC approach a device runs biological agents through the network
in order to explore it in parallel and thus solve a given combinatorial problem.
The combinatorial problem considered in [20] is the Subset Sum Problem (SSP),
which is a known NP-complete problem. The SSP problem is given a target goal
k, and asks if it can be reached as a sum of some combination of elements in a
given set S = {31 So ... SN}.

An example NBC circuit for the SSP of § = {2 5 9} is shown in Fig. la.
Molecular agents (actin filaments or microtubules, which are propelled by molec-
ular motors) enter from the top-left corner of the network. At split junctions, the
agents have an approximately equal chance of moving down or moving diagonally,
while agents continue in the current direction of movement at pass junctions, as
seen in Fig. 1b. When a computational agent takes the diagonal path at a split
junction, the element for that junction is “added”. Agents exiting the network
in the bottom row thus have an z coordinate (denoted exit# in Fig. la) that
represents a possible subset sum, and by utilizing many agents to explore the
network in parallel all the possible subset sums can be determined.

More recently, the NBC approach has been extended to encode and solve
additional NP-Complete problems [16,32] and work has been done towards
improving the scalability of the approach and the design process of the cir-
cuits. New encodings include the Exact Cover (ExCov) and the Satisfiability
(SAT) problems. An additional feature that could extend the capabilities of
NBC is tagging—the ability to mark a protein or filament with a distinguishing
attribute. Fluorescence tagging, for example, is common in biological research
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Fig. 1. Network design for SSP (reproduced from [20]). (a) Overall network structure
of the SSP for the set S = {2 5 9}. Split junctions are denoted as filled black circles and
pass junctions as unfilled circles. Agents enter from the top left point of the network.
The yellow path corresponds to the sum 11 being computed utilizing 2 and 9. (b)
Physical design of pass and split junctions. Pass junctions are designed to maintain
the agent’s direction of movement, while split junctions are designed to allow agents
an approximately equal chance to maintain or change their direction of movement.

and is used to track biomolecules and cells. As an additional component of com-
putation, tagging can be used to track the paths used by computational agents
[20,27]. Once the agents reach the end of the network, their tags could be exam-
ined and then used to validate the path taken and determine the output result.

Here we provide formal semantics to NBC by defining transition relations
that capture the dynamics of an agent in the network. This forms the basis of a
translation into the SMV format supported by the NuSMV [9] and nuXMV [7]
model checkers and its application to verify design correctness or identify logical
errors. We also extend the NBC semantics to a real time stochastic model by
mapping NBCs to chemical reaction networks (CRNs) opening up possibilities
to utilize stochastic simulation and probabilistic model checking. Finally our
formal model can serve as a starting point for computational complexity studies
of the power and limitations of NBC systems.

2 Related Work

Engineering biological devices to perform specified computation has the poten-
tial of utilizing the inherent parallelism in biological components to speed com-
putation, construct low energy consuming devices and interface with biological
material. Seminal work by Adelman [3] has demonstrated a method to use DNA
for solving the Hamiltonian path problem, which is known to be NP-Complete.
The instance of the Hamiltonian path considered in [3] is a small graph (7 nodes
and 14 edges), thus a major challenge since then in the field is overcoming phys-
ical and experimental constraints towards scaling up the computation to tackle
large systems.
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There have been several different paradigms suggested to realize the vision
proposed in [3], including DNA Strand Displacement Systems (DSD) [23,25]
that utilize the complementarity of DNA base sequences to bind together and
perform designed reactions, and DNA self assembly applying a reprogrammable
set of DNA tiles, capable of implementing a wide variety of self assembly algo-
rithms [24,28]. DNA walkers are molecular machines that can move along tracks
[26,30] and can be used for performing computation or moving cargo for nan-
otechnology applications. Computational methods and tools have proven to be
useful in improving and validating the designs of engineered biological systems
[5,15,22] and have served as motivating applications for defining semantics and
computational methods for NBC. Formal verification methods assuming discrete
semantics have been used to verify the correctness of DNA Strand Displacement
Systems and DNA walkers [17,31], and probabilistic model checking has also
been applied to these systems [6,11,17]. More broadly, viewing biological systems
as reactive systems leads naturally to specifying their behavior using temporal
logic and applying model checking (see e.g. [8,13] and references within).

Network-Based Biocomputation (NBC) [20] uses biological agents that oper-
ate in parallel to explore manufactured planar devices. To enable the explo-
ration of the solution space effectively, NBC encodes the operations of solving
NP-complete problems into graphs, which are then used as templates for the
design and fabrication of networks, for instance microfluidic networks. To pro-
cess the computation in a massively parallel fashion, NBC uses a large number
of motile agents to explore the many possible paths towards actual solutions.
The actual circuits we have verified here are physically manufactured to be pop-
ulated with actin filaments or microtubules [4], although similar devices have
been experimentally implemented for bacteria [27]. In [29], the SSP problem
has been solved by the NBC approach using a laser photonic system rather than
molecular motors as in [20]. Our computational methods and tools are applicable
to all the variety of experimental implementation strategies currently developed
for NBC and can also be extended to support future NBC technology.

