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Abstract. Incoercible multi-party computation [Canetti-Gennaro’96] allows
parties to engage in secure computation with the additional guarantee that the
public transcript of the computation cannot be used by a coercive external entity
to verify representations made by the parties regarding their inputs to and outputs
from the computation. That is, any deductions regarding the truthfulness of such
representations made by the parties could be made even without access to the
public transcript. To date, all incoercible secure computation protocols withstand
coercion of only a fraction of the parties, or else assume that all parties use an
execution environment that makes some crucial parts of their local states physi-
cally inaccessible even to themselves.

We consider, for the first time, the setting where all parties are coerced, and
the coercer expects to see the entire history of the computation. In this setting we
construct:

— A general multi-party computation protocol that withstands coercion of all
parties, as long as none of the coerced parties cooperates with the coercer,
namely they all use the prescribed “faking algorithm™ upon coercion. We
refer to this case as cooperative incoercibility. The protocol uses deniable
encryption and indistiguishability obfuscation, and takes 4 rounds of com-
munication.

— A general two-party computation protocol that withstands even the “mixed”
case where some of the coerced parties cooperate with the coercer and dis-
close their true local states. This protocol is limited to computing functions
where the input of one of the parties is taken from a small (poly-size) domain.
This protocol uses deniable encryption with public deniability for one of the
parties; when instantiated using the deniable encryption of Canetti, Park, and
Poburinnaya [Crypto’20], it takes 3 rounds of communication.

Finally, we show that protocols with certain communication pattern cannot be
incoercible, even in a weaker setting where only some parties are coerced.
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1 Introduction

Consider a tight-knit society whose members regularly meet behind closed doors and
run their society’s business with complete privacy. An external entity might be able
to deduce information on the nature of the interactions that take place in the society’s
meetings from the external behavior of the society members, but no direct information
on what really takes place at the meetings can be obtained. As long as the meetings are
not directly monitored by the external entity, this continues to be the case even if the
external entity has coercive power over the society’s members and demand that they
fully disclose the contents of the meetings: All that the coercive entity can obtain is the
word of the members, which may or may not be truthful.

Can we reproduce this situation online, where the society members communicate
over public channels that are accessible to the external entity? That is, can the society
members engage in a multiparty computation that allows them to limit the power of the
external coercive entity to the power that it had when they met behind closed doors?
Furthermore, can they do so even in the case where all members are coerced, and the
coercive entity now expects to have the complete history of the interaction and the local
states of all parties, including all the local randomness used? Indeed, doing so essentially
results in rewriting the entire history of a system, in a way that’s undetectable to anyone
that did not directly witness the events at the time and location where they took place.

This is a special case of the incoercible multiparty computation problem, first stud-
ied in [CG96]. In a nutshell, a multiparty protocol is incoercible if it enables the partic-
ipants to preserve the privacy of their inputs and outputs even against coercive adver-
saries who demand to see the entire internal state of coerced parties'. Towards this end,
each party is equipped with a “faking procedure” that enables it to run the protocol as
prescribed on the given input z, obtain an output y, and then, given arbitrary values
x',1’, generate a “fake internal state™ (or, equivalently, fake local randomness) 7’ such
that the public communication transcript of the party is consistent with input x’, output
y’ and randomness r’. Moreover, we would like to guarantee more global incoercibility
properties. Specifically: (a) As long as the inputs and outputs claimed by the coerced
parties are consistent with the evaluated function, the entire information reported by
the parties should look like an honest execution of the protocol with these inputs and
outputs; this should hold regardless of whether the inputs and outputs are true or fake
or partially true and partially fake. (b) If the claimed inputs and outputs are not globally
consistent with the evaluated function, the coercer should not be able to deduce any
information which it cannot deduce given the inputs and outputs alone - such as, e.g.,
the identities of parties which reported fake values.

Incoercibility might indeed appear unobtainable at first. Still, [CG96] construct an
incoercible general multi-party function evaluation protocol, for the case where only a
minority of the parties are coerced, and furthermore the coercions takes place at the end
of the interaction. The [CG96] protocol assumes sender-deniable encryption [CDNO96,
SW14]. The works of [DKR14] and [CGP15] extend these results to the case where all
but one of the parties are coerced. The works of [MN06,AOZZ15] consider the case
where all parties are coerced - in fact they consider an even more adversarial setting of
active coercions, where the coercer may force parties to deviate from the protocol, to

' In [AOZZ15] this is referred to as semi-honest incoercibility.
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make it harder for them to deceive the coercer. However, they assume that the parties
have access to secure hardware whose internals are not available even to the parties
themselves.

Still, whether incoercibility is at all possible in a setting where all parties are
coerced, the communication is public, and the parties have full access to the transcripts
of their own internal computations, has remains open. Indeed, in this case the adversary
obtains an entire transcript of a computation, which can be verified step by step. Still, it
should be unable to tell a fake transcript from a real one.

Our Results. We consider the case where the parties have full access to the computing
devices they use, all communication is public, and all parties are eventually coerced.
Still, we concentrate on the case where coercions take place only at the end of the
protocol. We consider two main settings, or levels, of incoercibility:

Cooperative Incoercibility. In the cooperative incoercibility setting, it is guaranteed that
all parties “cooperate” with each other, in a sense that either they all present their real
randomness (and real inputs and outputs), or they all present randomness computed via
their faking algorithms, along with the corresponding input and output values (which
may be either fake or real). This scenario corresponds to a standard setting where a
group of participants wants to protect itself against an external coercer. (We stress that
we assume no additional coordination between parties: each party runs its faking algo-
rithm locally, only based on the information available to that party. Further, the inputs
and outputs claimed by the parties need not necessarily be globally consistent with each
other.)

Full Incoercibility. In this setting, there are no guarantees of behavior of the parties.
In particular, upon coercion, some parties may decide to present their real randomness
(and real inputs and outputs), and some parties may decide to present their fake ran-
domness (and real or fake inputs and outputs). Further, the claimed inputs and outputs
could even be globally inconsistent - and still the protocol has to hide everything which
is not revealed by inputs and outputs alone (e.g., the identities of the liars could still
remain hidden). This definition additionally gives protection in the setting where par-
ties have conflicting insentives and might act against each other; we will refer to the
case where parties present mixed (real and fake) randomness as off-the-record case.
Thus, full incoercibility incorporates both cooperative incoerciblity and off-the-record
incoercibility.

Moreover, in full incoercibility we even allow the environment to make standard
(adaptive) corruption requests, in addition to coercion requests.?

We show:

— A cooperatively incoercible protocol for general secure multi-party function evalua-
tion. Our protocol works in the common reference string (CRS) model and requires
4 rounds of communication.

