q

Check for
updates

On the Price of Concurrency in Group
Ratcheting Protocols

Alexander Bienstock!, Yevgeniy Dodis!, and Paul Rosler?(®)
! New York University, New York, USA
{abienstock,dodis}@cs.nyu.edu
2 Chair for Network and Data Security, Ruhr University Bochum, Bochum, Germany
paul.roesler@rub.de

Abstract. Post-Compromise Security, or PCS, refers to the ability of
a given protocol to recover—by means of normal protocol operations—
from the exposure of local states of its (otherwise honest) participants.
While PCS in the two-party setting has attracted a lot of attention
recently, the problem of achieving PCS in the group setting—called group
ratcheting here—is much less understood. On the one hand, one can
achieve excellent security by simply executing, in parallel, a two-party
ratcheting protocol (e.g., Signal) for each pair of members in a group.
However, this incurs O(n) communication overhead for every message
sent, where n is the group size. On the other hand, several related proto-
cols were recently developed in the context of the IETF Messaging Layer
Security (MLS) effort that improve the communication overhead per mes-
sage to O(logn). However, this reduction of communication overhead
involves a great restriction: group members are not allowed to send and
recover from exposures concurrently such that reaching PCS is delayed
up to n communication time slots (potentially even more).

In this work we formally study the trade-off between PCS, concur-
rency, and communication overhead in the context of group ratchet-
ing. Since our main result is a lower bound, we define the cleanest and
most restrictive setting where the tension already occurs: static groups
equipped with a synchronous (and authenticated) broadcast channel,
where up to t arbitrary parties can concurrently send messages in any
given round. Already in this setting, we show in a symbolic execution
model that PCS requires (2(¢) communication overhead per message.
Our symbolic model permits as building blocks black-box use of (even
“dual”) PRFs, (even key-updatable) PKE (which in our symbolic defi-
nition is at least as strong as HIBE), and broadcast encryption, covering
all tools used in previous constructions, but prohibiting the use of exotic
primitives.

To complement our result, we also prove an almost matching upper
bound of O(t - (1 + log(n/t))), which smoothly increases from O(logn)
with no concurrency, to O(n) with unbounded concurrency, matching
the previously known protocols.

The full version [11] of this extended abstract is available as entry 2020/1171 in the
TACR eprint archive.
© International Association for Cryptologic Research 2020

R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 198-228, 2020.
https://doi.org/10.1007/978-3-030-64378-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64378-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-64378-2_8

On the Price of Concurrency in Group Ratcheting Protocols 199

1 Introduction

PosT-COMPROMISE SECURITY. End-to-end (E2E) encrypted messaging sys-
tems including WhatsApp, Signal, and Facebook Messenger have increased in
popularity. In these systems, intermediaries including the messaging service
provider should not be able to read or modify messages. Moreover, as typi-
cal sessions in such E2E systems can last for a very long time, state compromise
of some of the participants is becoming a real concern to the deployment of such
systems. To address this security concern, modern E2E systems fulfill a novel
property called Post-Compromise Security [16], which refers to the ability of a
given protocol to recover—by means of normal protocol operations—from the
exposure of local states of its (otherwise honest) participants. For example, the
famous two-party Signal [28] protocol achieves PCS by having parties continu-
ously run fresh sessions of Diffie-Hellman key agreement “in the background”.

GROUP MESSAGING. By now, the setting of PCS-secure two-party encrypted
messaging systems is relatively well understood [2,10,15,19,23,24,30]. In con-
trast, the setting of PCS-secure group messaging is much less understood. On
the one extreme, several systems, including Signal Messenger itself, achieve PCS
in groups by simply executing, in parallel, a two-party PCS-secure protocol (e.g.,
Signal) for each pair of members in a group. In addition to achieving PCS, this
simple technique is also extremely resilient to asynchrony and concurrency: peo-
ple can send messages concurrently, receive them out-of-order, or be off-line for
extended periods of time. However, it comes at a steep communication over-
head O(n) for every message sent, where n is the group size.

On the other hand, several related protocols [3-5,14] (some of them intro-
duced under the term continuous group key agreement (CGKA)') were recently
developed in the context of the IETF Message Layer Security (MLS) initiative
for group messaging [7]. One of the main goals of this initiative was to achieve
PCS with a significantly lower communication overhead. And, indeed, for static
groups, these protocols improve this overhead per message to O(logn). More
precisely, these protocols separate protocol messages into two categories: Pay-
load messages, used to actually encrypt messages, have no overhead, but also do
not help in establishing PCS. In contrast, update messages carry no payload, but
exclusively establish PCS: intuitively, an update message from user A refreshes
all cryptographic material held by A. These update messages have size propor-
tional to O(log n) in MLS-related protocols, which is a significant saving for large
groups, compared to the pairwise-Signal protocol.

CONCURRENCY. Unfortunately, this reduction of communication overhead for
MLS-related protocols involves a great restriction: all update messages must be
generated and processed one-by-one in the same order by all the group members.

! By distinguishing between “CGKA” and “group ratcheting”, these works differenti-
ate between the asymmetric cryptographic parts of the protocols and the entire key
establishment procedure, respectively [5]. In order to avoid this strict distinction, we
call it “group ratcheting” here.

200 A. Bienstock et al.

We stress that this does not just mean that update messages can be prepared
concurrently, but processed in some fixed order. Instead, fresh update message
cannot be prepared until all previous update messages are processed. In partic-
ular, it is critical to somehow implement what these protocols call a “delivery
server”, whose task is to reject all-but-one of the concurrently prepared update
messages, and then to ensure that all group members process the “accepted
updates” in the same correct order. Implementing such a delivery server poses
a significant burden not only in terms of usability (which is clear), but also for
security of these protocols, as it delays reaching PCS up to n communication time
slots (potentially more in asynchronous settings, such as messaging). Indeed, the
concurrency restriction of MLS is currently one of the biggest criticisms and hur-
dles towards its wide-spread use and adoption (see [3] for extensive discussion
of this). In contrast, pairwise Signal does not have any such concurrency restric-
tion, albeit with a much higher communication overhead. See Sect. 4 and Table 1
for more detailed comparison of various existing methods for group ratcheting.

OUrR MAIN QUESTION. This brings us to the main question we study in this
work:

What is the trade-off between PCS, concurrent sending and low communication
complezity in encrypted group messaging protocols?

For our lower bound, we define the cleanest and most restrictive setting
where the tension already occurs: static groups equipped with a synchronous
(and authenticated) broadcast channel, where up to t arbitrary users can con-
currently send messages in any given round. In particular, ¢ = 1 corresponds
to the restrictive MLS setting which, we term “no concurrency”, and t = n
corresponds to unrestricted setting achieved by pairwise Signal, which we term
“full concurrency”. Also, without loss of generality, and following the conven-
tion already established in MLS-related protocols, we focus on the “key encap-
sulation” mechanism of group messaging protocols. Namely, our model is the
following:

We have a static group of n members whose goal is to continuously share
a group key k. Group members have private states st, and communicate in
rounds over a public broadcast channel. Each round refreshes the current group
key k into the next group key k' as follows: 1. At the beginning of a round,
an arbitrary subset of up to ¢ group members is selected by the adversary to
update the current group key k. These groups members are called senders (of a
given round). 2. During each round, each sender—unaware of the identities of
other senders—tosses fresh random coins, sends a ciphertext ¢ over the broadcast
channel, and updates its private state st. 3. At the end of each round, all (up to t)
ciphertexts c are received by all n users, who use them to update their state st,
and output a new group key k’. 4. At the end of each round, the adversary can
learn the current group key %', and is also allowed to expose an arbitrary number
of group member states st.

For our lower bound, we will demand the following, rather weak, PCS guar-
antee. A key k after round ¢ (not directly revealed to the attacker) is secure

On the Price of Concurrency in Group Ratcheting Protocols 201

if: (a) no user is exposed in round ¢’ > 4; (b) all users sent at least one update
ciphertext between their latest exposure and round 7—1; and (c¢) after all exposed
users sent once without being exposed again, at least one user additionally sent
in round j < 4. Condition (a) will only be used in our lower bound (to make
it stronger), to ensure that our lower bound is only due to the PCS, but not
a complementary property called forward-secrecy, which states that past round
keys cannot be compromised upon current state exposure. However, our upper
bound will achieve forward-secrecy, dropping (a).

Condition (b) is the heart of PCS, demanding that security should be eventu-
ally restored once every exposed user updated its state. Condition (c) permits a
one-round delay before PCS takes place. While not theoretically needed, avoid-
ing this extra round seems to require some sort of multiparty non-interactive
key exchange for concurrent state updates, which currently requires exotic cryp-
tographic assumptions, such as multi-linear maps [12,13]. In contrast, the extra
round allows to use traditional public-key cryptography techniques, such as the
exposed user sending fresh public-keys, and future senders using these keys in the
extra round to send fresh secret(s) to this user. While condition (¢) strengthens
our lower bound, our upper bound construction can be minimally adjusted to
achieve PCS for non-concurrent state updates even without this “extra round”.

For conciseness, we call any protocol in our model a group ratcheting scheme,
taking inspiration from the “double ratchet” paradigm used in design of the
Signal protocol [28].