3 Formal Semantics

We first describe our general approach for providing semantics to NBC circuits,
the definitions are then used and refined to encode specific designs to solve the
subset sum (SSP), exact cover (ExCov) and satisfiability (SAT) problems. A
network is composed of a set of junctions that are positioned on a 2-dimensional
plane, allowing agents to move along the network to nearby junctions according
to the type of junction visited. The encoding assumes a single agent travers-
ing the network, and can naturally be used to construct a system consisting
of several agents traversing the network in parallel. We define a discrete state
semantics that includes nondeterministic choice, and then suggest a translation
to chemical reaction networks (CRNs) [10] that provides a stochastic continuous
time semantics.
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3.1 Discrete Nondeterministic Semantics

Our transition system is defined as:
T=(V,0,p,C)

Where V are the system variables, 6 is the initial condition, p is the transition
relation and C' is a set of compassion requirements. The variables encode the
position of the agent in the network and its direction of movement:

V = {z,y,dir}

The variables © and y encode the position of the agent in the network, where
x € {0---maz} and y € {0---maz} and max is the sum of all elements in the
set in the case of the subset sum problem, determining the size of the device in
the general case. The variable dir is a Boolean variable encoding the direction
of movement of the agent. In most circuits we assume the initial condition 6 is
z = 0Ay = 0 capturing an agent entering the circuit from the upper left corner,
see Fig. 1la. We assume here the initial position is a split junction and do not
constrain the value of the dir variable, thus it can be chosen nondeterministically
to be either 0 or 1. The variable dir maintains the current movement direction
of the filament, where dir = 0 means travelling down while dir = 1 means
travelling diagonally.

The transition relation specifies how the variables get updated depending on
the current state:

y=y+1
(' =xANdir=0)V (¢’ =z +1Adir=1)

Agents move from the top row to the bottom row, thus the y variable always
gets incremented by 1 specifying this movement. The movement can either be
directly down, in which case x is not changed, this happens when the variable
dir is 0, or diagonally, in which case z is incremented by 1, when the variable
dir is 1. In addition we update the transition relation such that after reaching
the bottom row the agent returns back to the top left corner of the network, to
the state z =0 Ay = 0.

The variable dir determines the direction of movement as explained above. It
remains unchanged if the agent is in a pass junction, or makes a nondeterministic
choice between 0 (down) or 1 (diagonal) if the agent is in a split junction:

dir’ = (dir A (2, y') € pass) V ({0,1} A (2, ) € split)
We define the compassion requirement:
C={{(z=mAy=nA(m,n) €split,t=mAy=n+1)),
((x=mAy=nA(m,n)€split,t=m+1Ay=n+1))}
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A compassion requirement is composed of a set of pairs, each pair is of the
form (p, q) and requires that if p appears infinitely often then ¢ appears infinitely
often. In this case for every split junction if it is visited infinitely often it will take
the direction down infinitely often and the direction diagonal infinitely often.
This ensures that for every split junction both directions, down and diagonal
will eventually be explored. Formally, if the state x = m Ay = n that is a split
junction is visited infinitely often, then both of the states t = m Ay =n+1 and
z=m+ 1Ay =n+ 1 will be visited infinitely often.

3.2 Stochastic Semantics

Following from the semantics described above we propose a stochastic semantics

extension by providing a mapping to chemical reaction networks (CRNs). CRNs

consist of a set of species C' and a set of reactions R that allow the species to

interact. We introduce species for each of the locations in the network, with a

separate species for down or diagonal movement if the position is a pass junction.
For split and pass junctions the species are, respectively:

Cs = {ziy;li,7 € {0---maz} A (4, ) € split}
Cp = {xlyjdk|k € {07 1}’Za] € {0 : ~max} A (Za]) € pass}

The species will count how many agents are positioned at each location
described by state z = i Ay = j, allowing to represent multiple agents simultane-
ously exploring the network. The reactions will correspond to an agent moving
to the next location. For each split junction, assuming the next junction is a
pass junction, we will define the following two reactions:

ZiY; — TiYj1do
Ty; — Tit1Yj+1da

If an agent is in a split junction at position (i,j) there are two reactions
as shown above that can be taken, the first will move the agent to position
(i,7+1) representing a down movement, whereas the second will move the agent
to position (i + 1, j 4+ 1) representing a diagonal movement. If the first equation
is fired then the number of copies of species x;y; will be decremented by 1 and
the number of copies of species x;1;41do will be incremented by 1, whereas if the
second equation is fired, the number of copies of species z;y; will be decremented
by 1, and the number of copies of species x;+1y;+1d1 will be incremented by 1.

For pass junctions, assuming the next junction is also a pass junction, we
define the following reactions, in which according to the first reaction the move-
ment is down and according to the second reaction the movement is diagonally:

23yjdo — T;Yj+1do

ziy;dy — Tip1yi4+1d1
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If the next position is a split junction we define the following reactions:

zyjdo — TiyYj41
fﬂiyjdl — Ti41Yj+1

The CRN defined above can also have a rate associated with each reaction
which is a number that determines the probability of firing the reaction effecting
how fast these reactions will fire. These definitions provide a stochastic continu-
ous time semantics for NBCs using the underlying CRN model [10]. An example
of a stochastic simulation using these semantics for the SSP network from Fig. 1a
is shown in Fig. 2.