2 Note that the adversary receives the party’s true internal state both in case of a corruption and
in case of a coercion, if that party decides to tell the truth. However, in the former case the
adversary knows that the given internal state is authentic, and in the latter it doesn’t.
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— A fully incoercible protocol for secure two-party function evaluation, for functions
with poly-size input domains. For this protocol, we build an incoercible oblivious
transfer (OT) from any deniable encryption with certain properties. In particular, our
construction, instantiated with deniable encryption of [CPP20], yields a 3-message
protocol in the CRS model.

— For n > 3, no n-party protocols with a certain communication pattern can be secure
even against coercion of 2 parties, except for trivial functions.

On the Applicability of Off-the-Record/Full incoercibility. First, with cooperative inco-
ercibility only, the adversarial parties may be able to provide an unequivocal proof that
other parties are lying; thus, this type of incoercibility doesn’t protect the participants
against each other. In contrast, incoercibility in the off-the-record case guarantees that
the coercer will not be able to use the protocol transcript to verify claims of parties—
any deduction made by the coercer will be exclusively based on “taking the word” of
the coerced parties.

Furthermore, cooperatively incoercible protocols may drop their security guarantees
if some parties give real coins to the coercer, and other parties give fake coins. Because
of that, cooperatively incoercible protocols impose a classical prisoner’s dilemma onto
the participants, due to the fact that the identities of liars could be revealed by such
a protocol. Indeed, upon coercion, each party has to make a decision - whether to lie
or tell the truth. On one hand, for each party it is better to tell the truth - otherwise it
may get caught lying, if some other party tells the truth. On the other hand, all parties
jointly are better off if they all present fake randomness - no one gets caught, and their
inputs remain protected. In contrast, if a protocol remains incoercible even in the off-
the-record setting, once parties have already decided on which inputs and outputs to
disclose, for each party it is strictly better to disclose fake randomness (even if it still
reports the true inputs and outputs). Indeed, no matter how other parties act, the protocol
guarantees that nothing is revealed beyond inputs and outputs.

1.1 Related Work

Prior Work on Generic Incoercible MPC. The prior work on generic incoercible MPC
can be split into two parts, depending on whether it focuses on semi-honest or active
coercion (in the language of [AOZZ15]). Intuitively, a coercer is semi-honest if it lets
the party participate in the protocol as prescribed (by following the instructions of the
protocol), but after that demands to see the entire view of that party and checks whether
it matches the claimed input of that party. In contrast, an active coercer assumes full
control over the party and in particular may instruct the party to deviate from the proto-
col, in order to make it harder for the party to deceive the coercer.

As already noted in [BT94] in the context of secure voting, active coercion is clearly
unachievable with cryptography alone: coerced parties have no hope of lying about their
inputs if the adversary watches over their shoulder during the computation. As a result,
security against active coercion requires some form of physical unaccessibility assump-
tion. Indeed, to come up with the protocol secure against active coercion, [AOZZ15]
makes use of a stateful hardware token which can generate keys, distribute them to all
parties, and encrypt.
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In contrast, semi-honest incoercibility is well within the reach of “digital cryptogra-
phy”, without the need to assume inaccessible hardware: sender-deniable encryption
and encryption deniable for both parties was constructed by [SW14] and [CPP20],
respectively, from indistinguishability obfuscation and one-way functions, and it was
shown back in 1996 how to transform any sender-deniable encryption into incoercible
MPC which withstands coercion of up to half participants [CG96]. The protocols of
[CGP15,DKR14], originally devised as adaptively secure protocols withstanding cor-
ruption of all parties, can withstand coercion of a single party.

Note that, although from a practical standpoint active incoercibility is stronger and
more desirable than semi-honest one, from theoretical perspective semi-honest and
active incoercibility are two completely different and incomparable problems. Indeed,
achieving semi-honest incoercibility requires solving the problem of “inverting the
computation” - i.e. finding randomness which makes some computation appear to stem
from a different input (note that this problem is also interesting on its own, without
its connection to incoercibility). Active incoercibility, as discussed above, inherently
requires inaccessible hardware to hide parts of the computation and thus avoids the
inverting problem altogether; instead, the goal there is to ensure that the active coercer
cannot force parties to output something committing, while making the underlying
physical assumptions as realistic as possible.

Impossibility Results. [CG96] shows that semi-honest incoercible computation is not
achievable against unbounded adversaries; this impossibility holds even in the pres-
ence of private channels. To the best of our knowledge, in the computational setting no
impossibility results specific to incoercible MPC were known. However, the impossibil-
ity of non-interactive (i.e. 2-message) receiver-deniable encryption [BNNO11] imme-
diately implies that 2-round incoercible MPC is impossible, even against coercion of a
single party which receives the output? (in particular, the 2-round protocol of [CGP15]
only withstands coercion of a party which doesn’t receive the output); this impossibility
holds for all functions which imply a bit transmission.

On the Difference Between the Definitions of Incoercible MPC in [CG96] and [CGP15].
In this work we use the definition of incoercible computation from [CGP15]. We briefly
explain how it differs from the one in [CG96]. The definitions of [CG96] and [CGP15]
are conceptually similar but differ in case when an environment instructs a party to fake,
but sets its fake input and output to be exactly the same as its real input and output. In
this case the definition in [CG96] instructs the party to output its true randomness,
while the definition in [CGP15] instructs the party to run the fake algorithm anyways
and output the resulting fake randomness.

? Indeed, any incoercible protocol for a message transmission functionality can be turned into
a 2-message receiver-deniable encryption, by letting the party R which receives the output
be a receiver of deniable encryption, and letting the sender run the MPC protocol on behalf
of all other parties. In particular, the first message (sent by the receiver) will consist of all
messages sent by R in the first round of the protocol, and the second message (sent by the
sender) will consist of all messages sent to R in rounds 1 and 2. Messages sent by R in round
2 of MPC protocol do not have to be sent, since S doesn’t receive the output, nor does S have
to deny later.
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This difference may appear minor - indeed, if a party is not going to lie about its
inputs nor outputs, why fake the randomness? Nevertheless, there are situations when
a party may want to fake its randomness anyways. Indeed, as we discuss in the tech-
nical overview, our incoercible MPC protocol only retains its incoercibility properties
as long as all parties disclose their fake coins to the coercer. In particular, there may
be a party which has no interest in lying about its own input, but which anticipates that
other participants may need to lie about theirs, and which thus decides to give out its
fake randomness to make sure its true randomness doesn’t compromise other parties’
security.