OUR UpPPER BOUND. We show nearly matching lower and upper bounds on
the efficiency of ¢t-concurrent, PCS-secure group ratcheting schemes. With our
upper bound we provide a group ratcheting scheme with message overhead
O(t - (1 4 log(n/t))), which smoothly increases from O(logn) with no concur-
rency, to O(n) with unbounded concurrency, matching the upper bounds of
the previously known protocols. Our upper bound is proven in the standard
computational model. For the weak notion of PCS alone sketched above (i.e.,
conditions (a)—(c)), we only need public-key encryption (PKE) and pseudo-
random functions (PRFs). Our construction carefully borrows elements from
the complete subtree method of [27] used in the context of broadcast encryp-
tion (BE), and the TreeKEM protocol of the MLS standard [3,7] used in the
context of non-concurrent group ratcheting. Similarly, one can view our con-
struction as an adapted combination of components from Tainted TreeKEM [4]
and the most recent MLS draft (verion-09) [8] with its propose-then-commit
technique. By itself, none of these constructions is enough to do what we want:
BE scheme of [27] allows to send a fresh secret to all-but-¢t senders from the
previous round (this is needed for PCS), but needs centralized distribution of
correlated secret keys to various users, while the TreeKEM schemes no longer
need a group manager, but do not withstand concurrency of updates in a rather
critical way. Finally, the propose-then-commit technique, when naively combined
with (Tainted) TreeKEM as in MLS [8], in the worst case induces an over-
head linear in the group size, and still does not completely achieve our desired
concurrency and PCS guarantees. Nevertheless, we show how to combine these

202 A. Bienstock et al.

structures together—in a very concrete and non-black-box way—to obtain our
scheme with overhead O(¢ - (1 + log(n/t))).

Moreover, we can easily achieve forward-security in addition to PCS (i.e.,
drop restriction (a) on the attacker), by using the recent technique of [3,24],
which basically replaces traditional PKE with so called updatable PKE (uPKE).
Informally, such PKE is stateful, and only works if all the senders are synchro-
nized with the recipient (which can be enforced in our model, even with concur-
rency). Intuitively, each uPKE ciphertext updates the public and secret keys in
a correlated way, so that future ciphertexts (produced with new public key) can
be decrypted with the new secret key, but old ciphertexts cannot be decrypted
with the new secret key. Hence, uPKE provides an efficient and practical mech-
anism for forward-secrecy in such a synchronized setting, without the need of
heavy, less efficient tools, such as hierarchical identity based encryption (HIBE),
directly used as a building block for strongly secure group ratcheting [5], or used
as an intermediary component to build stronger key-updatable PKE (kuPKE)?
for secure two-party messaging [23,30].

OUrR LOWER BOUND. We prove a lower bound (2(¢) on the efficiency of any
group ratcheting protocol which only uses “realistic” tools, such as (possibly key-
updatable (See footnote 2)) PKE, (possibly so called “dual”) PRFs, and general
BE (see Sect. 2 for explaining these terms). We define our symbolic notion of key-
updatable PKE so that it even captures functionality and security guarantees
at least as strong as one expects from HIBE. To the best of our knowledge,
these primitives include all known tools used in all “practical” results on group
ratcheting (including our upper bound). Thus, our result nearly matches our
upper bound, and shows that the 2(n) overheard of pairwise Signal protocol is
optimal for unbounded concurrency, at least within our model.

To motivate our model for the lower bound, group ratcheting would be “easy”
if we could use “exotic” tools, such as multiparty non-interactive key agreement
(mNIKE), multi-linear maps, or general-purpose obfuscation. For example, using
general mNIKE, one can easily achieve PCS and unbounded concurrency, by
having each member simply broadcast its new public key, without any knowledge
of other senders: at the end of each round, the union of latest keys of all the group
members magically (and non-interactively) updates the previous group key to
a new, unrelated value. Of course, we currently don’t have any even remotely
practical mNIKE protocols, so it seems natural that we must define a model
which only permits the use of “realistic” tools, such as (ku)PKE, (dual) PRFs,
BE, (HIBE,) etc.

To formally address this challenge, we use a symbolic modeling framework
inspired by the elegant work of Micciancio and Panjwani [26], who used it to
derive a lower bound for the efficiency of multi-cast encryption. Symbolic models
treat all elements as symbols whose algebraic structure is entirely disregarded,

2 While for our upper bound construction weaker and more efficient uPKE (based on
DH groups) suffices as in [3,24], to strengthen our lower bound we allow constructions
to use stronger and less efficient key-updatable PKE (thus far based on HIBE) as
in [6,23,30].

On the Price of Concurrency in Group Ratcheting Protocols 203

and which can be used only as intended. E.g., a symbolic public key can be
defined to only encrypt messages, and the only way to decrypt the resulting
ciphertext is to have another symbol corresponding to the associated secret key.
In particular, one cannot perform any other operations with the symbolic public
key, such as verifying a signature, using it for a Diffie-Hellman key exchange,
etc.

We use such a symbolic model to precisely define the primitives we allow,
including the grammar of symbols and valid derivation rules between them (see
Fig.1). We then formalize the intuition for our lower bound in Sect.5 (that we
formally prove in the full version [11]). Our bound is actually very strong: it is
the best-case lower bound, which holds for any execution schedule of group ratch-
eting protocols within our model, and which is proven against highly restricted
adversaries for extremely little security requirements. Specifically, we show that
each sender for round 7 must send at least one fresh message over the broadcast
channel “specific” to every sender of the previous round i — 1.> While intuitively
simple, the exact formalization of this result is non-trivial, in part due to the
rather advanced nature of the underlying primitives we allow. For example, we
must show that no matter what shared infrastructure was established before
round (¢ — 1), and no matter what information a sender A sent in round ¢ — 1,
there is no way for A to always recover at round i from potential exposure at
round (¢ —2), unless every sender B in round 7 sends some message “only to A”.

PERSPECTIVE. To put our symbolic result in perspective, early use of sym-
bolic models in cryptography date to the Dolev-Yao model [18], and were used
to prove “upper bounds”, meaning security of protocols which were too com-
plex to analyze in the standard “computational model” (with reductions to well
established simpler primitives or assumptions). In contrast, Micciancio and Pan-
jwani [26] observed that symbolic models can also be used in a different way to
prove impossibility results (i.e., lower bounds) on the efficiency of building vari-
ous primitives using a fixed set of (symbolic) building blocks. This is interesting
because we do not have many other compelling techniques to prove such lower
bounds.

To the best of our knowledge, the only other technique we know is that of
“black-box separations” [22]. While originally used for black-box impossibility
results [22], Gennaro and Trevisan [20] adapted this technique to proving effi-
ciency limitations of black-box reductions, such as building psedorandom gener-
ators from one-way permutations. However, black-box separation lower bounds
are not only complex (which to some extent is true for symbolic lower bounds
as well), but also become exponentially harder, as the primitive in question
becomes more complex to define, or more diverse building blocks are allowed. In
particular, to the best of our knowledge, the setting of group ratcheting using
kuPKE, HIBE, dual PRFs, and BE used in this paper, appears several orders
of magnitude more complex than what can be done with the state-of-the-art
black-box lower bounds.

3 Except for itself, if the sender was active in the prior round. This intuitively explains
why our “best-case” lower bound is actually (¢ — 1) and not ¢.

204 A. Bienstock et al.

Thus, we hope that our paper renews the interests in symbolic lower bounds,
and that our techniques would prove useful to study other settings where such
lower bounds could be proven.

2 Preliminaries

We shortly introduce our notation as well as the syntax of the most important
cryptographic building blocks. We also sketch their security guarantees that we
formally define along the full proofs in our full version [11].

Notation. We distinguish between deterministic and probabilistic assignments
with symbols < and «—g, respectively; the latter denotes sampling of an ele-
ment z from the uniform distribution over a set X (z «g X) and invoking a
probabilistic algorithm alg on input a with output = (z «g alg(a)). In order to
make the used random coins r of an invocation explicit (and turning it into a
deterministic invocation), we write x « alg(a;r). We denote the cardinality of
a set X or the length of a string s with symbols |X| and |s|. Concatenations of
two bit-strings s1, so is written as sq||sz.

Adversaries A in our computational models are probabilistic algorithms
invoked in a security experiment denoted by the term Game. Therein they
can call oracles, denoted by term Oracle.

In our symbolic model we describe grammar rules as follows. For three types
of symbols X, YV, and Z, X — Y|Z denotes that symbols of type X can be
parsed as symbols of type Y or type Z. A type that cannot be parsed further
is called terminal type. Using these grammar rules, we define derivation rules
that describe how symbols can be derived from sets of (other) symbols. For a
symbol m and set of symbols M, M F m means that m can be derived from the
symbols in set M by using the grammar and derivation rules that we specify in
our symbolic model.

(Dual) Pseudo-random Function. A pseudo-random function prf takes a sym-
metric key and some associated data, and outputs another symmetric key such
that for sets K, AD: prf(k, ad) — k' with k, k¥’ € K and ad € AD. A dual pseudo-
random function dprf takes two symmetric keys and outputs another symmetric
key such that for set K: dprf({ki,ka2}) — k' with ki, ko, k' € K with the added
property that dprf(k1, ko) = dprf(ks, k1) = k’. For simplicity (in our proof), we
only consider symmetric dual PRFs [9].

A secure PRF outputs a key that is secret® if the input key is secret as well.
A dual PRF additionally achieves secrecy of the output key in case at most one
of the two input keys is known by an attacker.

4 Where secrecy means indistinguishable from a random key in the computational
model and underivable from public symbols in the symbolic execution model.

On the Price of Concurrency in Group Ratcheting Protocols 205

Key-Updatable Public Key Encryption. Key-updatable public key encryption
(kuPKE) is an extension of public key encryption that allows for independent
updates of public and secret key with respect to some associated data. This
primitive has been used in constructions of two-party ratcheting (e.g., [23,25,29,
30]). Furthermore, a work by Balli et al. [6] recently showed that it is actually
necessary for building optimally secure two-party ratcheting.

A kuPKE scheme UE is a tuple of algorithms UE = (gen,up,enc,dec)
where up takes some associated data together with either a public key or a
secret key and produces a new public key or secret key respectively such that
for sets SK, PKC,C, M, AD: gen(sk) — pk, up(sk, ad) — sk, up(pk, ad) — pk’,
enc(pk,m) —g ¢, and dec(sk, c) — m with sk, sk’ € SK, pk, pk' € PK, ad € AD,
m € M, and ¢ € C. A kuPKE scheme UE is correct if for synchronously updated
public key and secret key, the latter can decrypt ciphertexts produced with the
former: Pr[Vn € N dec(sk,, enc(pk,,,m)) = m : sko «—s SK, pky = gen(sko), Vi €
[n] ad; —¢ AD, pk;, = up(pk;, ad;), skir1 = up(sk;, ad;),m —¢ M| = 1.