Individuals

Time (s)

Fig. 2. Stochastic simulation of an SSP network for S = {2 5 9} with 1000 agents.
Time is shown in the X axis while the number of individual agents of each species is
shown in the Y axis. Each color plot represents a different species at a specific network
position. This simulation starts with 1000 individuals at position (z,y) = (0,0) (plot
not shown) that traverse the network assuming no interaction between the agents.
The graph is a result of running a CRN model using Gillespie stochastic simulation
implemented in the DSD tool [18]. The plots that rise beyond the background values
at around 10 time units are the number of agents at each of the 8 possible subset sum
exits.

We next explain our encodings of the SSP, ExCov and SAT problems and
the temporal logic properties used to specify the correctness of the circuits. Our
motivation here is to capture the networks used in the experimental work with
the actual biological agents and not to find efficient ways to solve these NP-
Complete problems on standard computers. The verification approach can then
be generalized and utilized to NBC applications in which the main aim is to
interact with living cells for diagnostic and medical applications rather than
solve combinatorial problems.

4 Subset Sum Problem (SSP)

The Subset Sum Problem (SSP) is an established NP-Complete problem that
returns true if a subset exists in a given set S, that sums to some given value k,
and returns false otherwise.
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The SSP network is constructed using variables for rows, columns, junction
types, movement direction of computational agents, and a flag. The flag is used
to indicate that the computational agent has reached the network output (the
last row).

An additional tag variable was added to the network description in order to
track at which split junctions the computational agents took a diagonal path,
thus “adding” the element for that row. The tag is built by indexing split junc-
tions starting from the top left corner of the network (index 0) and then running
through each row and assigning indices to the junctions sequentially. This index-
ing includes junctions that are considered unreachable in a properly functioning
network. Networks using tagging are able to identify the exact path taken to
reach a given sum. This allows further investigation into the number of different
paths to a given output. In experimentally manufactured NBC devices these tags
may also allow for identification of agents that followed erroneous paths.

Agent positioning in the network is indicated by row and column variables
that run from zero to the maximum sum of elements in the given set. Only half of
these (row, column) points are used due to the network’s triangular structure.
In order to define the transition relations for the general SSP problem, S =
{31 So ... sN}, we first define the maximum sum of set S (Eq. 1), array of split
junction rows (Eq. 2) and, if tagging is used, an array of tags (Eq. 3).

N
max = Zsz (1)
i=1

index
srow = [O Z sl] where index =1,...,N — 1 (2)
i=1
tag = [to,0 tyindesg, o - - tz:;aiewsi’z‘f;tllewsi] where index =1,...,N—1 (3)

The row increases with each transition until reaching the end of the network.
This captures the assumption that agents cannot move backwards in the network.
Junction type, which depends on the row, is decided according to a sequential
sum of elements in the set. The direction of movement is either nondeterministic
(when “choosing” at a split junction) or keeps the last selection (when at a pass
junction). The full transition relation, without the additional tag variable, can
be seen in Eq. 4. The tag’s transitions are separately defined in Eq. 5.
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[r,e,d, 7, f110 < r,e < maz,d € {down,diag},j € {split, pass}, f € boolean
[r, ¢, d, split, f) > [r+1,¢,down, pass, f]  if r+1¢ srow
> [r+1,¢+ 1,diag, pass, f]if r +1 ¢ srow
> [r+ 1, ¢, down, split, f]  if r+1 € srow
> [r+ 1,¢+ 1,diag, split, f]if r + 1 € srow
[r,c,d, pass, f] > [r+1,¢d, pass, f] if d=dounAr+1¢ srow
>[r+1,c+1,d,pass, f] ifd=diag Ar+1¢ srow
> [r+1,¢,d, split, f] if d=down AT+ 1 € srow
>[r+1,c+1,d,split, f]  if d=diag Ar+1 € srow
[max — 1,¢,d, j, f] > [maz, ¢, d, j, true] if d = down
> [maz,c+ 1,d, j, true] if d = diag

(4)

trow,col € boolean initially false for every t,ou col € tag
trow,col > true  if row =r —1Acol =c—1ANd=diag (5)
> trow,col Otherwise

A duplicate network was built with the addition of two variables, sum and
xsum, for verification of overall output correctness, rather than specific output
correctness. These variables select a value from the set of valid sums and the set
of invalid sums respectively, and are used for comparison with the column value
when reaching the network output.

Table 1. Network specifications for individual outputs. LTL specification (1tl_k) checks
that the output of interest is never reachable. CTL specification (ctl-k) checks if there
is any path to the output of interest.