Deniable Encryption. Perhaps the most relevant prior work for us is the interactive
deniable encryption of [CPP20], which we use as a building block in all our protocols. It
is an encryption scheme which withstands coercion of both the sender and the receiver
even in the off-the-record setting. The protocol requires a common reference string,
takes 3 rounds, and assumes subexponential indistinguishability obfuscation and one
way functions.

1.2 Technical Overview

On the Definition of Incoercible Computation. We use the definition of incoercible
computation from [CGP15], which can be seen as the “UC equivalent” of the definition
of [CG9Y6], with one critical difference. (See Sect. 1.1 for the discussion of the difference
between the two.) Specifically, this definition models coercion as the following special
form of corruption: When a party is notified that it is coerced, it first contacts the its
caller to ask whether to disclose true or fake randomness, and if fake, what value (input
and output) to report to the coercer. The response can be either “fake” together with an
input and an output, or “tell the truth”. In the former case, the coerced party runs the
faking algorithm with the prescribed value; in the latter case it reveals its actual internal
state.

In the ideal process, when the simulator asks to coerce a party, the ideal function-
ality obtains from the environment either the value v to be presented, or the “tell the
truth” directive. If the response was a value v, then the functionality forwards v to the
simulator. If the response was “tell the truth”, then the ideal functionality provides the
actual input and output values of the coerced party to the simulator. Crucially, the sim-
ulator isn’t told if this value is true or fake. Intuitively, the fact that the simulator can
simulate the protocol without learning whether the inputs were real or fake, means that
in the real world the adversary doesn’t learn this information either.

This definition in particular means that the protocol must maintain the best possible
incoercibility even when claimed inputs and outputs are inconsistent. For instance, even
in case of clearly inconsistent inputs and outputs, the total number of liars or their
identities may be still hidden; thus the real-world protocol is required to provide the
same guarantee.

We note that we still allow standard adaptive corruption requests, in addition to
coercion requests.

We refer to this setting as full incoercibility. The case of cooperative incoercibility
is obtained from the above definition by restricting the environment in two ways: first,
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it must either provide “tell the truth” to all parties, or else provide it to no participant;
second, we prohibit corruption operation.

As noted in [CG96], this definition of incoercibility immediately implies semi-
honest adaptive security.

Obstacles to Incoercibility: Inversion and Coordination. We start by giving some intu-
ition for why it is hard to build incoercible protocols. For instance, consider a two-party
computation protocol based on Yao garbled circuits [Yao86], where the sender sends
a garbled circuit, together with labels for the inputs of the sender and the receiver; the
latter is sent via oblivious transfer (OT). If both the sender and the receiver become
coerced and decide to lie about their inputs and outputs, then:

— the receiver should demonstrate the adversary how it receives (potentially incorrect)
output of the OT corresponding to a different receiver bit. At the same time, the
receiver shouldn’t be able to obtain the true OT output for that bit - indeed, this
would violate sender privacy.

— the sender should explain how the garbled circuit was generated, i.e. provide its
generation randomness. The problem is, the sender has already “committed” to its
own labels (by sending them over the public channel), and now it has to come up
with different generation randomness such that those labels, initially corresponding
to its true input, now represent a fake input.

— further, this generation randomness also has to be consistent with the labels of the
receiver and fake input of the receiver, which the sender doesn’t know.

This example already demonstrates two difficulties with designing incoercible pro-
tocols. One is the problem of inversion, where some or all parties have to invert some
randomized function f(x;r) with respect to a different x’ (like the generation of a gar-
bled circuit)*. The other is a problem of coordination, where parties have to lie about
their intermediate states in a consistent way, even though parties do not know fake
inputs and outputs of each other.

These problem are reminiscent of the problems arising in the context of adaptive
security. However, incoercibility is much stronger than adaptive security. Indeed, in the
setting of adaptive security fake randomness is only created by a simulator in the proof,
as part of a mental experiment, and not by parties in the real protocol. In particular,
the simulator may keep secret trapdoors to help with generating fake randomness (thus
simplifying the problem of inversion), and the fact that all fake randomness is generated
by the same entity eliminates the problem of coordination. In contrast, in incoercible
protocols, the parties themselves should be able to fake their randomness, and they must
do so independently of each other (after the protocol finishes).

These issues manifest themselves even in a simpler task of a message transmis-
sion function. To date, despite having a number of clean and modular constructions of
adaptively secure (or, non-committing) encryption schemes [DN0O0,CDMW09,BH92,
HORI15,HORR16,YKT19] we have only one construction of a deniable encryption

# Note that in the model where not everybody is coerced, it is easy to avoid the inversion problem
altogether by, e.g., secret-sharing r across all parties, thus guaranteeing that the coercer never
gets to see 7.
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scheme (withstanding coercion of both parties), and this construction is very non-
modular: it is built from the ground up using obfuscation, and both the construction
and its security proof are quite heavy [CPP20].

Thus, we have two potential approaches for designing incoercible MPC. One is
to build the whole protocol from scratch, perhaps using obfuscation, similar to the con-
struction of deniable encryption; needless to say, such a construction is likely to be even
more complicated. The other approach is to use deniable encryption as a primitive and
explore how much incoercibility can we obtain by composing it with other primitives.

In this work we take the latter approach. We show how to combine deniable encryp-
tion with adaptive security to obtain an incoercible protocol, and how to turn certain
deniable encryption schemes into incoercible OT, thus yielding incoercible 2PC with
short inputs.

Our Setting. We allow parties (and adversaries) to have an access to a common refer-
ence string (CRS), which has to be generated only once and is good for unboundedly
many executions. However, we require that protocols should only rely on cryptographic
assumptions (as opposed to inaccessible hardware assumptions). We consider the case
where coercions and corruptions happen only after the execution has finished. Our two
main settings are the setting of cooperative incoercibility, where security is guaranteed
to hold only as long as partitipants lie or tell the truth simultaneously, and the setting of
full incoercibility, which doesn’t have such a restriction.

We present semi-honestly incoercible protocols, which withstand coercion of all
participants. Faking procedure of each party is local: that is, each party fakes only based
on its own real and fake inputs and outputs and the information made available by the
protocol. In particular, neither party knows fake inputs of other parties, nor does it know
whether other parties are corrupted or coerced, and if coerced, whether they tell the truth
or li.e.