A secure kuPKE scheme intuitively guarantees that a message, encrypted
to public key pk’ that was derived from another public key pk via sequential
updates under associated-data from vector ad € AD*, cannot be decrypted
by a (computationally bounded, or symbolic) adversary even with access to any
secret keys, derived via updates from pk’s secret key sk under an associated-data
vector ad’ € AD* such that ad’ is not a prefix of ad. Note that this intuitive
security notion matches security of HIBE when associated data is being parsed
as identity strings.

Broadcast Encryption. A broadcast encryption (BE) scheme BE is a tuple
of four algorithms BE = (gen,reg, enc,dec) where reg takes a (main) secret
key and an integer and produces an accordingly registered secret key, enc
takes, in addition to public key and message, a set of integers to indicate
which registered secret keys must be unable to decrypt the message such
that for sets MSK,SIC, MPK,C, M: gen(msk) — mpk, reg(msk,u) —g sk,
enc(mpk, RM,m) —g ¢, and dec(sk,c) — m with msk € MSK, mpk €
MPK, u € N, sk € SK, RM C N, m € M, and ¢ € C. A broadcast
encryption scheme BE is correct if all registered secret keys that were not
excluded when encrypting with the public key can decrypt the corresponding
encrypted message: Pr[dec(sk,enc(mpk, RM ,m)) = m : msk «—g MSK, mpk =
gen(msk),u —g N, sk «—g reg(msk,u), RM C N\{u}] = 1.

A secure BE scheme intuitively guarantees that a message, encrypted to a
(main) public key mpk with a set of removed users RM, cannot be decrypted
by a (computationally bounded, or symbolic) adversary even with access to any
secret keys, registered under mpk’s main secret key msk for numbers u € RM.

3 Security of Concurrent Group Ratcheting

In this work we consider an abstraction of group ratcheting under significant
relaxations and restrictions with respect to the real-world. The purpose of this

206 A. Bienstock et al.

approach is to disregard irrelevant aspects in order to highlight the immediate
effects of concurrent state updates in group ratcheting.

In the following, we define syntax and (restricted) security of ratcheting in
static groups against computationally bounded adversaries. We assume in our
model that all group members have access to a round-based reliable and authen-
ticated broadcast. Additionally, since our focus are concurrent operations in an
initialized group, we consider an abstract initialization algorithm for deriving
initial user states.®

Syntax. A static group ratcheting protocol is a tuple of three algorithms GR =
(init, snd, rev) such that for sets ST ggr,Cor, Kgr, R:

— init(n;r) — (st1,...,st,) with n € N, r € R, and st1,...,st, € STcr;
creates an initial local state for every participating group member.

— snd(st;r) — (st’,c) with st,st’ € STgr, r € R, and ¢ € Cgg; takes the
current state of an instance (in addition to freshly sampled random coins)
and outputs the updated state and update information within a ciphertext
that is to be sent via the broadcast.

— rev(st,e) — (st’, k) with st, st’ € STgr, ¢ C Cgr, and k € Kgg; takes the
current state of an instance and a set of update ciphertexts (e.g., all broadcast
ciphertexts since this instance’s last receiving), and outputs the updated state
and the current (joint) group key.

Security. Security experiments KIND%R in which adversary A attacks scheme GR
proceed as follows:

1. A determines the number of group members n. Afterwards the challenger
invokes the init algorithm to generate initial secret states for all members.
Then the security experiment continues in rounds. In every round 4

— adversary A chooses set U} of senders. For each sender u € Ug algo-
rithm snd is invoked. All resulting ciphertexts are both given to .4 and
received by all group members via invocations of algorithm rcv.

— adversary A chooses set U% of exposed users. The local state of each
user u € U after receiving in round i is given to A.

2. During the entire security experiment, A can challenge group keys established
in any round i*. A either obtains a random key (if b = 0) or the actual group
key from round ¢* (if b = 1) in response.

3. When terminating, A returns a guess b’ such that it wins if b = b’ and for all
challenged group keys it holds that:

(a) no user was exposed after a challenged group key was computed,
(b) every user sent at least once after being exposed and before a challenged
group key was computed, and

5 We note that we only consider a single independently established group session.
For protocols in which participants use the same secrets simultaneously across mul-
tiple (thereby dependent) sessions, we refer the reader to a work by Cremers et
al. [17]. Both the problems and the solutions for these two considerations appear to
be entirely distinct.

On the Price of Concurrency in Group Ratcheting Protocols 207

(c) after all exposed users sent once without being exposed again, at least
one user additionally sent before a challenged group key was computed.

Group keys for which conditions 3a—3c hold are marked secure.

We restrict the adversary with condition (3a) only because the resulting
weaker security definition already suffices to prove our lower bound of commu-
nication complexity. For our full model in which we prove the construction of our
upper bound secure, we strengthen adversaries by lifting restriction (3a). This
reflects that our upper bound construction achieves immediate forward-secrecy
while our lower bound already holds without requiring any form of forward-
secrecy.

Condition (3b) models that a user who was exposed must generate fresh
secrets and send the respective public values to the group before it can receive
confidential information for establishing new secure group keys. After all exposed
users recovered by sending subsequently, their sent contribution must be used
effectively to establish a new secret group key. Therefore, condition (3c) addi-
tionally requires one further response from a user as a reaction to all newly
contributed public values.

For removing condition (3c) either 1. The last users who recovered did so con-
currently at most as a pair of two (such that their new public contributions can
be merged into a shared group key non-interactively with NIKE mechanisms),
or 2. Multiparty NIKE schemes exist (for resolving cases of more concurrently
recovering users). In order to simplify our security definition by not introducing
an according case distinction tracing occurrences of case 1, we generally restrict
the adversary with condition (3c). We note that for proving our lower bound,
restricting the adversary by this condition strengthens our result.

Intuitively, a group ratcheting scheme is secure if no adversary A exists
that wins the above defined security experiment with probability non-negligibly
higher than 1/2.

Restrictions of the Model. With the following abstractions, simplifications,
and restrictions, we support clarity and comprehensibility of our results and
strengthen the statement of our lower bound. We consider: 1. A round-based
communication setting, 2. Static groups, 3. All group members receive in every
round, 4. Only passive adversaries 5. Adversaries can expose users only after
receiving, and 6. Adversaries cannot attack used randomness. As we do not aim
to develop a functional and secure group messenger but to theoretically analyze
the foundations of concurrent group ratcheting, we believe this is justified.

4 Deficiencies of Existing Protocols

The problem of constructing group ratcheting could be solved trivially if efli-
cient multiparty non-interactive key exchange schemes existed. Especially for
the concurrent recovery from state exposures in group ratcheting, the lack of
this tool appears to be crucial: Due to not being able to combine independently

208 A. Bienstock et al.

proposed fresh public key material, existing efficient group ratcheting construc-
tions cannot process concurrent operations as we will explain in this section. In
Table 1 we summarize the characteristics of previous group ratcheting schemes
in comparison to our construction and the lower bound.

Table 1. Properties of group ratcheting constructions and our lower bound. t =
|U&™'| is the number of members who sent concurrently in the previous round. For
the overhead we consider a worst-case scenario in a constant size group. Constructions
denoted with ‘@©’/‘®’ provide PCS under no concurrency and can handle concurrent
state updates without reaching PCS with them.

PCS | Concurrency | Overhead
Sender Key Mechanism [31] O ® 1
Parallel Pairwise Signal [2,15,31] () ® n
Asynchronous Ratcheting Trees [14] [) O log(n)
Causal TreeKEM [32] © O log(n)
TreeKEM Familiy [3,4]) O log(n)
MLS Draft-09 [8] o o n
Optimally Secure Tainted TreeKEM [5] © | ® log(n)
Our Construction () ® t- (14 log(n/t))
Our Lower Bound ® () t—1

Sender Key Mechanism. WhatsApp uses the so called sender key mechanism for
implementing group chats [31]. This mechanism distributes a symmetric sender
key for each member in a group. When sending a group message, the sender
protects the payload with its own sender key, transmits the resulting (single)
ciphertext, and hashes the used sender key to obtain its next sender key. The
receivers decrypt the ciphertext with the sender’s sender key and also update
the sender’s sender key by hashing it.

While the deterministic derivation of sender keys induces no communication
overhead after the initial distribution of sender keys, it implies the reveal of
all future sender keys as soon as a member state is exposed (breaking post-
compromise security). However, as each group member’s key material is pro-
cessed and used independently, concurrently initiated group operations can be
processed naturally.

Parallel Ezxecution of Pairwise Signal. The group ratcheting mechanism imple-
mented in the Signal messenger bases on parallel executions of the two-
party Double Ratchet Algorithm [2,15,28] between each pair of members in a
group [31]. Due to splitting the group of size n into its n? independent pairwise
components, this construction can naturally handle concurrency. At the same
time, this approach induces a communication overhead of O(n) ciphertexts per
sent group payload.

On the Price of Concurrency in Group Ratcheting Protocols 209

Since the Double Ratchet Algorithm reaches post-compromise security (PCS)
for each pair of members, also its parallel execution achieves this goal for the
group against passive adversaries or if the member set remains static. Rosler et
al. [31] describe an active attack against PCS in dynamic groups that exploits the
implemented decentralized membership management. Furthermore, the delayed
recovery from state exposures in the Double Ratchet Algorithm due to a strictly
alternating update schedule between protocol participants (cf. analysis and fix
in [2]) lets recoveries from state exposures in the group become effective only
after every group member sent once at worst. With stronger two-party ratcheting
protocols (e.g., [2,23,24,29,30]) this problem can be solved.