LTLSPEC NAME Itl k := G!((flag = TRU E)&(column = k));
CTLSPEC NAME ctlk := EF((flag = TRUE)&(column = k));

column is the current sum, k is the output of interest and flag is the
output row indicator

Two specification types were used to verify network correctness. The first
type (Table 1) uses both Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) to check the validity of a specific sum &k by comparing it with the
column value at the output. The LTL formula checks the lack of a run where
column = k, while the CTL formula checks for the existence of at least one
run where column = k. For the SSP, the value k can range anywhere from zero
to the maximum sum value of set S. We use both CTL and LTL although the
outcomes of NBC verification will be equivalent, for evaluating and optimizing
the performance of model-checking, as discussed in Sect. 7.
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The second type of specification (Table 2) uses CTL to check that all valid
sums are reachable and all invalid sums are unreachable. When used on networks
containing identifiable errors (errors that can be detected by measuring agents
at the exit of the network in the bottom row), a counter-example is provided
indicating an unreachable valid sum and/or a reachable invalid sum. This spec-
ification does not need to get a target sum k but rather checks correctness for
any target sum.

Table 2. Network specifications for overall output in CTL. csum checks that the
network can exit on all valid sums. nsum checks that the network cannot exit on any
invalid sum.

CTLSPEC NAME csum

=(EX(AG((flag = FALSE)|(!(column = sum)))));
CTLSPEC NAME nsum

=/(EF((flag = TRUE)&(column = zsum)));

column is the current sum (column in the network), sum is
one of the set of valid outputs, zsum is one of the set of
invalid outputs and flag is the output row indicator

5 Exact Cover (ExCov)

The Exact Cover problem (ExCov) is another important problem, which is
known to be NP-Complete. This problem returns true if there exists an exact
cover (a union of disjoint sets) of the defined universe U when given a collection
of sets SS that contain elements from the universe, and returns false otherwise.

We use a reduction to SSP to construct NBCs that solve the ExCov problem
[16]. In the reduction, the ExCov is encoded into binary format. This encoding
is then used to create the elements of an SSP network. The elements of the
universe are treated as an array, where each position can be either 0 or 1, and
where each element is given a specific index in the array. The sets to be examined
are then each assigned an array of the same length as the universe, where only
elements contained in the set are assigned a “one” value. All other elements are
assigned a “zero” value. These arrays are then treated as binary numbers and
are converted to their respective decimal values, as shown in Table 3.

As the ExCov does not allow the union of non-disjoint sets (the exact cover
cannot contain sets that share an element), a “force-down” junction is included
in the network to replace such split junctions. This prevents the agents from
taking a diagonal path where an element in the current set is already contained
in a previously included set on the path.

This construction can be seen in Fig. 3, which depicts the network for the
sets given in Table 3. There exist multiple exact covers for this set of subsets,
so there are multiple paths in this network that lead to output 15, the binary
encoding of the universe. The pink path exhibits the function of the force-down
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Table 3. Conversion from set to decimal using binary representation.

Set Binaryrepresentation
v={1234} v=[1111]=15
S1 =142 S1=10010| =2
S =143 Se=10100| =4
Sz =414 S3=11001| =9
Si =423 S4=10110|=6

@ split Junction
Pass Junction
® Force Down Junctior

inction: agents are
forced to take the downward path.

= = = example path for output 15
usi

~ = = example path for output 15
using S1, Sp and S3

S3

S4

Fig. 3. ExCov network for U = {1 23 4} and SS = {{2}, {3}, {1 4}, {2 3}} Split
and pass junctions are as defined in Fig. 1a. Force-down junctions are denoted as filled
orange circles. The blue path combines sets Ss and S4, constituting an exact cover.
(Color figure online)

junctions, where the computational agent is forced into the downward direction
instead of having the chance to move diagonally, as in a split junction. In this
case, this is due to set Sy sharing elements with sets S; and S5, which have
already been included. In terms of the decision problem encoded in the network,
the existence of one path leading to the required output implies that the result
should be computed as true.

This network is, in essence, an implementation of the SSP network with the
addition of a new junction type. Thus, the state of the model is defined by
the same combination of variables as that of the SSP. The junction type now
depends on both row and column values as the previously defined split junction
rows may now contain force-down junctions. The tag variable was added here
as well, to track the path taken by the biocomputation agents. The maximum
sum of the network, split junction rows, and tags are defined as they were in
SSP, where the set elements are now the decimal values of the subsets’ binary
representation. The transition relation, without the additional tag variable, can
be seen in Eq. 6, while the tag’s transitions are defined in the same manner as
the tags for the SSP (Eq. 5).
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[r,e,d, 7, f1|0 < r,ec < maz,d € {down,diag},j € {split, pass, fdown},
f € boolean
[r,c,d, split, f] > [r+1,¢(c+ 1), down(diag), pass, f]
if r+1¢ srow
> [r + 1, ¢, down, split, f]
ifr+1 € srow
> [r+1,¢+ 1,diag, split, f]
ifr+1esrowA(r+1,c+1)¢ fdown
> [r+1,¢+ 1,diag, fdown, f]
if (r+1,¢+1) € fdown Ad = diag
[r,c,d,pass,f] > [rJrl,c,d,pass,f]
if d =down Ar+1¢ srow
>[r+1,¢+1,d,pass, f]
if d =diag Ar+1 ¢ srow (6)
> [r+1,¢d, split, f]
ifd=downAr+1e€ srow
>[r+1,c+ 1,d, split, f]
ifd=diag Ar+1 € srow
> [r+1,¢,d, fdown, f]
if (r+1,¢) € fdown Ad = down
>[r+1,¢+ 1,d, fdown, f]
if (r+1,¢+1)¢€ fdownAd=diag
[r,e,d, fdown, f] > [r+1,c,down,pass, f]
[max — 1,¢,d, j, f] > [max, ¢, d, j, true]

if d = down
> [max,c+ 1,d, j, true]
if d = diag

Both LTL and CTL specifications were used to verify the output of interest
k, similar to the specifications in Table 1. The difference here is that k is assigned
the decimal value of the binary representation of the universe.