Deniable Encryption. A common building block in all our protocols is a deniable
encryption scheme [CDNO96], which can be thought of as an incoercible protocol for
the message transmission functionality. We require deniable encryption which remains
deniable even when both parties are coerced, and even in the off-the-record setting;
as of September 2020, the only such protocol is given by [CPP20]. Roughly, deniable
encryption give the following security guarantee:

1. the adversary cannot distinguish whether it sees
— real randomness s of the sender, real randomness r of the receiver, and the com-
munication transcript for plaintext m, or
— fake randomness of the sender s’ consistent with fake m, fake randomness of
the receiver r’ consistent with fake m, and the communication transcript for
plaintext m/'.
2. (off-the-record setting) the adversary cannot distinguish whether it sees
— real randomness s of the sender, fake randomness 7’ of the receiver consistent
with m/, and the communication transcript for plaintext m,
— fake randomness of the sender s’ consistent with m, real randomness of the
receiver r consistent with m’, and the communication transcript for plaintext

m,
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— fake randomness s’ of the sender consistent with m, fake randomness r’ of the
receiver consistent with m’, and the communication transcript for plaintext m’’.
This should hold for any, potentially equal, m, m’, m”.

Incoercible Oblivious Transfer and 2PC with Short Inputs. Incoercible oblivious
transfer has the functionality of a standard oblivious transfer - i.e. it allows the receiver
to obtain exactly one value x; (corresponding to its own input b), out of two values
Z¢, x1 held by the sender. However, it additionally provides security guarantees against
a coercer: that is, even if the coercer demands to see all randomness used by both parties
in the protocol, parties can successfully lie about their inputs. That is, the sender can
claim that it used any, possibly different inputs z(), 2} (and provide convincing random-
ness supporting this claim). Similarly, the receiver can claim it used a possibly different
input bit &, and received a different output 2’ of its choice.

This primitive can be constructed from any receiver-oblivious deniable encryption
(DE) with public receiver deniability. Here “public receiver deniability” means that the
faking algorithm of the receiver doesn’t take true receiver coins as input (thus anyone
can fake on behalf of the receiver). “Receiver-oblivious” DE means that the adversary
cannot tell if the receiver messages were generated honestly (following the algorithm
of DE), or instead chosen at random (in this case, we say that these messages were
generated obliviously); further, this indistinguishability should hold even given fake
random coins of the sender. We note that deniable encryption of [CPP20] has public
receiver deniability, and in the full version we show that it is also receiver-oblivious.

Theorem 1. Any receiver-oblivious deniable encryption, which remains deniable even
in the off-the-record setting and has public receiver deniability, can be converted into
fully incoercible 1-out-of-m oblivious transfer, for any polynomial m, in a round-
preserving way.

The construction of incoercible OT is inspired by the construction of adaptively
secure OT from non-committing (adaptively secure) encryption [CLOS02]. Namely, let
Zg, 1 be the inputs of the sender, and b be the input of the receiver. The parties should
run in parallel two instances of DE: DEj and DE;. The sender’s input to each DE; is
x;, for both 7 = 0, 1. The receiver should pick random 7 and generate messages of
DE, honestly (using r as randomness of the receiver in the protocol), while messages
of DE;_; should be generated by the receiver obliviously.

It is easy to see that the receiver can learn only x; but not z1_;, since the receiver
knows r, which allows it to decrypt DE;, but doesn’t know randomness for DE; _; and
therefore cannot decrypt it. The sender, in turn, doesn’t learn the receiver bit b, since it
doesn’t know which execution was generated obliviously by the receiver. Further, this
OT is indeed incoercible: the sender can directly use deniability of DE to claim that
different inputs x(), 2} were sent. The receiver can lie about its input b by claiming that
DE, was generated obliviously, and by presenting fake r’ as randomness for DE; 5.
This fake 7’ can be generated by using the faking algorithm on DE;_ and 3/, where 3/
is the desired fake output of the oblivious transfer. Note that the receiver doesn’t know
true coins for obliviously generated DE;_,, but it can generate fake r’ anyway due to
the fact that receiver deniability is public.
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This construction can be extended to 1-out-of-m incoercible OT in a straightforward
way.

Incoercible 2PC for Short Inputs from incoercible OT. Recall that, when the number m
of possible inputs of some party is polynomial, standard 1-out-of-m OT immediately
implies general 2PC [GMWS87]: The OT sender should input to the OT m possible
values of f(z,y), corresponding to m possible values of the receiver’s input y, and a
single sender’s input x. Using incoercible 1-out-of-m OT in this protocol immediately
makes the resulting 2PC protocol incoercible.

Incoercible MPC from OT? Despite the fact that standard OT implies general secure
multi-party computation [GMW87], it is not clear whether incoercible OT implies inco-
ercible MPC as well. In particular, simply plugging (even ideal) incoercible OT into the
protocol of [GMW87] doesn’t seem to result in an incoercible protocol, even just for
two parties. The problem here is the following: recall that this protocol works by letting
the parties compute additive secret shares of each wire of the circuit of f(z1,22). On
one hand, since in the normal execution two shares add up to the value of the wire of
f(x1,x2), the same should hold in the fake case: fake secret shares should add up to the
value of the wire of f(z, z}). However, it is not clear how, upon coercion, parties can
compute these fake shares locally, without the knowledge of the other party’s input.

Incoercible MPC. A natural starting point for building an incoercible MPC is to make
parties run any secure MPC protocol, where each message is encrypted under a sepa-
rate instance of deniable encryption. If in addition the parties are allowed to communi-
cate outside of the view of the adversary - e.g. by meeting physically - and if they are
comfortable sharing their fake inputs with each other, this method immediately gives
incoercible MPC. Indeed, upon coercion parties can use their out-of-band channel to
all agree on some transcript tr’ = tr({z}, r;}) of an underlying MPC executed on their
fake inputs. When coerced, each party can use deniability of encryption to lie (by pre-
senting consistent randomness and keys of deniable encryption) that it sent and received
messages of tr’. In addition, each party should claim that z, r; are the true input and
randomness which it used to compute the messages of tr’.