Asynchronous Ratcheting Tree. While the two above described approaches com-
pute and use multiple symmetric keys in parallel for protecting communication
in groups, the following constructions do so by deriving a single shared group
key at each step of the group’s lifetime. Therefore they arrange asymmetric
key material on nodes in a tree structure in which each leaf represents a group
member and the common root represents the shared group secret. Every group
member stores the asymmetric secrets on the path from its leaf to the common
root in its local state. For updating the local state, in order to recover from an
adversarial exposure, all constructions let the updating member generate new
asymmetric secrets for each node on their path to the root.

In the Asynchronous Ratcheting Trees (ART) design [14], these asymmetric
secrets are exponents in a Diffie-Hellman (DH) group. State updates of a mem-
ber’s path is conducted as follows: the updating member freshly samples a new
secret exponent for its own leaf and then deterministically derives every ancestor
node’s secret exponent as the shared DH key from its two children’s public DH
shares. All resulting new public DH shares on the path are sent to the group,
inducing a communication overhead of O(log(n)) per update operation. Other
members perform the same derivations for updated nodes on their own paths to
the root to obtain the new exponents. Since all secrets in the updating member’s
local state are renewed based on fresh random coins, this mechanism achieves
PCS.

The reason for ART not being able to process concurrent update operations
is that simultaneous updates of nodes in the tree with independently computed
DH exponents cannot be merged into a joint tree structure while reaching PCS.
For t concurrent updates, a t-party NIKE would be needed to combine the
resulting ¢ new proposed DH shares into a shared secret exponent for the ances-
tor node at which all updating members’ paths to the root join together. (As
mentioned before, if multiparty NIKE existed, group ratcheting can be solved
trivially without complex tree structures.)

Causal TreeKEM. As in the ART design [14], Causal TreeKEM [32] uses expo-
nents in a DH group as asymmetric secrets on nodes in the tree. Also the
update procedure is conceptually the same. However, in case of concurrently
proposed path updates, the conflicting new exponents on a node are combined

210 A. Bienstock et al.

via exponent-addition and the conflicting public DH shares on a node are com-
bined via multiplying these group elements.

Although this merge-mechanism resolves conflicts caused by concurrency,
the combination of updated path secrets is not post-compromise secure: the old
exponents of two nodes (from which their updating users A and B aimed to
recover), whose common parent was updated via a combination of concurrent
path updates, suffice to derive their parent’s resulting new exponent. (The new
exponent is the old exponent mixed with random values from A and B that they
encrypt to the other’s old node key.)

TreeKEM Family. In the family of TreeKEM constructions [3,4], the asymmetric
key material of nodes in the tree are key encapsulation mechanism (KEM) key
pairs or, in forward-secure TreeKEM, updatable KEM key pairs. For updating
its local state, a group member samples a fresh secret from which it deter-
ministically derives seeds for each node on its path to the root, such that all
ancestor seeds can be derived from their descendant seeds (but not vice versa).
The updating member generates the new key pair for each updated node from its
seed deterministically, and encapsulates the node’s seed to the public key of the
child which is not on the member’s path to the root. This mechanism achieves
PCS and induces a communication overhead of O(log(n)) per update.

The idea of recovery from exposures is undermined in case of concurrency,
since updating members send their new seeds for a node on their path to public
keys of siblings, simultaneously being updated and replaced by new key mate-
rial of members who concurrently update: the potentially exposed secrets from
which one updating member aims to recover can then be used to obtain the
new secrets with which the other updating user aims to recover (as in the case
of Causal TreeKEM). Consequently, concurrent updates in TreeKEM are essen-
tially ineffective with respect to PCS.

Forward-secure TreeKEM [3] uses an updatable KEM for enhancing forward-
security guarantees of the above described mechanism. Tainted TreeKEM [4]
enhances PCS guarantees with respect to dynamic membership changes in
groups. Neither of these changes affect the trade-offs discussed here.

MLS Draft-09. Based on TreeKEM, the most recent draft of MLS [8] distin-
guishes between two state update variants: (a) In an update proposal a member
refreshes only its own leaf key pair, removes all other nodes on the path from
this leaf to the root, and makes the root parent of all nodes that thereby became
parentless. (b) In a commit a member combines previous update proposals and
refreshes all key pairs on the path from its own leaf to the root (matching the
normal TreeKEM update as described in the last paragraph).

In principle, both update variants achieve PCS for respective the sender.
However, for simultaneously sent commits, all but one are rejected (e.g., by a
central server) meaning that PCS under concurrency is not achieved for rejected
updating commits. Furthermore, while wupdate proposals can be processed

On the Price of Concurrency in Group Ratcheting Protocols 211

concurrently, they eventually let the tree’s depth degrade to 1, inducing a worst-
case overhead of O(n) for later commits.%

Optimally Secure Tainted TreeKEM. Recently and concurrent to our work, an
optimally secure variant of group ratcheting, based on a combination of Tainted
TreeKEM and MLS draft-09, was proposed by Alwen et al. [5]. In addition to
authentication guarantees (which is independent of our focus), their protocol
achieves strong security guarantees for group partitions due to concurrency:
instead of assuming that a (consensus) mechanism rejects conflicting commits
as in MLS, they anticipate that different sub-groups of group members may
process different of these commits such that the overall perspective on the group
diverges. Their protocol guarantees that, after diverging, exposing states of one
sub-group’s members does not affect the security of another sub-groups’ secrets.
Intuitively, this is achieved by using HIBE key pairs on the tree’s nodes that are
regularly updated via secret-key-delegation based on identity strings that reflect
the current perspective on the group. (For details, we refer the interested reader
to [5].)

While these changes increase security with respect to some form of forward-
secrecy under group partitions, they do not entirely solve the issue of conflicting
commits as in MLS: committed state updates still only have an effect in a sub-
group that processes the commit such that only one user at a time can update
secrets on the path from its leave to the root whereas other user’s path updates
remain ineffective.

Our construction from Sect. 6 bypasses the issue of concurrently generated,
incompatible path proposals by postponing the update of affected nodes in
the tree by one communication round. However, “immediate” PCS can still be
reached for non-concurrent updates by composing our construction with one of
the above described ones without loss in efficiency. We note that some of the
above constructions provide strong security guarantees with respect to active
adversaries, dynamic groups, entirely asynchronous communication, or weak ran-
domness, which is out (and partially independent) of our consideration’s scope.

5 Intuition for Lower Bound

Our lower bound proof intuitively says that every group ratcheting scheme with
better communication complexity than this bound is either insecure, or not cor-
rect, or cannot be built from the building blocks we consider. In the following,
we first list these considered building blocks and argue why the selection of those
is indeed justified (and not too restrictive). We then abstractly explain the sym-
bolic security definition of group ratcheting, and finally sketch the steps of our
proof that is formally given in the full version [11].

5 Consider, for example, a scenario in which the same majority of members always
sends update proposals and a fixed disjoint set of few members always commits. In
this case, the overhead of commits for these few members converges to O(n).

212 A. Bienstock et al.

5.1 Symbolic Building Blocks

The selection of primitives which a group ratcheting construction may use to
reach minimal communication complexity in our symbolic model is inspired by
the work of Micciancio and Panjwani [26]. For their lower bound of communica-
tion complexity in multi-cast encryption—which can also be understood as group
key exchange—, Micciancio and Panjwani allow constructions to use pseudo-
random generators, secret sharing, and symmetric encryption. We instead con-
sider 1. (dual) pseudo-random functions, 2. key-updatable public key encryption
(with functionality and symbolic security guarantees at least as strong as those of
hierarchical identity based encryption), and 3. broadcast encryption and thereby
significantly extend the power of available building blocks. As secret sharing
appears to be rather irrelevant in our setting—as well as it is irrelevant in their
setting—, we neglect it to achieve better clarity in model and proof.

Bulding Blocks in Related Work. To support the justification of our selection,
we note that all previous constructions of group ratcheting base on less powerful
building blocks than we consider here: The ART construction [14] relies on a
combination of dual PRF and Diffie-Hellman (DH) group. The actual properties
used from the DH group can also be achieved by using generic public key encryp-
tion (PKE)—as demonstrated by its following successors. TreeKEM as proposed
in the MLS initiative [3,8] relies on a PRG and a PKE scheme. TreeKEM with
extended forward-secrecy [3] relies on a PRG and an updatable PKE scheme.
The syntax of the latter in combination with the respective computational secu-
rity guarantees can be considered weaker than our according symbolic variant
of kuPKE. Tainted TreeKEM [4] relies on a PKE scheme in the random oracle
model. Optimally secure Tainted TreeKEM [5] relies on an HIBE scheme in the
random oracle model. As noted before, functionality and security guarantees of
HIBE are captured in our symbolic notion of kuPKE. The property of the ran-
dom oracle that allows for mixing multiple input values of which at least one is
confidential to derive a confidential random output can be achieved similarly by
using (a cascade of) dual PRF invocations.”

Only the post-compromise insecure merge-mechanism of DH shares from
Causal TreeKEM [32] is not captured in our symbolic model. However, turning
this mechanism post-compromise secure results in multi-party NIKE, which we
intentionally exclude.

Grammar. The grammar definition of the considered building blocks bases on
five types of symbols: messages M, secret keys SK, symmetric keys K, public
keys PK, and random coins R (which is a terminal type). These types and
their relation are specified in the lower right corner of Fig.1. For simplicity

" If the constructions in [4,5] would rely on stronger (security) guarantees of the
random oracle model, their practicability might be questionable.

On the Price of Concurrency in Group Ratcheting Protocols 213

Derivation of protected values: Derivation of secret keys:
a) meM = MEFm e) M+ sk = Vad M + up(sk, ad)
b) M+ k = Vad Mt prf(k, ad) f) Mt sk = Yu M F reg(sk,u)
C) MbEkiko = MFE dprf({kl,kg})
d) M\ enc(pk, RM,m), sk :

Fit(pk, RM,sk) = MFEm

Grammar rules:

Derivation of public values: 1. M~ SK|PK|enc(PK,S(N), M)
g) Mt sk = M t gen(sk) 2. SK — Klup(SK, M)|reg(SK,N)
h) M+ pk = Vad M + up(pk, ad) 3. K — R|prf(K, M)|dprf({K, K})

i) M+ pk,m = YRM M + enc(pk, RM,m) | 4. PK ~ gen(SK)|up(PK, M)

Fig. 1. Grammar and derivation rules of building blocks in the symbolic model.