6 Satisfiability (SAT)

The Boolean Satisfiability problem (SAT) is considered the classic NP-complete
problem. SAT is the problem of determining if there exists an assignment of
true and false values to the variables of a Boolean formula, such that the for-
mula evaluates to true. The formula is considered satisfiable if any such assign-
ment exists, and is considered unsatisfiable when no such assignment exists (the
formula always evaluates to false). One standard format for SAT problems is
Conjunctive Normal Form (CNF), where the Boolean formula ¢, consists of a

. . n . o« . .
conjunction of a set of clauses { Ci}i:p and each clause consists of a disjunction

of a set of literals {asj };n:l
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The initial model designed for SAT used a similar structure to that of the
SSP network, as seen in Fig. 4a. Each row represents a literal x;, and each junc-
tion is a split junction. As computational agents progress through this network,
they are tagged after each split junction for the clauses their truth assignment
satisfies. The two example paths demonstrate cases where all tags are marked
(the Boolean formula was satisfied), as well as where there was a tag missing
(the Boolean formula was not satisfied). As there exists an output where all tags
are marked, the problem is satisfiable.

(X1VX2VX3) A (X4VXVTX3) A (X4V XV IX3)

(XqVX2VX3) A (X1VX2V7X3) A (X1V X2V 7X3) C4 C;
C1 Cs Path Tag
o
. Split Junction e
_-— = xrea Ng eeerese ——
s

- mm OX(ATXQATX3

N\
I
I

(a) Initial SAT network model (b) Clause SAT network model

Fig. 4. SAT network models for three literals and three clauses.

The next network model used, seen in Fig. 4b, is structured with individual
junctions for literals and clauses, rather than having multiple junctions for each
literal as in Fig. 4a. Each literal junction has paths both to the left (¢true) and
right (false), reflecting their relevant truth assignment. These paths connect to
a sequence of clause junctions. Computational agents are tagged at clause junc-
tions with an identifier for the relevant clause satisfied by the truth assignment
of the path.

Unlike the SSP and ExCov networks where the output location indicates the
result, in the SAT network, the use of tagging is critical as it indicates the clauses
satisfied. The final computation result depends on the total collection of tags on
the computational agents at output. The problem is considered satisfiable if
there exists an agent that collected tags for each clause as measured at output.

Using the clause model, two network descriptions were constructed. One net-
work description has separate variables for clause junctions and tags, while the
other unifies them into a single tag variable that merges their behavior in order
to minimize the number of variables and possible states created by the NuSMV
model checker. The tag variables for these networks are treated as counters that
indicate the number of times each clause has been satisfied. As all problems
investigated are of the 3-SAT format, the tag for each clause can only be an
integer from zero to three, where zero indicates the clause was never satisfied.
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The state of the model is defined by a combination of variables for junction
type, direction of movement, current literal and it’s assigned value, exit flag, and
a tag array for the clauses satisfied. The junction type is now divided into clause
and literal junctions.

Table 4. SAT clause network LTL and CTL specifications. For satisfiable networks
LTL returns false and CTL returns true. For unsatisfiable networks LTL returns true
and CTL returns false.

LTL | LTLSPEC NAME ltlsat := G!((flag = TRUE)&( A\ tagli] > 0))

i>0
There is no path that satisfies all clauses
CTL | CTLSPEC NAME ctlsat := EF((flag = TRUE)&( \ tag[i] > 0))

i>0

There exists a path that satisfies all clauses

Each tag[i] corresponds to a specific clause

Both models use the same LTL and CTL specifications to check if all tags
have a positive, non-zero value when reaching the output state. That is, tag[i] > 0
for every clause ¢ when flag = TRU E. The number of tags directly corresponds
with the number of clauses.

7 Experimental Results

We developed a prototype tool [1,2] that automates both the generation of the
SMV encodings for each problem (SSP, ExCov and SAT), and the verification
of these encodings using the NuSMV model checker [9]. The user selects which
problem they would like to solve and then the tool runs as described in the
following sections. For the SSP and ExCov problems our tool also automates the
translation to chemical reaction networks allowing to run a Gillespie stochastic
simulation using the GEC and DSD tools [18,21]. We systematically evaluate
the verification capabilities of our tool, by proving correctness of the designs
and by identifying errors in designs that were explicitly modified to represent
faulty junctions or errors in the NBC encoding. Overall the verification results
demonstrate that the approach can handle large NBC circuits and is applicable
to the real-world systems currently designed in [4,20,27].