However, this protocol fails when no out-of-band interaction is possible, since par-
ties do not have means to agree on tr’. To fix this problem, we combine deniability
with adaptive security. That is, we use MPC which is adaptively secure and has a spe-
cial property called corruption oblivious simulation (defined in [BCH12] in a setting of
leakage tolerance). Roughly, it means that there is a “main” simulator which simulates
the transcript, and in addition each party has its own, “local” simulator which simulates
the coins of that party, using that party’s inputs only and the state of the “main” sim-
ulator (but not the inputs of other parties). If parties had a way to agree on the same
simulation randomness 7s;jm, then upon coercion, they could do the following: First
they should run the main simulator on rs;, to generate (the same) simulated transcript
tr’ of an underlying adaptive MPC, and then each party should use its own local simu-
lator to locally compute fake coins consistent with this simulated transcript and its own
input. Finally, as before, each party can use deniability of encryption to claim that the
messages of tr’ were indeed sent.
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It remains to determine how the parties agree on the random coins rs;,, of the main
simulator. A natural approach to do this is to let one of the parties (say, the first) choose
rsim at random and send it, encrypted under deniable encryption, to each other party
at the beginning of the protocol, for case that they need to fake later. However, this
introduces another difficulty: now the adversary can demand to see 7s;n,, and revealing
it would allow the adversary to check that the transcript was simulated and thus detect a
li.e. Therefore, instead of sending rs;m, the first party should send randomly chosen seed
s to all other parties. This seed is not used by parties in the execution of the protocol.
However, upon coercion each party can use a pseudorandom generator to expand s into
a string 7'sim||s’, where rsiy,, as before, is used to produce the same simulated transcript
of an adaptive MPC, and s’ is what parties will claim as their fake seed (instead of a true
seed s). Note that it is safe to reveal s’ to the adversary, since §'||rsiy, is pseudorandom,
and therefore s’ cannot help the adversary to indicate in any way that tr’ was simulated.

We underline that security of this protocol is only maintains in the cooperative set-
ting. As a result, this protocol is useful in scenarios where parties “work together” and
are interested in keeping all their inputs secret, rather than turn against each other try-
ing to make sure others get caught cheating. We note however that the protocol remains
secure even if inputs of some parties are real and inputs of some other parties are fake
- as long as randomness of all parties is fake. Indeed, it might happen so that a certain
party is not interested in lying about its input, but still wishes the whole group of people
to succeed in deceiving; then this party may provide fake randomness for its real input,
thus not ruining the joint attempt to deceive, while achieving its own goals®. Further,
this protocol maintains the best possible security even in the case when the claimed
inputs and outputs are clearly inconsistent.

4-Round Protocol for Incoercible MPC. We now describe the same protocol more for-
mally and in particular show how to achieve 4 rounds of communication:

Theorem 2. It is possible to build cooperatively incoercible secure function evaluation
protocol from deniable encryption and adaptively secure MPC protocol with a global
CRS and corruption-oblivious simulator.

We need the following ingredients for our protocol:

— 2-round adaptively secure MPC aMPC with global CRS® and corruption-oblivious
simulator, e.g. that of [CPV17].

— 3-round delayed-input’ deniable encryption DE, e.g. that of [CPP20]. While that
construction is not delayed-input, we observe that it is easy to turn any deniable
encryption into its delayed-input version. This can be done by letting the sender
send a randomly chosen key & using deniable encryption, and also send m & k in
the clear at the last round.

5 Note that this scenario highlights a subtle but important difference between the modelling of
coercion in [CG96] and [CGP15]. Indeed, in [CG96], if the party is given a real input, it has
to provide its true randomness.

® The CRS of the protocol is said to be global, if the simulator can simulate the execution, given
the CRS (as opposed to generating the CRS on its own, possibly from a different distribution,
or with underlying trapdoors).

7 That is, only the third message of the sender depends on the plaintext.
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Then our protocol proceeds as follows:

1. Inrounds 1— 3 parties exchange the messages of the first round of aMPC, encrypted
under point-to-point deniable encryption.

2. In rounds 2 — 4 parties exchange the messages of the second round of aMPC,
encrypted under point-to-point deniable encryption. It is important that deniable
encryption requires its input only by the last round, since parties receive the mes-
sages of the first round of aMPC only after round 3.

3. Inrounds 2 — 4 party 1 sends to each party randomly chosen seed, encrypted under
point-to-point deniable encryption. Note that each party receives the same value of
seed.

After round 4, parties learn all messages of aMPC and therefore can compute the
output. Note that our protocol is delayed input, since inputs are required only by round
3. Upon coercion, each party first computes fake transcript tr’ of aMPC. tr’ is com-
puted by running the “main” simulator of aMPC on rg;,, where rs;y, is obtained by
expanding seed into seed’||rsim using a prg. (Note that parties use the same 7s;,, and
therefore obtain the same tr’ upon coercion). Next, each party can use its local simu-
lator to produce fake coins consistent with tr’ and fake input z’. Therefore, each party
can claim that the transcript of the underlying protocol was tr’, and this claim will be
consistent with party’s own fake input, and across different parties. Finally, each party
should claim that the seed value sent by party 1 was in fact seed’.

Note that our construction crucially uses the fact that underlying adaptive MPC has
global CRS. Indeed, this allows to put this CRS as part of the final CRS of the protocol,
and lets parties simulate the transcript of underlying adaptive MPC with respect to that
CRS. Had the CRS been local, parties would have to generate it during the protocol
and thus eventually provide the adversary with the generation coins; yet, security of
protocols with local CRS usually holds only as long as the generation randomness of
this CRS remains private.

Impossibility of Incoercible MPC with Lazy Parties

Impossibility of Incoercible MPC with Lazy Parties. We show that unlike 2-party pro-
tocols, multiparty protocols with some communication structure cannot be incoercible
(this holds even against coercion of only 2 parties). Concretely, let us say that a party
is lazy, if it only sends its messages in the first and the last round of a protocol, but
doesn’t send anything in intermediate rounds (if any). In particular, in all 2 round pro-
tocols all parties are lazy by definition. We show that coercing a lazy party and some
output-receiving party allows to learn information about inputs of other parties, there-
fore rendering the protocol insecure for most functions:

Theorem 3. Assume there exists an n-party protocol withstanding 2 corruptions and 1
coercion for computing function f with a lazy party, where n > 3. Then the function f
is such that for any inputs x1, . . . , &, it is possible, given x1,x,, and f(x1,...,xy,), to
compute f(x, o, ..., x,) for any x.
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We consider this negative result to be especially important in light of the fact that
building fully incoercible protocols may require complicated obfuscation-based con-
structions. For instance, consider the following natural attempt to build a 3-round fully
incoercible protocol. Take deniable encryption of [CPP20] which essentially lets the
sender send an encryption of a plaintext together with some auxiliary information,
which the receiver can decrypt using an obfuscated decryption program. This protocol
features a “ping-pong” communication pattern, with a total of 3 messages sent between
a sender and a receiver. One could attempt to turn it into MPC with a similar “ping-
pong” communication pattern by letting n — 1 senders P, ..., P,,_; send its input to a
single receiver P, in a similar manner, and let the obfuscated evaluation program of the
receiver decrypt the messages and evaluate the result. While this approach sounds very
plausible and appealing in a sense that it potentially requires only minor modifications
of the construction of deniable encryption, our impossibility result implies that such
protocol cannot be incoercible.