(and in order to strengthen our lower bound result), we consider algorithms gen
and enc interoperable for kuPKE and BE.®

Derivation Rules. Symbolic security for the building blocks is defined via deriva-
tion rules that describe the conditions under which symbols can be derived from
sets of (other) symbols. These rules are defined in Fig. 1 clustered into those with
which protected values can be obtained, with which secret keys can be updated
or registered, and with which public values can be obtained.

Rules b) and c¢) describe the security of (dual) PRFs, rules d), e), and g) to
i) describe the security and functionality of kuPKE (and HIBE), and rules d),
f), g), and i) describe the security and functionality of BE.

Rule d), describing the conditions under which a ciphertext can be decrypted,
uses predicate Fit that validates the compatibility of public key and secret key
(and set of removed registered users). Intuitively, a secret key sk is compatible
with a public key pk if all updates for obtaining sk correspond to updates for
obtaining pk in the same order and under the same associated data with respect
to an initial key pair, or if the former was registered under the main secret key
of the latter.

5.2 Symbolic Group Ratcheting

The syntax of group ratcheting was introduced in Sect. 3. In the following we
map this syntax to the grammar definition above, and shortly give an intuition
for the correctness and security of group ratcheting in the symbolic model.
Inputs and outputs of group ratcheting algorithms init, snd, and rcv are
random coins R, local user states S7 gg, ciphertexts Cggr, and group keys Kgg.
In our grammar these random coins are sets of type R symbols, local states and
ciphertexts are sets of type M symbols, and group keys are symbols of type K.
According to this grammar, we require from symbolic constructions of group
ratcheting for being correct that 1. all outputs of a group ratcheting algorithm

8 As a simplification we use N to denote the user input symbol of BE, S(-) to denote an
unordered compilation of multiple such symbols, and {, -} to denote an unordered
compilation of two key symbols. For kuPKE encryptions the second parameter in
our symbolic model can be ignored.

214 A. Bienstock et al.

invocation can be derived from its inputs via the derivation rules defined above
and 2. in each round the group keys, computed by all users, are equal. The first
condition is necessary to allow for symbolic adversaries. We note that this condi-
tion furthermore implies “inverse derivation guarantees”, meaning that symbols
can only be obtained via our derivation rules. For example, for inputs IN and
outputs OUT of an algorithm invocation, output ¥’ € OUT with prf(k, ad) = k'
is either also element of set IN (i.e., ¥’ € IN), or k' is encrypted in a cipher-
text contained in set IN, or IN F k£ holds. We explicitly provide these inverse
derivation guarantees in our full version [11].

Security. To transfer the computational security experiment from Sect. 3 to the
execution of symbolic attackers against group ratcheting, only few small changes
are necessary: 1. a symbolic adversary A follows the above defined derivation
rules for an unbounded time, 2. the target of A is not to distinguish securely
marked real group keys from random ones but to derive such securely marked
keys from the ciphertexts, sent in each round, and the states, exposed at the end
of each round, with these derivation rules.

A group ratcheting scheme is secure in the symbolic model if an unbounded
adversary cannot derive any of the securely marked group keys from the combi-
nation of all rounds’ ciphertexts and exposed states via the above defined rules.
The fully formal variant of this definition is in Fig. 2.

Game SYMgr(n, U%, Proc Round(U) Proc Expose(U)
Us, Uk,..., UL, U%) Require U C [n] Require U C [n]
XU «+ 0; SEC + 0 For all u € U: XU+~ XUUU
XST « 0; C+ 0 XST[i] + U,c gy stu
XST[]«+0; C[-] + 0 (Stu, cu) < snd(sty:) XST <+ XST U XSTJi]
K[]+ L Cli] < Upep cu SEC < SEC\ [i — 1]
(st1,..., stn) < init(n:r) For all u € [n]: Return
Call Expose(U%) (Stu, ku) + rev(sty, C[i])
For i from 1 to g: FXU=0A(U#0
Call Round(U%) Vvi—1¢e SEC):
Call Expose(Uk) SEC + {i}
CHUjE[q]C[i} XU<—XU\U
If 3’ € SEC : Kli] < k1
K[i'] € Der(C U XST): Return
Stop with 1
Stop with 0

Fig. 2. Security definition of concurrent group ratcheting in our symbolic model.

5.3 Lower Bound

Using this symbolic framework, we formulate (a sketched variant of) the lower
bound of communication complexity for secure (and correct) group ratcheting
constructions:

On the Price of Concurrency in Group Ratcheting Protocols 215

Let GR be a secure and correct group ratcheting scheme. For every round i
in a symbolic execution of GR with senders Ué and exposed users Uy, the
number of sent symbols is |C[i]| > |U§| - (US| - 1).

For our proof, we consider a symbolic adversary that proceeds as follows:

1. In round i — 2 a set of members Uy C [n] with Uy ?| > 1 is exposed.
2. In subsequent round ¢ — 1 these exposed users send (i.e., Ué_l = U§(_2).
3. In round 7 a non-empty set of members () # U C [n] sends.

Assuming no user was exposed in any round before or after ¢ — 2, our symbolic
security definition requires the group key in round i to be secure (i.e., not deriv-
able from exposed states and sent ciphertexts up to round). In order to show
that each sender in round ¢ must send at least |U§‘71| —1 ciphertexts to establish
this secure group key, we analyze the effects of exposures in round i — 2, sending
in round ¢ — 1, and sending in round ¢ in the following paragraphs.

At the end of round ¢ — 2 any symbol derivable by users in set U;{Q is also
derivable by the adversary. After generating new secret random coins at the
beginning of round 7 — 1, users in set Uéfl can derive symbols, that the adver-
sary cannot derive, from these new random coins and public symbols from their
(exposed) state. We call such derivable symbols of types SK, K, and R that the
adversary cannot derive useful secrets. Symbols of these types that are derivable
by the adversary are called useless secrets (resulting in two complementary
sets). Before sending in round i — 1, new useful secrets of a user u* € Ug™*
are only derivable for u* itself but not for any other user u € [n]\{u*}. This is
because the origin of these new useful secrets are the new secret random coins
generated at the beginning of round ¢ — 1 and no communication took place after
their generation yet. Hence, at sending in round ¢ — 1 users in set Ué;l share no
compatible useful secrets with other users. Secrets are called compatible if they
are equal or if they are registered via rule f) under the same (main) secret key.

We formulate three observations: I) For deriving a public key pk from a set
of type R symbols it is necessary according to grammar rule 4. and derivation
rules g) and h) (with their inverse derivation guarantees) that its secret key sk
(or one of its update-ancestors’ secret key sk) is derivable from this set as well.
IT) For deriving a ciphertext ¢, encrypted to a public key pk, from a set of type R
symbols it is necessary according to grammar rule 1. and derivation rule i) (with
its inverse derivation guarantees) that this public key pk is derivable from it
as well. IIT) Unifying all random coins generated by all users up to (including)
round i — 1 except those generated by user u* € Ué;l in round 7 — 1 forms a set
of type R symbols from which all useful secrets at the beginning of round i — 1
can be derived except those that are new to user u* at that point. Combining
these observations shows that at the beginning of round 7 — 1 no user v # u* can
derive public keys to useful secrets of user u* € Ué_l. This further implies that
user u cannot derive ciphertexts encrypted to such public keys. As a result, the
set of symbols sent by one user u € Ugl in round ¢ — 1 contains no ciphertexts
directed to useful secrets derivable by another user u* € Ug *\{u} that would
transport useful secrets between such users.

216 A. Bienstock et al.

We further observe: According to the inverse derivation guarantees of rule c),
both inputs to a dual PRF invocation must be derivable for deriving its output.
As this requires a shared useful secret on input for deriving a shared useful secret
as output, also a dual PRF establishes no shared (compatible) useful secrets
in round ¢ — 1. All remaining derivation rules either output no secrets, or are
unidimensional, meaning that they only immediately derive one (useful) secret
from another. As a result, also after receiving in round ¢ — 1 users in set Ué_l
share no compatible useful secrets.

Sampling random coins before sending in round ¢ again produces no shared
compatible useful secrets between users that shared none before. Hence, also
before receiving in round i, users in set Ug;fl share no compatible useful secrets.
We remark that our symbolic correctness and security definition requires for the
given adversary that the shared group key derived in round 4 (after receiving) is
a useful secret.

For quantifying the number of ciphertexts sent in round i, we define two key
graphs Q})ef‘“e and foter that represent useful secrets as nodes and derivations
among them as edges. Secret y being derivable from secret x is represented by a
directed edge from x to y. Although inspired by the proof technique of Micciancio
and Panjwani [26], the use of key (derivation) graphs in our proof is entirely new.

Graph GP¢re includes a node for each useful secret that exists after receiving
in round ¢ and an edge for each derivation among them except for derivations
possible only due to ciphertexts sent in round i. Graph G*** contains gPefore
and additionally includes edges for derivations possible due to ciphertexts sent
in round ¢. Thus, the number of additional edges in gffter equals the number
of sent ciphertexts in round i. Mapping our derivation rules to edges is highly
non-trivial (e.g., each sent ciphertext must appear at most once). All details are
in the full version [11].

The fact that users in set Ué_l share no compatible useful secrets before
receiving in round ¢ finds expression in graph g}?efore as follows: Every such
user u € Uéfl is represented by nodes in a set V! that stand for its useful secret
random coins from rounds ¢ — 1 and 4 (the latter only if also sent in round 7).
For every pair of users ui,us € Uéfl with u; # wuo there exists no node in
graph GPefr that is reachable via a path from a node in set V¢ , and a path
from a node in set V; , simultaneously (including trivial paths). In contrast, every
set V! with u € Usifl must contain a node from which a path in graph ggfter
reaches node v* that represents the group key in round <.