7.1 SSP

Using input sets from the user, the tool builds SMV network descriptions both
with and without tags. Once the models have been generated, the tool runs
NuSMV on each of the defined specifications. Verifications are first run on the
specifications defined in Table 1 using two methods. The first runs all outputs in
bulk, and the second runs output by output. This is done for both LTL and CTL
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specifications separately. Then, verifications are run on the specifications defined
in Table 2 for both valid and invalid sums. Each specification’s verification result
and runtime is parsed and saved for further analysis.

Table 5. SSP all output verification runtimes in minutes

SSP
ID | Set size | Set Tag runtimes No tag runtimes
LTL CTL |LTL CTL

0 |3 [2, 3, 5] 0.0041 | 0.0016 | 0.0035 | 0.0014
1 |4 (2, 3,5, 7] 0.0114 0.0027 | 0.0073 | 0.0022
2 |5 (2, 3, 5, 7, 11] 0.0478 1 0.0065 | 0.0198 | 0.0038
3 |6 (2, 3,5, 7,11, 13] 0.2256 | 0.0218 | 0.0466 | 0.0070
4 7 2,3,5,7, 11, 13, 17] 1.3204 | 0.0956 | 0.1028 | 0.0138
5 18 2, 3, 5,7, 11, 13, 17, 19] 18.0535 |0.4476 | 0.2144 | 0.0278
6 |9 [2,3,5,7,11, 13, 17, 19, 23] | 106.7040 | 2.0753 | 0.4226 | 0.0553

While the difference between LTL and CTL verification runtimes in small
networks is negligible, the difference in large networks is considerable. As seen
in Table 5, LTL runtimes grow at a much faster rate than those of CTL. There
is also a drastic increase in runtime when verifying networks utilizing tagging,
as additional variables are necessary to define tags for all split junctions. For
the first specification type, it is not usually necessary to look at all outputs or
both logics. Thus, runtime can be decreased by examining specific outputs of
interest using a single specification instead. The increase in verification runtime
as a result of larger network size is not as drastic for running individual outputs
(Table 6) due to the compounded nature of the runtime when running in bulk.

Verification runtime for the second specification type grows at about the same
rate as that of the bulk run on the first specification’s CTL format (Table 7 and
Table 8). The two are comparable as they both check validity of all network
outputs. By using these different specification types, we are able to efficiently
verify NBC designs for increasingly large networks.

The second specification type can further be used to identify unreachable
valid sums and reachable invalid sums in networks with observable errors. We
model here errors that my occur as part of the manufacturing of the NBC devices,
and consider a scenario where a certain junction appears to contain an error and
we want to check its effect on the correctness of the overall circuit. There are
three general types of errors that may be found in SSP networks:

1. Pass junction behaves as a split junction
2. Pass junction forces one direction

(a) when both paths are valid (block one valid path)

(b) when one path is valid, and the invalid path is forced
3. Split junction forces one direction
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Table 6. SSP output 9 and 10 verification runtimes in minutes.

SSP
1D Set size|Set Output Path exists| Tag runtimes|No tag runtimes
LTL |CTL |LTL |CTL
0 3 12, 3, 5] 9 NO 0.0012/0.0010{0.0011/0.0010
0 3 [2, 3, 5] 10 YES 0.0015/0.0010{0.0013/0.0009
1 4 2, 3,5, 7 9 YES 0.0020/0.0010{0.0015/0.0009
1 4 2, 3,5, 7 10 YES 0.0020/0.0010/0.0015/0.0009
2 15 [2, 3,5, 7, 11] 9 YES 0.0033/0.0012|0.0019/0.0010
2 |5 2,3, 5,7, 11] 10 YES 0.0033(0.0012/0.0019/0.0010
3 /6 2,3, 5,7, 11, 13] 9 YES 0.0082/0.0019/0.0023/0.0011
3 6 2, 3,5, 7,11, 13] 10 YES 0.0083/0.0018]0.0023/0.0011
4 |7 2, 3,5, 7,11, 13, 17] 9 YES 0.0278/0.0032/0.0030/0.0012
4 |7 [2,3,5,7, 11, 13, 17] 10 YES 0.0281/0.0033/0.0030/0.0012
5 8 2, 3,5, 7,11, 13, 17, 19] 9 YES 0.2507/0.0079/0.0041/0.0013
5 8 2, 3,5, 7,11, 13, 17, 19] 10 YES 0.2510/0.0079/0.0041|0.0014
6 |9 [2,3,5,7, 11, 13, 17, 19, 23]| 9 YES 1.1600/0.0306/0.0057/0.0015
6 9 2, 3,5,7,11, 13, 17, 19, 23]/10 YES 1.1433/0.0245/0.0057|0.0015
Table 7. SSP general sum verification runtimes in minutes.
SSP
Set size | Set Runtime
csum nsum
Tag No Tag | Tag No Tag