Finally, it is interesting to note that this impossibility result is “tight” both with
respect to the number of participants n, and with respect to coercion operation (as
opposed to adaptive corruption). Indeed, there exists a 3-round two-party incoercible
protocol (e.g. our OT-based protocol), and a 3-round multi-party adaptively secure pro-
tocol [DKR14], which features such a “ping-pong” communication pattern.®

To get an idea of why impossibility holds, consider standard MPC with a super-
lazy party who only sends its messages in the very last round; clearly, such a protocol
is insecure, since the adversary who corrupts this party together with some output-
receiving party can rerun the protocol on many inputs of the lazy party and therefore
infer some information about the inputs of uncorrupted parties.

Such an attack in the standard MPC case doesn’t work when a lazy party sends
messages in two rounds of the protocol. However, we show that in case of incoercible
protocols there is a way for a lazy party to modify its last message such that the protocol
now thinks that a different input is used - despite the fact that its first message still
corresponds to the original input. With this technique in place we can mount the same
attack as described before. This technique is based on the observation in [CPP20] that
sender-deniability in any deniable encryption implies that a party can “fool” its own
protocol execution into thinking that a different input is being used. We refer the reader
to Sect. 5 for details.

Discussion, Open Problems, and Future Work. Our results naturally lead to the fol-
lowing open problems:

— Round Complexity: is it possible to build an incoercible protocol, withstanding coer-
cion of all parties, for general functions in 3 rounds?

— Full Incoercibility: Ts it possible to obtain a protocol which withstands coercion
of all parties and remains incoercible even in the off-the-record setting - with any
number of rounds?

8 Note that formally speaking, the protocol of [DKR14] takes 4 rounds; however, the receiver
learns the output already after round 3. The 4-th round is only required to send this output back
to everyone.
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The protocols in this paper follow a blueprint of composing deniable encryption
with non-deniable primitives, resulting in a simple and clean protocol design. However,
it could be problematic to use this approach for answering the questions listed above.
The reason is the following. Since incoercible MPC implies deniable encryption, any
construction of incoercible MPC:

— either has to use some construction of deniable encryption,
— or has to build deniable encryption from scratch, at least implicitly.

As we explain in more detail next, improving on our results would likely require the
latter. This is a problem because the only known construction of encryption which is
deniable for both parties [CPP20] is fairly complex and has lengthy proofs (the paper
is more than 250 pages), and moreover, complex constructions could be inherent for
deniable encrypion, because of a certain attack which can be done by the adversary (see
the technical overview of [CPP20] for more details).

We now give more details about each open question separately.

Round Complexity. We show the existence of a 4-round deniable protocol, whereas
2-round incoercible protocols are ruled out by the impossibility of receiver-deniable
encryption in 2 rounds [BNNO11]. This leads to a natural question of whether deniable
computation can be done in 3 rounds generically.

It could be hard to achieve this by using deniable encryption as a building block.
Since deniable encryption itself provably takes 3 rounds of communication, this means
that only the last message in the protocol can be “protected” by deniability of encryp-
tion; yet, previous messages have to depend on the inputs as well and somehow have to
be deniable. We leave it to future work to either extend this argument towards a lower
bound, or to come up with a protocol which avoids this issue.

Off-the-Record Incoercibility. A natural attempt to build an off-the-record incoercible
protocol is to combine deniable encryption (secure even in the off-the-record setting)
with other, weaker-than-incoercible primitives (e.g. standard MPC). Unfortunately, this
is unlikely to help. Indeed, a very simple argument made by [AOZZ15] shows that in
any construction of off-the-record incoercible MPC with the help of secure channels,
parties have to use these (perfectly deniable!) channels in an inherently non-deniable
way: that is, if a party sends (receives) a message M via secure channel during the
protocol, then its faking algorithm cannot instruct this party to lie about M°. This can
be informally interpreted as follows: in any incoercible protocol which uses deniable
encryption, deniable encryption can be replaced with standard encryption such that the
protocol still remains incoercible'”. This in turn indicates that such a protocol would
have to be incoercible to begin with.

% Roughly, this is because said party doesn’t know whether its peer is lying or telling the truth;
it could be telling the truth, thus revealing true M, and from definition of off-the-record deni-
ability, their joint state should look valid even in the case when the party is lying and its peer
is telling the truth - as long as their inputs and outputs are consistent.

10 We underline again that this is an informal statement - indeed, such a statement is tricky to
even formalize, let al.one prove.
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2 Preliminaries

2.1 Incoercible Computation

We use the definition of incoercible computation from [CGP15], which can be regarded
as a re-formulation of the definition of [CG96] within the UC framework. (We note that
the formulations of [MN06, AOZZ15] are similar to and consistent with the one we use,
with the exception that they allow also Byzantine corruptions and incorporate modeling
of ideally opaque hardware.) Specifically, we let the adversary send a special coercion
message (in addition to standard corruption messages) to parties; upon receiving this
message a party notifies a predetermined external entity (say, its “caller” via subroutine
output) that it was coerced and expects an instruction to either “tell the truth”, in which
case it reveals its entire local state to the adversary, or “fake to input x and output y”,
in which case the party runs the faking algorithm provided as part of the protocol, on
z,y and the current local state, and uses the output of the algorithm as the fake internal
state reported to the adversary. We also restrict the parties to accept coercion/corruption
messages from the environment only once the protocol execution ended. We refer to
this setting as full incoercibility.

Cooperative Environments. If an environment is guaranteed to either instruct all
coerced parties to “tell the truth”, or else neither of the coerced/corrupted parties are
instructed to “tell the truth” (in which case, each party is instructed to fake to some
input z and output y, of the environment’s choice), and in addition if standard corrup-
tions are prohibited, then we say that it is cooperative.

Incoercible Ideal Functionalities. Anideal functionality can now guarantee incoercibil-
ity via the following mechanism: When asked by the adversary (or, simulator) to coerce
aparty P, the ideal functionality outputs a request to coerce P to the said external entity,
in the same way as done by the protocol. If the response is “fake to input 2 and output
1, then the pair x, y is returned to the adversary. If the response is “tell the truth” then
the actual input = and output y are returned to the adversary. Crucially, the simulator is
not told whether the values received are real or fake.

This behavior is intended to mimic the situation where the computation is done
“behind closed doors” and no information about it is ever exposed, other than the inputs
and outputs of the parties. In particular, such an ideal functionality does not prevent
situations where the outputs of the parties are globally inconsistent with their inputs, or
where a certain set of inputs of the parties are inconsistent with auxiliary information
that’s known outside the protocol execution. Indeed, the only goal here is to guarantee
that any determination made by an external coercer (modeled by the environment) after
interacting with the protocol, could have been done in the ideal model, given only the
claimed inputs and outputs.