In graph GP°°r® node v* was reachable via a path from nodes V¢ of at most
one user u € Ué_l. Otherwise v* would have been a compatible useful secret
for two users in set Ué_l before receiving in round i. Consequently, at least one
edge per user u* € Uéfl\{u} must be included in G2 in addition to those
contained in GP™re. Hence, G2*" contains at least |Ug | — 1 more edges than
gbefere implying that at least |[Ug | — 1 ciphertexts were sent in round i.

We now observe that invocations of algorithm snd in every round are inde-
pendent of sets Uy, for all j, and invocations of algorithm snd in round 7 are inde-
pendent of set Ué. As a consequence, every sender u € Ué must send |U§‘71| -1

On the Price of Concurrency in Group Ratcheting Protocols 217

ciphertexts, anticipating the worst case that it is the only sender in that round.
Therefore, |U| - (JU& | — 1) ciphertexts are sent in (every) round i.

Interpretation. This lower bound, formally proved in the full version of this arti-
cle [11], describes the best case of communication complexity both within our
model but partially also with respect to the real-world: it holds against very
weak adversaries for significantly reduced functionality requirements of group
ratcheting without any form of required forward-secrecy. Lower bounds, induced
by forward-secrecy for group key exchange [26], may furthermore apply to practi-
cal group ratcheting and therefore increase necessary communication complexity
thereof.” We note that our result even applies to any two rounds between which
no user sent.

Bypassing our lower bound is possible for constructions that exploit the alge-
braic structure of elements (which is forbidden in symbolic models), base on
building blocks that we do not allow here (e.g., multiparty NIKE), or provide
weaker security guarantees (e.g., recover from state exposures only with an addi-
tional delay in rounds).

For clarity we note that the key graph concept used here is independent of
the tree structure of keys within our upper bound construction in Sect. 6.

6 Upper Bound of Communication Complexity

In order to overcome the deficiencies of existing protocols, we postpone the
refresh of parts of the key material in the group by one operation. The resulting
construction closely (up to a factor of = log(n/t)) meets our communication
complexity lower bound.

For computational security of group ratcheting, games KIND%R from Sect. 3
are slightly adapted to additionally require immediate forward-secrecy. We note
that the use of (a weak form of) kuPKE instead of standard PKE in our con-
struction is only due to required forward-secrecy. Furthermore, the weak kuPKE
used can be efficiently built from standard assumptions (see e.g., a construction
from DDH in [24]).

6.1 Construction

Our construction uses ideas from the complete subtree method of broadcast
encryption [27] and resembles concepts from TreeKEM [3,4]. More specifically,
the construction bases on a static complete (directed) binary tree structure 7
with n leaves (i.e., one leaf per group member), on top of which at every node,
there is an evolving kuPKE key pair. The secret key at each of the n leaves is
known only by the unique user that occupies that leaf. For the remaining nodes

9 We observe that if a group-ratcheting-pendant of the amortized log(n) lower bound
for forward-secure group key exchange by Micciancio and Panjwani [26] applies as a
factor on our lower bound, then our construction from Sect. 6 has optimal commu-
nication complexity.

218 A. Bienstock et al.

we maintain the invariant that the only secret keys in a user’s state at a given
time are those that are at nodes along the direct path of its corresponding leaf
to the root of the tree.

We refer to the children of a node v in a tree as v.co (left child) and v.c; (right
child), and its parent as v.p. Furthermore we let 4, j, i > j be two rounds in which
the set of sending group members is non-empty and there is no intermediate
round [, ¢ > [> j, with non-empty sending set. For simplicity in the description
we define j ;=14 — 1.

Sending. To recover from state exposures, our construction lets senders in round
i—1 refresh only their own individual leaf key pair. Senders in round i then refresh
all remaining secret keys stored in the local states of round ¢ — 1 senders (i.e.,
for nodes on their direct paths to the root) on their behalf. This is illustrated in
Fig. 3. Note that (as explained below in paragraph Receiving) all group members
collect the senders of round 7 — 1 into a set U;_1 in the rcv algorithm of round
i — 1. Our construction, formally defined in Fig. 4, accordingly lets all senders in
a round perform five tasks:

1) To refresh their own individual secret key: Generate a fresh secret key for their
corresponding leaf and send the respective public key to the group (lines 42—
43, 63).

2) To refresh and rebuild direct paths of last round’s senders: Sample a new seed
for the leaf of each sender of the last round and encrypt it to the respective
sender’s (refreshed) leaf public key (lines 46-49). Then derive a seed for each
non-leaf node on the direct paths from these leaves to the root using the
new seeds at the leaves (line 50). Each seed will be used to deterministically
generate a fresh key pair for its node.

3) To share refreshed secrets with members who did not send in the last round:
Encrypt the new seed of each refreshed non-leaf node to the public key of its
child from which it was not derived (lines 52-55, 58-61). Update the used
public keys via kuPKE algorithm up (lines 56, 62).

4) To inform the group of changed public keys: Send all changed public keys to
the group, including those for which seeds were renewed, and those that were
updated via kuPKE (lines 50, 56, 62, 63).

5) Sample and encrypt a group key k for the round to all other users in the
group (lines 44, 48, 54, 63).

In step 2), one seed is individually encrypted to each user in set U;_; via
public key encryption, which will allow them to reconstruct their direct path in
the tree. The purpose of this individual encryption is to let the recent senders
forget their old (potentially exposed) secrets and use their fresh secret (which
they generated during their last sending) to obtain new, secure secrets on their
direct path.

We now describe how all remaining group members are able to rebuild the
tree in their view. The reader is invited to follow the explanation and focus their
attention on the tree in the lower right corner of Fig. 3. In this tree, directed edges
represent the derivation of a seed at a node from one of its children (dotted) or

On the Price of Concurrency in Group Ratcheting Protocols 219

Before round i — 1: After round ¢ — 1:

O o o o Eﬁj o O

1 2 3 4 5 6 7 8

After round i: @
1 2 3 4 5 6 7 8 [§ s -]
N .

M Key pair considered insecure > Derived from . Q\L ? . j’ .
J Key pair considered secure - » Encrypted to ¢ N /) ‘, /) ‘,
O New leaf key pair o Updated/replaced é O © é el é
@ Seed for new key pair(s) in round % 1 2 3 4 5 6 7 8

Fig. 3. Example tree for two rounds ¢ — 1 and ¢ with n = 8, U;—1 = {1,4,8}, and
U, # 0. In round ¢ — 1, senders generate new key pairs for their leaves. In round 1,
senders generate seeds for all nodes considered insecure from round ¢ — 1 and replace
leaf key pairs for round ¢ — 1 senders, as shown in the bottom-right corner.

encryption of a seed at a node to one of its children (dashed). We consider the
Steiner Tree ST (U;_1) induced by the set of leaves of users in U;_1. ST (U;_1) is
the minimal subtree of the full tree that connects all of the leaves of U;_; and
the root; in the lower right corner tree of Fig. 3, ST(U,_1) is the subtree of blue
filled circles and edges between them. For each degree-one node v of ST (U;—_1)
(i.e., nodes with only one child in the Steiner Tree), its seed is encrypted to
the public key of its child which is not in ST(U;_1). This seed can be used to
derive some (possibly all) of the secret keys for the nodes on the direct path of v,
including v itself (lines 51-56). We denote the set of such degree one nodes of the
Streiner Tree as ST(U;—_1)1 and the child of a node v in ST(U;_1); that is not
in the Steiner Tree as v.c¢ST(Ui71).1O For each degree-two node v of ST(U;_1)
(i-e., nodes with two children in the Steiner Tree), its seed is encrypted to the
public key of its right child (lines 57-62). We denote the set of such degree-two
nodes of the Steiner Tree as ST (U;_1)2. All of these encrypted seeds are derived
from the fresh leaf seeds of users in set U;_; via prf computations, as explained
below in paragraph Construction Subroutines.

Alongside the seeds, some randomly sampled associated data ad is also
encrypted in the ciphertexts of the above paragraph (lines 52, 58). Public keys
used for the encryption are afterwards updated with this associated data ad
(lines 56, 62). Upon receipt, this associated data is used correspondingly to
update the secret keys as well. Due to this mechanism, immediate forward-
secrecy is achieved since secret keys stored in users’ local states are updated as
soon as they are used for decryption.

We refer to the union of nodes that are in the Steiner Tree with nodes that are
children of degree-one nodes in the Steiner Tree as CST = {v:v € ST(U;_1) V
v =w.cgsrw, ,)Yw € ST(U;_1)1}. For step 4) above, senders must publish the
new public keys corresponding to all nodes of CST(U;_1) (lines 50, 56, 62, 63).

19 We overload the set theoretic symbol ¢ here for brevity.

220 A. Bienstock et al.

Receiving. For rounds in which no member sent, the recipients forward-securely
derive symmetric keys (one output group key, and one saved key) from last
round’s secrets (lines 87-88). In addition, they assign U; < U,;_1 (line 68), so
that senders of subsequent rounds can refresh the secrets of the senders of round
i—1.

In case members sent in a round, a receiver determines the first message bc*
among all sent in this round, via some definite order (e.g., lexicographic). The
receiver then retrieves from this message the ciphertext set C'T for decrypting
the symmetric secret k and the first seed needed to rebuild the tree: If the receiver
sent in the last active round (in which anyone sent), it uses its individual (fresh)
secret key (lines 74-75). Otherwise, it uses the secret key of the first node on
its direct path that is the child of some node in ST(U;_1) (lines 76-79). The
decrypted seed, as well as the rest of C'T', and the public keys of the Steiner Tree
within bc™ are then used to rebuild the secret path for the receiver, as well as
the public key tree, as described below in paragraph Construction Subroutines
(line 81). The resulting symmetric secret is then used to derive the output group
key and a new saved key (as described above for rounds without ciphertexts).