3 (2, 3, 5] 0.0011|0.0011 |0.0009 | 0.0009

4 (2, 3, 5, 7] 0.0013 | 0.0012 |0.0009 | 0.0009

5 [2,3,5,7,11] 0.0018 | 0.0013 |0.0009 | 0.0009

6 2, 3,5, 7,11, 13] 0.0037 | 0.0018 |0.0009 | 0.0009

7 2, 3, 5, 7, 11, 13, 17] 0.0092 | 0.0025 |0.0009 | 0.0009

8 2, 3,5,7,11, 13, 17, 19] 0.0260 | 0.0042 |0.0009 | 0.0009

9 (2, 3,5, 7,11, 13, 17, 19, 23] | 0.0821 | 0.0074 | 0.0010  0.0009

Examples of these errors are shown in Fig. 5. These errors are not always

identifiable by observing the possible exits from the network, as affected junc-
tions may not be reachable, forced paths may converge with valid paths, or
blocked paths may not be the only path leading to the affected output. In order
to simulate manufacturing errors that would cause unexpected outputs, delib-
erate errors were added to the network descriptions. A comparison between the
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Table 8. SSP general sum verification runtimes in minutes on network with no tag
variable. Sets include the first k prime numbers.

SSP
Set size | Set Runtime
csum nsum | Total
5 2,3,5,7,11] 0.0055 | 0.0013 | 0.0068
10 2, 3,5, ...19, 23, 29 0.1140 | 0.0025 0.1165

1.5203 | 0.0024 1.5227

[
[
15 2,3, 5, ... 41, 43, 47
[
[
[

20 2,3,5,..61,67, 71 7.8919/0.0036 | 7.8955
25 2, 3,5, ... 83, 89, 97 32.3312 | 0.0059 | 32.3371
30 2, 3,5, ...107, 109, 113] | 122.3742 | 0.0112 | 122.3854

expected verification result of the network and that of the network with added
errors is shown in Table 9. The correctness of NBC network design can be checked
by examining these errors and their verification results.

Split Junction
Pass Junction

Error Type 1
Error Type 2a
Error Type 2b

00000

Error Type 3

Fig. 5. SSP network for S = {2 3 5} with example errors and their resulting outputs.
Each error type is assigned a color. Resulting reachable paths are marked with dashed
lines. Blocked paths are marked with an X at the initial and end points.

7.2 ExCov

Using an input file containing a collection of universes and sets of subsets, the
tool encodes the given problems into binary format. Then, tagged and not tagged
networks are generated using specifications for the output of interest as defined
in Table 1. In this case, the output of interest (decimal value of universe’s binary
encoding) is assigned to variable k. Then, NuSMYV is run on both specifications
(LTL and CTL) to check for the existence of an exact cover. The tool then parses
and saves verification results and runtimes for further analysis.
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Table 9. SSP general sum verification results for valid networks and observably invalid
networks. Error is denoted as the (row, column) junction location along with the error
type as in the error type definitions.

SSP
Set size | Set Original network | Faulty network
csum | nsum Error csum nsum
3 (2, 3, 5] VALID |VALID |(3,1) - INVALID | INVALID
4 (2, 3,5, 7] VALID |VALID |(12, 2) INVALID | VALID
5 2,3, 5,7, 11] VALID |VALID |(14,4) - VALID |INVALID
6 2, 3,5, 7,11, 13] VALID |VALID |(17, 17) 3 |INVALID | VALID
7 [2, 3,5, 7,11, 13, 17]| VALID | VALID |(29,15) - 2a| VALID | VALID

Verification runtimes show similar behavior to those seen with SSP networks.
The same difference in growth in runtime of LTL and CTL, as well as the same
drastic difference in runtime of tagged as compared to not tagged networks is
observed (Table 10).

Table 10. ExCov verification runtimes in minutes.

ExCov
ID|Universe # of Subsets|Set of subsets ExCov exists|Tag runtimes No tag runtimes
LTL CTL |LTL |CTL

0 |[1, 2, 3, 4] 4 I[1, 21, [1], [1, 8], |NO 0.0015/0.0013|0.0012(0.0011
[4]]

1 [1, 2, 3, 4] 4 1, 21, [1, 3], [1, 3,|NO 0.0016/0.0015/0.0014/0.0011
4], [1, 2, 3]]

2 |1, 2, 3, 4] 4 [[2], [3], [1, 4], [2, |YES 0.0020/0.0009/0.0017|0.0010
3]]

3 |11, 2, 3,4,5,6,7, 8|8 l[1, 4, 71, [1, 4], [4,| YES 666.1414/3.7020/0.0586/0.0079
5, 7], [3, 5, 6], [2,
3,6, 7], (2, 7], (8],
[3, 4, 5]]

4 |[1,2,3,4,5,6, 7,88 l[1, 4, 7], [1, 4], [4,]NO 5.1313/6.1802(0.0113/0.0056
5, 7], [3, 5, 6], [2,
3,6, 7], [2, 7], [4,
8], [3, 4, 5]]

As the ExCov NBC design is based off of that of the SSP, the types of errors
observed in the SSP may occur here as well. As the translation is more complex
due to the addition of “force-down” junctions, it is critical to make sure these
junctions are added at all relevant locations. By not including these junctions
in the network description properly, incorrect results may be observed when
verifying the existence of an exact cover. As the network grows larger, it becomes
more difficult to identify such errors. In order to capture such mistakes in network
translation, an additional variable was used to switch junction behavior to that
of split junctions, in essence switching the network with the SSP equivalent. This
type of error does not affect networks where an exact cover exists as the original



482 M. Aluf-Medina et al.

path to the universe output is not blocked. A comparison of network behavior
in both cases is seen in Table 11. This illustrates the utility of the verification
method to verify new NBC designs that are complex or include various network
optimizations, and may have subtle design errors.