Figures 1, 2 and 3 depict incoercible variants of the standard ideal functionalities
for secure message transmission, oblivious transfer, and multiparty function evaluation,
respectively.

We say that 7 is a fully incoercible message transmission protocol if 7 UC-realizes
Fime. If m UC-realizes F;,,,; only with respect to cooperative environments then 7 is a
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Functionality F,,,

- Upon receiving input (Send, sid, R, m) from party .S, where R is an identity for the intended
receiver, send (sid, S, R, |m|) to the adversary. When receiving ok from the adversary, output
(Receive,sid, S,m) to R.

— Upon receiving (Coerce, sid, P) from the adversary, where P € {S, R}, output
(Coerce, sid) to P. Upon receiving V' from P do: If V' = (tell-truth) then send
m to the adversary. If V = (fake—to,m’) then send m’ to the adversary.

— Upon receiving (Corrupt, sid, P) from the adversary, where P € {S, R}, output
(Corrupt, sid) to P, and send m to the adversary.

Fig. 1. The incoercible message transmission functionality Fin:.

Functionality 7.,

- Upon receiving input (OT-Sender, sid, R, (mo, m1)) from party .S, where R is an identity
for the intended receiver, send (sid, S, R) to the adversary. When receiving ok from the
adversary, output (OT-Receiver, sid, S) to R.

- Upon receiving input (OT-Receiver, sid, b) from R, send sid to the adversary. When
receiving ok from the adversary, output (OT-Receiver, sid, ms) to R.

- Upon receiving (Coerce, sid, P) from the adversary, where P € {S, R}, output
(Coerce, sid) to P. Upon receiving V from P do: If V = (tell-truth) then send
P’s input and output to the adversary. If V' = (fake—to, v) then send v to the adversary.

- Upon receiving (Corrupt, sid, P) from the adversary, where P € {S, R}, output
(Corrupt, sid) to P, and send P’s input and output to the adversary.

Fig. 2. The incoercible oblivious transfer functionality F;o.

Functionality F..

- Upon receiving input (Init, sid, P, ..., Py, f from party P, send (sid, Py, ..., Pp, f) to
the adversary. When receiving (ok, P;) from the adversary, output (Init, sid, P, ..., Py, f)
to P;.

- Upon receiving input (Init, sid, z;) from P;, record (P, x;). Once (P;, ;) are recorded
for all ¢ = 1..n, compute (y1,...,yn) < f(z1,...,2,) and send (Output, sid) to the
adversary.

— When receiving output from P;, output y; to P;.

— Upon receiving (Coerce, sid, P;) from the adversary output (Coerce, sid) to P;. Upon
receiving V' from P; do: If V = (tell-truth) then send P;’s input and output to the
adversary. If V' = (fake-to, v) then send v to the adversary.

— Upon receiving (Corrupt, sid, P;) from the adversary output (Corrupt, sid) to P;, and
send P;’s input and output to the adversary.

Fig. 3. The incoercible function evaluation functionality F;e.
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cooperatively incoercible message transmission protocol. Incoercible oblivious transfer
and function evaluation are defined analogously.

2.2 Other Preliminaries

Our protocols require deniable encryption with special properties, and adaptively secure
MPC with corruption-oblivious simulator. An informal description of these primitives
can be found in the introduction. We refer the reader to the full version for rigorous
definitions.

3 Incoercible Oblivious Transfer

In this section we describe our construction of incoercible oblivious transfer. As noted
in the introduction, such a protocol immediately implies incoercible 2PC for the case
where one of the parties has polynomial input space.

3.1 Protocol Description

For simplicity, we consider 1-out-of-2 OT (the construction can be generalized to 1-
out-of-n OT in a straightforward way), and we also assume that all inputs are bits. Our
protocol is described on Fig. 4. It requires a special deniable encryption (DE) scheme,
where deniability of the receiver is public (i.e. the faking algorithm of the receiver
doesn’t take receiver’s true coins as input), and which satisfies receiver-obliviousness,
i.e. the real transcript is indistinguishable from a transcript where receiver simply gen-
erated all its messages at random. As noted in [CPP20], their DE protocol satisfies
public receiver deniability. In the full version we note that this protocol is also receiver-
oblivious.

Before stating the theorem, we remind that we consider the model of semi-honest
coercions of potentially all parties, and we assume that all coercions happen after the
protocol finishes. We refer the reader to Sect. 2 for a description of our coercion model.

Theorem 4. Assume DE is an interactive deniable encryption scheme which satisfies
public receiver deniability and receiver obliviousness, and remains deniable even in the
off-the-record scenario. Then the protocol on Fig. 2 is a semi-honest, fully incoercible
oblivious transfer protocol.

3.2 Proof of the Theorem

Correctness. Correctness immediately follows from correctness of deniable encryption.

Incoercibility. Consider the simulator depicted on Fig. 5, which essentially generates
two transcripts of deniable encryption, each encrypting plaintext m = 0, and then uses
faking algorithm of deniable encryption to simulate the coins. Note that the simulator
generates the simulated coins in the same way (by using faking algorithm), no matter
whether the party is corrupted or coerced.
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Incoercible Oblivious Transfer

The CRS: CRS = CRSpg, where CRSpe is a CRS of deniable encryption with receiver-
obliviousness, and public receiver deniability.

Inputs: inputs xo, z1 of the sender S; input bit b of the receiver R.

The protocol:

The sender chooses random coins sg, s1 for two executions of deniable encryption, where S acts as
a sender. The receiver chooses randomness 7 for a single execution of deniable encryption where
it acts as a receiver. The sender and the receiver run two instances of deniable encryption, DEg
and DE1, in parallel. Here:

— In each execution ¢, for ¢ = 0, 1, the sender computes its messages by honestly running the
code of deniable encryption on its input x;, randomness s;, and the transcript so far;

— In the execution b the receiver computes its messages by honestly running the code of deniable
encryption on its randomness 7 and the transcript so far. In the execution 1 — b the receiver
instead generates all its messages at random, using randomly chosen 7.

At the end of both executions, the receiver sets its output in the protocol to be DE.Dec(r; DE;).

Faking procedure of the sender S

Inputs: fake inputs x(, 2 of the sender, true inputs and randomness xo, so, x1, s1 of the sender,
the protocol transcript (DEo, DE;), and the CRS.

In order to fake, the sender runs the faking algorithm of deniable encryption for each execution, i.e.
computes s; < DE.SFake(s;, z;, @}, DE;; ) for both i = 0, 1. It gives s, s to the adversary.

Faking procedure of the receiver R

Inputs: fake input b’ and fake output =’ of the receiver, true inputs and randomness b, 7, 7 of the
receiver, the protocol transcript (DEg, DE1), and the CRS.