Additionally, secret keys used to decrypt ciphertexts (including those as
described in the Construction Subroutines paragraph below), are updated with
the associated data that was also decrypted from the respective ciphertexts
(lines 79, 80, 111, 112). Finally, all senders of the round are collected into U;
and their new public keys are saved (lines 82-85) in order to later achieve post-
compromise security.

Construction Subroutines. In the common state initialization algorithm init,
a complete binary tree of n leaves with a public key at each node is initial-
ized using a list of corresponding secret keys SKi,i; with procedure PK., «—
genPKTree(SKin;it) (line 34). Also, the secret keys along the direct path to
the root of leaf u for each user are retrieved for that user, using SK, <«
getSKPath(SK jnit, u).

Figure 5 details the subroutines for genSTree and Rebuild (lines 50 and 81).
Subroutine genSTree is used in the snd algorithm to compute the seeds and
public keys at each node of the Steiner tree ST(U;_1) using the seeds DK [v]
sampled for the leaves v € U;_; (lines 46-49). For each v € U;_1, the receiver
uses DK [v] to compute the node’s secret key, public key, and (possibly) the seed
to be used for its parent (lines 97-100), continuing up the tree until there has
already been a seed generated for some node w on the path.

Rebuild is used in the rcv algorithm, by each user u to rebuild its “secret
key path” as well as the “public key tree” using the public keys of the Steiner
Tree PK g1, ,), the set of ciphertexts CT, and the seed kger obtained from
CT corresponding to a node v* in the tree. First, for every v € CST(U;_1),
the receiver sets its public key to that which is in the dictionary PK gry,_,)
(lines 104-105). Then, starting from node v* using kqer, the receiver derives the
secret key for v* and a new seed for its parent if the node is the left child of its
parent. Otherwise the receiver uses the secret key just derived to decrypt the

On the Price of Concurrency in Group Ratcheting Protocols

221

Proc init(n)

31 141, Uy + @

32 m < CBT(n)

33 SKinit s SK™

34 PK, + genPKTree(SKinit)

35 ksay <35 K

36 For u from 1 to n:

37 SK, + getSKPath(SKinit, u)
38 sk® « L; skt L

39 sty < (u,i, PK,,SK,, Ug, sk°, sk', ksay)
40 Return (sti,..., stn)

Proc snd(st)

41 (u,i, PK+, 8Ky, Ui—1, sk°, sk', ksay) < st

42 sk’ +g SKC

43 pk' + gen(sk’)

24 kg KN M

45 DK[]+ L

46 For each v € U;_1:

a7 DK[’U} +—s KNM

48 ct +—g enc(PK . [v], DK[v]||k)

49 CT[v] « ct

50 (DK srv,_.): PKsr,_,)) <
genSTree(DK, U;_1)

51 For each v € ST(U;-1)1:

52 ad s ADN M

53 pk PKT[’U‘CQST(Um,l)]

54 ct g enc(pk, DK gy, ,)[v]||ad||k)

55 CTW] ¢ ct

56 PKST(Ul,l) [U-CQST(Ui,l)] — up(pk7 ad)

57 For each v € ST(U;—1)a2:

58 ad +—g ADN M

59 pk‘ < PKST(U,L_l)[QLCl]

60 ct < enc(pk, DK sr(u,;_,)[v]|ad)

61 CTW] « ct

62 PKgpu, ,[v-c1] < up(pk, ad)

63 be < (u, pk', CT, PKsr(u,_,))

64 st < (u,i, PKy, SKy, Uj_1, k", sk', ksay)

65 Return (st, be)

Proc rev(st, BC)

72
73
74
75
76
7
78
79
80
81

82
83
84
85
86

(w,i, PK7, SKy, Ui_1, sk°, sk*, ksay) < st
If BC = (:

U,‘, < Ui—l

skip to line 87
U;+ 0
Let bc* € BC be first in some definite
order

(v,pk', CT, PKsr(u,_,)) < bc*
Ifue U;—1:

Kder||k < dec(sk°, CT[u])

vt =
Else:

v* < getSNode(u, ST(U;-1))

sk SKu[v".cgsr(v;_y)]
kaer||ad||k < dec(sk, CT[v*])
SKu[v".cgsr(u,_,)] < up(sk, ad)
(SK',, PK’)
Rebuild(st, PK sr(v,) CT' kder, v*)
For all bc € BC:
(vaklv CT, PKST(U171)) « be
U, «~ U;U{v}
PK’ [v] + pk'
ksav < k
kout < prf(ksav, out)
ksav — prf(kSava SaV)
sk® «— sk?
i —it+1
st < (u,i', PK", SK',, Uy, sk°, sk*, ksay)
Return (st, kout)

Fig.4. Construction of concurrent group ratcheting in the computational model.
CBT(n) calculates the number of nodes in a complete binary tree with n leaves.
getSNode(u, ST(U;-1)) finds the first node v on the direct path of w that is in

ST(Ui_1).

seed to be used at its parent (lines 107-113). The receiver continues up the tree

until the root is reached.

Efficiency. We here provide a short and simple proof of our communication

complexity upper bound.'!

' One might observe that using ideas from the Layered Subset Difference BE
method [21] could lower the communication complexity of our construction, how-
ever we failed to do so due to potential security issues.

222 A. Bienstock et al.

Proc genSTree(DK, U;_1) Proc Rebuild(st, PK srv, 4y, CT, kder,v™)
DK st] <L PKsrw,] <L (i, PKr, SKu, U1, sk, k', ksau) 4= st
For each v € U;-1 from left to right: PK' < PK,;SK! + SK,

kder < DK[v] For each v € CST(U;-1):
While DK gpy, 1)[v] = L and v # r: PK.[v]' + PKgr(u; ,)[v]
DK sru,_,)[v] ¢ kder v v*
kéler”‘qu — prf(kdefv der) While v 7£ T
PKsru,_q)[v] < gen(sk”) kber||sk" < prf(kger, der)
0 < 0., kder < kler SK',[v] + sk’
Return (DK sr(v,_y) PKsrv,_y)) If deg(v.p) = 2 and v = v.p.c1:
kier||ad < dec(sk”, CT[v.p])
SK',[v] < up(sk”, ad)
V 4 VD, kder < Kher
Return (PK”., SK’,)

Fig. 5. Subroutines for construction upper bound. deg(v) refers to the degree of a
node v in a tree, i.e. number of children.

Lemma 1. For every round i € [q], the communication costs in an execution
0 77l 171 1 779
(n,Ux,Ug,Ux,...,Ug,Ux) are

il =0 (jual- g1 (14108 (7)))

We note that |C[é]| denotes the number of sent items (i.e., ciphertexts and
public keys) per round. Their individual length depends on the respectively
deployed kuPKE scheme. (In a setting that defines a security parameter, the
factor with which the communication costs are multiplied is (asymptotically)
constant in this security parameter.)

Proof. We track communication of each user v € U§ that sends in round i. From
this, the result follows easily. In round 4, user u sends one ciphertext and one pub-
lic key for each v € ST(U& ") (plus an additional public key for at most one child

¢y of each v). Tt is shown in [27] that |ST(US)| = (\Ué ' log (|U7 1|))
Moreover it follows from the analy51s in [27] that |ST(UZ Mol + UL =
O (U |) Since ST(UL™) = ST(UL ™), U ST(UE)2 U UL, we have

accounted for each node v € S T(Ué_l).
Therefore, each user u € U} communicates O (|U§71| : (1 + log (ﬁ)))
S

information. O

Theorem 1 (informal). Assuming secure kuPKE (as proposed in [3,24])
and PRF constructions, the construction of Fig. 4 is a secure group ratcheting
scheme according to the forward-secure variant of game KINDGR from Sect. 3,

with security loss at most (qround +1) - (([log(n)]+1)- Advprﬁnd(BpR) + [log(n)]-

12 We overload Ué_l to also refer to the set of leaves corresponding to the users u’ €
Uit

On the Price of Concurrency in Group Ratcheting Protocols 223

Advlfféld(BUE)), where n is the number of group members, qround 45 the number
of executed rounds, and AdvBa™ (Bpr), AdviE(Bug) are upper bounds on the
advantage of any adversaries Bpr, Byg against the security of PRF and kuPKE,

respectively.

For the formal version of this theorem and the full security proof, we refer the
reader to our full version [11]. Below we provide a proof sketch that intuitively
summarizes our proof idea.

Proof (sketch). Recall that in our construction, for each round ¢ (with senders)
initiated by the adversary, the initial secret key generated at each node in the
Steiner Tree ST (U;_1) is derived via a PRF computation (lines 98, 108). The
key idea behind our proof is that we slowly replace these initial secret keys with
keys that are drawn uniformly from the space of secret keys. Then, we replace
all encryptions to such keys (lines 48, 54, 60) with fake ciphertexts that are
independent of the actual contents of the message. Furthermore, in the rcv()
algorithm of our hybrid experiments, we hardcode the associated data to be
used to update the secret key to which it is encrypted (lines 80, 112), so that all
users maintain consistent views of the key pairs at each node v in 7, despite the
fake ciphertexts.

However, we must be careful to only replace the secret keys and ciphertexts
which the adversary cannot compute directly because of the corruption of some
user u € [n]. Specifically, after corruption of a user u € [n], we generate the
secret keys along their direct path in 7 as well as any ciphertexts encrypted to
these secret keys as in Fig. 4. For any node v in 7, we then wait until each of the
corrupted users corresponding to the leaves of the subtree rooted at v send in a
subsequent round. It is not until this point that we can again replace any of the
secret keys and ciphertexts in our hybrids. This does not violate security because
if some corrupted user u in the subtree rooted at v has not yet refreshed their
leaf key pair in some round 4, the adversary can trivially compute the secret key
at v, as well as the output group secret of that round. Thus, the output group
secret is not considered secure for round ¢ anyway. Moreover, by forward secrecy
of the kuPKE scheme’s updates, any ciphertexts encrypted to previous versions
of the key pair (i.e., before the latest update) of a node along the direct path of
a corrupted user u are still secure. Thus all previous secret keys along the direct
path of u and any previous output group secrets are still secure (provided that
no other users were corrupted).