Table 11. ExCov existence verification on networks with properly functioning force-
down junctions (Valid) and networks with force-down junctions that behave as split
junctions (Invalid).

ExCov
Universe Set of subsets ExCov exists | ExCov found
Valid | Invalid
[1, 2, 3, 4] [[1, 2], [1], [1, 3], [4]] NO NO |NO
11, 2, 3, 4] 1,2, 1,3, [1,3,4], [1,2,3]] |NO NO |YES
1,23, 4] 12, 131, [1, 4], [2, 3]] YES YES | YES
[1,2,3,4,5,6,7 8|1, 4, 7], [1, 4], [4, 5, 7], [3, 5, 6], NO NO |YES
[2,3,6, 7], (2, 7], [4, 8], [3, 4, 5]]
7.3 SAT

Our tool generates 3-CNF SAT problems of random sizes in DIMACS format
using CNFGen [19]. These are then run through the MiniSat SAT Solver to
get their satisfiability results [12] for later comparison with NuSMV verification
results. The tool then generates two network descriptions for each problem, one
with separate clause and tag variables (Clause) and one with merged clause and
tag variables (No-Clause). NuSMV is then run on each network description, once
with and once without variable re-ordering (VRO). The re-ordering organizes
the tag variables by first appearance of the relevant clause in the network. For
example, all clauses containing the first literal come before clauses containing
the second literal. Verification results and runtimes, for each of the specifications
defined in Table 4, are parsed and saved for further analysis. NBC verification
results were compared with the MiniSat results, which directly check satisfiability
or unsatisfiability of the formula, and were all consistent.

Runtimes are examined using three comparisons; LTL vs. CTL, No VRO vs.
VRO and No-Clause vs. Clause (Table 12). The same differences in verification
runtime of LTL as compared with CTL specifications seen in SSP and ExCov
were observed. While variable re-ordering may improve verification runtime, the
re-ordering used here did not generally show improvement for all networks, and
no tendency towards either improvement or deterioration was observed. Overall,
the No-Clause network description tends to have faster runtimes than the Clause
network description, as unification of the tag and clause variable decreases the
size of the network description.
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Table 12. SAT verification runtimes in minutes.

3-SAT
# Clauses |# Variables | No-clause runtimes Clause runtimes

No VRO VRO No VRO VRO

LTL CTL |LTL CTL |LTL CTL |LTL CTL
18 31 6.8871/0.1432100.0822|0.8676 | 59.2266|0.2711| 86.9653 |0.5320
19 38 25.74690.4413 103.6992 | 0.3943 | 369.7850|1.1077| 76.2565|0.2613
14 26 5.8769|0.1064| 56.8184/0.3577| 20.1059|0.1606| 13.96200.0781
9 23 0.0201/0.0017| 0.0959/0.0039| 0.0299|0.0022| 0.0670|0.0032
15 37 0.4292/0.0138| 12.7095/0.0370| 11.8577|0.0233| 10.9242|0.0284
13 32 0.0334/0.0033 1.7767|0.0104 0.5014|0.0051 1.8381/0.0094
19 27 37.30251.0872194.4493 |2.7105 | 348.9075 | 3.5467 | 123.0635 | 1.2737
10 27 0.0320/0.0025| 0.0820/0.0045, 0.0548|0.0029| 0.0624|0.0032
19 19 1.6001/0.0982| 0.1200|0.0106| 12.7730/0.2503| 1.8869|0.0288
3 9 0.0085/0.0013| 0.0090/0.0014| 0.0048|0.0012| 0.0054|0.0012

8 Summary

We presented a prototype verification tool that takes as input an NBC design
and performs formal verification to check the logical correctness of the circuit.
The tool verifies the correctness of NBC designs for SSP, ExCov and SAT. For
handling SAT problems, we have also implemented tagging in the verification
tool, where the agent sets all the labels it gathers while traversing the network
to true, and temporal logic queries can also relate to the tagging of the filament
when exiting the network. We have used our tool to analyze the efficiency of
different methods of verifying encodings and to generate random examples of
varying sizes and difficulties using an automatic SAT formula generator. The
verification results demonstrate that the approach can handle large NBC circuits
and is applicable to the real-world systems currently designed in [4,20,27]. Our
work is currently used as an integral part of the design phases of new circuits in
the Bio4Comp project.

Future work includes further scaling of the methods by evaluating and opti-
mizing additional model checking algorithms and tools. Our translation to chem-
ical reactions can form a basis for applying probabilistic model checking, which
can remove some of the restricting assumptions made here. For example, we
assume that pass junctions that do not have a manufacturing fault, never allow
computational agents to change direction, while it was observed [4,20] that most
but not all of the of the agents traverse through pass junctions correctly. The
effects of these errors could be quantified and analyzed using simulation and
probabilistic model checking of CRNs to quantitatively estimate the effects of
these errors in NBCs.
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