Now recall that the secret key of an interior node v in ST(U;_1) for some
round ¢ is generated via a PRF computation on a key output at one of the
children of v (lines 98-100). Therefore, our hybrid experiments must proceed by
first replacing the secret keys (resp. subsequent encryptions to them) of leaves in
ST (U;—1) with uniformly random (resp. fake) values, followed by the secret keys
of their parents, and so on, until we reach the root. When we reach the hybrids
corresponding to the root, for all rounds in which the adversary cannot anyway
trivially compute the uniformly random key encrypted to all users that will be
used to derive the output group secret, all ciphertexts broadcast are indepen-
dent of it. We finally add hybrids replacing the output group secret keys (line 87)

224 A. Bienstock et al.

and any intermediate saved keys for rounds with no senders (line 88) with uni-
formly random keys. Therefore, in our final hybrid, the output group secrets
for non-trivially attackable rounds are uniformly random and independent of all
ciphertexts broadcast throughout the protocol. a

6.2 Discussion

We shortly reflect on our construction, compare it to previous works, discuss its
limitations with respect to the security model, and propose possible efficiency
improvements.

The main purpose of our protocol is to give an upper bound that confirms
our lower bound, but not to provide optimal security and maximal functionality
under concurrency. Nevertheless, our construction provides the same security as
parallel pairwise Signal executions, i.e. FS and PCS one round with non-empty
sender set after all exposed users updated their states. In addition, it provides
full concurrency for user updates unlike those in [3-5,8,14,32].

When using a variant of our construction for dynamic groups, removed mem-
bers in such groups may maliciously store secrets that they saw during their
membership for breaking confidentiality of group secrets after their membership.
Effectively solving this problem—discussed as “double-join” —could be achieved
by using ideas from protocols constructed for dynamic groups, such as MLS and
Tainted TreeKEM. Without these ideas, it would be required that siblings of all
removed users that are still in the group issue state updates before any removed
user would be unable to derive the output secrets. Yet, as we discuss below,
dynamic member changes appear to happen rather seldom in many practical
applications such that this restriction might be insignificant.

Our security model is somewhat weak: we require an honest (but curious)
mechanism that clocks rounds, we do not allow the adversary access to random
coins used by senders in a round that are not saved to their state, and we do not
allow the adversary to alter broadcast messages. Clock synchronization could,
however, be rather coarse (resulting in long round periods) as our protocol’s
speedup in reaching PCS, compared to non-concurrent alternatives that require
members to update their states one after another, is already significant. Further-
more, we note that all members processing all ciphertexts in a round (as defined
in our model) is not mandatory but allows for immediate forward-secrecy due
to kuPKE key pair updates. Processing all previous ciphertexts before sending
is usually also unproblematic as sending anyways requires a user to come online,
such that all cryptographic operations can be executed at that moment. Espe-
cially for reaching authentication and handling out-of-order receipts, tools that
are independent of our core state update mechanism can be added (maybe even
generically) to our construction. The problem of weak random coins is indeed an
open problem for concurrent group ratcheting that we leave for future research.

As stated earlier, it is not ultimately clear whether our lower bound or upper
bound is loose (or even both of them). One technique to improve our upper
bound would be to utilize more sophisticated broadcast encryption methods

On the Price of Concurrency in Group Ratcheting Protocols 225

than the Complete Subtree method [27], such as the Layered Subset Differ-
ence method [21] or techniques from the recently proposed optimal broadcast
encryption scheme [1], while still preserving security. Additionally, if one allows
a slight relaxation in the model by allowing for delayed PCS, i.e. PCS in some
A > 1 rounds, then better communication complexity could be achieved. This
is because if users update their state in a given round 4 by publishing a fresh
public key, other users could send secrets to these users to help them recover in
all rounds @' € {i+1,i+2,...,i+ A}, spreading out the communication costs
across these rounds and allowing for some adaptivity between senders therein.

6.3 Insights for Practice

We shortly summarize concepts from our construction that could enhance, and
insights from our lower bound that could influence real-world protocols (like the
MLS initiative’s design).

Almost-Immediate PCS. As mentioned many times before, immediate PCS
under t-concurrency appears to require t-party NIKE (which is currently inac-
cessible). Postponing the update of shared secrets to a reaction in the next pro-
tocol execution step, as implemented in our construction, bypasses this problem.
The major advantages of this bypass are a significant speedup for PCS, com-
pared to sequential state updates, and a maintained balanced tree structure,
compared to tree modifications, resulting in a reduced tree depth, or group par-
titions. An open question remains to analyze our scheme’s resilience against weak
randomness.

Static Groups are Practical. Some deficiencies of our protocol are only relevant
in dynamic settings. In contrast, constant groups can benefit from this construc-
tion significantly as it maintains communication complexity in all cases nearly
optimally. We emphasize that many groups in real-world applications indeed sel-
dom or never change the set of members (e.g., family groups, friendship group,
smaller working groups, etc.).

To resolve issues with respect to membership changes, the mechanism pro-
posed in Tainted TreeKEM [4] could be applied on path updates in our protocol.
Thereby, the “double-join”-problem could be prevented.

Better Solutions. In the light of our lower bound, finding better solutions for
reaching PCS under concurrency seems very complicated, if not unlikely. The
set of permitted building blocks in our symbolic model is very powerful, the
functionality required by constructions in this setting is very restricted, and the
adversarial power in the lower bound security definition is very limited. Hence,
it seems necessary to utilize “more exotic” primitives or relax the required PCS
guarantees for obtaining better constructions.

226

A. Bienstock et al.

References

10.

11.

12.

13.

. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.

In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 13-43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2
Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129-158. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_5

Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248-277. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_9

. Alwen, J., et al.: Keep the dirt: tainted TreeKEM, an efficient and provably

secure continuous group key agreement protocol. Cryptology ePrint Archive, report
2019/1489 (2019). https://eprint.iacr.org/2019,/1489

Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp- 261-290. Springer, Cham (2020)

Balli, F., Rosler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. In: Advances in Cryptology. ASTACRYPT 2020—Proceedings of
the 26th International Conference on the Theory and Application of Cryptology
and Information Security, Virtual. LNCS, 7-11 December 2020 (2020)

Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The messaging layer security (MLS) protocol (2020). https://datatracker.ietf.
org/doc/draft-ietf-mls-protocol/

. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.:

The messaging layer security (MLS) protocol draft-ietf-mls-protocol-09. Internet-
draft, September 2020. https://www.ietf.org/archive/id/draft-ietf-mls-protocol-
09.txt

Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assump-
tions: a generic validation of an HMAC assumption. Cryptology ePrint Archive,
report 2015/1198 (2015). http://eprint.iacr.org/2015/1198

Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619-650. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9_21

Bienstock, A., Dodis, Y., Rosler, P.: On the price of concurrency in group ratcheting
protocols. Cryptology ePrint Archive, report 2020/1171 (2020). https://eprint.iacr.
org/2020/1171

Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies
on elliptic curves. Cryptology ePrint Archive, report 2018/665 (2018). https://
eprint.iacr.org/2018/665

Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryp-
tology ePrint Archive, report 2002/080 (2002). http://eprint.iacr.org/2002/080

https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://eprint.iacr.org/2019/1489
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://www.ietf.org/archive/id/draft-ietf-mls-protocol-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-protocol-09.txt
http://eprint.iacr.org/2015/1198
https://doi.org/10.1007/978-3-319-63697-9_21
https://eprint.iacr.org/2020/1171
https://eprint.iacr.org/2020/1171
https://eprint.iacr.org/2018/665
https://eprint.iacr.org/2018/665
http://eprint.iacr.org/2002/080

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

On the Price of Concurrency in Group Ratcheting Protocols 227

Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1802—
1819. ACM Press, October 2018

Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, 26-28 April 2017,
pp. 451-466. IEEE (2017)

Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, 27 June-1 July 2016, pp. 164-178. IEEE Computer Society (2016)
Cremers, C., Hale, B., Kohbrok, K.: Efficient post-compromise security beyond one
group. Cryptology ePrint Archive, report 2019/477 (2019). https://eprint.iacr.org/
2019/477

Dolev, D., Yao, A.C.C.: On the security of public key protocols (extended abstract).
In: 22nd FOCS, pp. 350-357. IEEE Computer Society Press, October 1981
Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343-362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3-20

Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st FOCS, pp. 305-313. IEEE Computer Society Press, Novem-
ber 2000

Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47-60. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_4

Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44-61. ACM Press, May 1989

Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part I. LNCS, vol. 10991, pp. 33-62. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96884-1_2

Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159-188. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17653-2_6

Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 180—
210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_7
Micciancio, D., Panjwani, S.: Optimal communication complexity of generic multi-
cast key distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 153-170. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3_10

Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41-62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3

Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016). https://signal.
org/docs/specifications/doubleratchet/

Poettering, B., Rosler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, report 2018/296 (2018). https://eprint.iacr.org/2018/296

https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/3-540-44647-8_3
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://eprint.iacr.org/2018/296

228 A. Bienstock et al.

30. Poettering, B., Rosler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
3-32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

31. Réosler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of group
chats in Signal, WhatsApp, and Threema. In: 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 415-429. IEEE (2018)

32. Weidner, M.: Group messaging for secure asynchronous collaboration. Ph.D. thesis,
MPhil dissertation (2019). Advisors: A. Beresford and M. Kleppmann. https://
mattweidner.com/acs-dissertation.pdf

https://doi.org/10.1007/978-3-319-96884-1_1
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf

	On the Price of Concurrency in Group Ratcheting Protocols
	1 Introduction
	2 Preliminaries
	3 Security of Concurrent Group Ratcheting
	4 Deficiencies of Existing Protocols
	5 Intuition for Lower Bound
	5.1 Symbolic Building Blocks
	5.2 Symbolic Group Ratcheting
	5.3 Lower Bound

	6 Upper Bound of Communication Complexity
	6.1 Construction
	6.2 Discussion
	6.3 Insights for Practice

	References