In order to fake, the receiver claims that messages of the receiver in execution 1 — b’ were generated
at random, and sets fake 7 to be the concatenation of these receiver messages. Next, it uses public
deniability of the receiver to compute 7’ < DE.RFake(z’, DE;/; -). It gives 7/, 7 to the adversary.

Fig. 4. Incoercible oblivious transfer.

We need to show that for every pattern of corruptions and coercions, and every

set of real and fake inputs and outputs, the real execution is indistingusihable from a
simulated one. This boils down to showing indistinguishability in the following cases:

1.

If claimed inputs and outputs are consistent, we should prove indistinguishability
between the case where both the sender and the receiver show their true coins, the
case where both the sender and the receiver show their fake coins, the case where
the sender shows true coins and the receiver shows fake coins, and the case where
the sender shows fake coins and the receiver shows true coins.
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Simulation of communication

Inputs given to simulate the communication: CRS.

The simulator chooses random sg, s1, 70, 71, and computes DE; < DE(s;, r;,0) forboth ¢ = 0, 1,
i.e. sets DE; to be the transcript of the protocol for deniable encryption, computed with the sender
input 0, sender randomness s;, and receiver randomness ;. (DEq, DE1) is a simulated transcript
of the protocol.

Simulation of corruption and coercion of the sender S

Inputs additionally given to simulate the coercion of S: claimed inputs z(, 2} of S.
The simulator computes s; < DE.SFake(s;, 0, z;, DE;; ) for both i = 0, 1. It gives sp, s to the
adversary.

Simulation of corruption and coercion of the receiver R

Inputs additionally given to simulate the coercion of R: claimed input &, claimed output z’.
The simulator claims that messages of the receiver in execution 1 — b’ were generated at random,
and sets fake 7 to be the concatenation of these receiver messages. Next, it computes 7, <
DE.RFake(z’, DEy/; -). It gives ry,, 7 to the adversary.

Fig. 5. Simulation

2. If claimed inputs and outputs are inconsistent, we should prove indistinguishability
between the case where the sender shows true coins and the receiver shows fake
coins, the case where the sender shows fake coins and the receiver shows true coins,
and the case where they both show fake coins.

The proof is very straighforward and uses two main steps - (a) switching between
normally and obliviously generated execution of DE, using obliviousness and public
receiver deniability of DE, and (b) switching randomness of DE of the sender between
real and fake, using sender-deniability of DE.

Below we formally prove indistinguishability between the simulated execution
(Hybs;,,) and the real execution with consistent inputs z(, 7, b" and output x;,, where
both parties tell the truth (i.e. disclose their true coins) (Hybg,,). Indistinguishability
between other distributions can be shown in a very similar manner.

— Hybg;,,. This is the execution from Fig. 5, where both the sender and the receiver
are either corrupted or coerced, and the values reported to the simulator are the
following: inputs x(), 2 of the sender, input b’ of the receiver, output ' = z}, of the
receiver. The simulator gives the adversary (DEg, DEq, sy, 7,7, 7).

— Hyb;. In this hybrid the receiver generates messages in DE; _;/ obliviously (instead
of generating them honestly, using 71 _;/). Indistinguishability between this and the
previous hybrid follows from obliviousness of the receiver of deniable encryption.
Note that it is important for the reduction that the receiver deniability is public, since
the reduction needs to compute fake randomness of execution 1—¥', 7y _,,, for which
it doesn’t know the true coins rq_p .
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— Hyb,. In this hybrid the sender encrypts z(, (instead of 0) in the execution i = 0. It
also gives the adversary its true randomness s instead of fake s(,. Indistinguishabil-
ity follows from bideniability of the encryption scheme DE.

— Hybgeg- In this hybrid the sender encrypts 2 (instead of 0) in the execution i = 1.
It also gives its true randomness s; instead of fake s/. Indistinguishability follows
from sender deniability of the encryption scheme DE;.

Note that this distribution corresponds to the real world where parties use xj,, 27,0
as inputs.

4 4-Round Incoercible MPC

4.1 Description of the Protocol

In this section we describe our protocol achieving incoercibility even when all parties
are coerced, but only in cooperative scenario. That is, as discussed in the introduction,
the deception remain undetectable only as long as all parties lie about their randomness
(however, then can still tell the truth about their inputs, if they choose so). We remind
that in this work we only focus on coercions and corruptions which happen after the
protocol execution.

Our protocol is presented on Fig. 6. As discussed more in detail in the introduction,
the protocol essentially instructs parties to run the underlying adaptively secure proto-
col, where each message is encrypted under a separate instance of deniable encryption.
In addition, party P, sends to everyone the same seed seed of the prg, to be used in the
faking procedure. Parties’ faking algorithm instructs parties to use seed to derive (the
same for all parties) coins 7s;,, which are used to generate (the same for all parties)
simulated transcript o’ of the underlying MPC. Next each party uses the local simula-
tor of that MPC (recall that we need that MPC to have corruption-oblivious simulator)
to simulate its own fake coins of the underlying MPC. Finally parties claim that they
indeed exchanged messages of ¢’, using deniability of encryption.

Faking the Inputs vs Faking the Inputs and the Outputs. We note that it is enough for
parties to be able to fake their inputs (as opposed to inputs and outputs), due to the
standard transformation allowing parties to mask their output with a one time pad k:
F'((z1, k1), (ma, ko)) = f(x1, 22) B k|| f(z1,22) & ko. Indeed, here faking the output
can be achieved by faking inputs k; instead. Thus, in the protocol, we only describe an
input-faking mechanism.

Theorem 5. Assume the existence of the following primitives:

- aMPC = (aMPC.msg1,aMPC.msg2, aMPC.Eval,aMPC.Sim,aMPC.Sim;) is a 2-
round adaptively secure MPC with corruption-oblivious simulation, in a global CRS
model;

- DE = (DE.msgl, DE.msg2, DE.msg3, DE.Dec, DE.SFake, DE.RFake) is a 3-
message, delayed-input deniable encryption protocol, in a CRS model;

— prg is a pseudorandom generator.
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Then the protocol iIMPC on Figs. 6, 7 is a 4-round semi-honest MPC protocol in a CRS
model'!, which is cooperatively incoercible.

We note that all required primitives can be built using subexponentially-secure
indistinguishability obfuscation and one-way functions [CPP20,CPV17]. Therefore we
obtain the following corollary:

Corollary 1. Assume the existence of subexponentially secure indistinguishability
obfuscation and subexponentially secure one-way functions. Then in a CRS model there
exists a 4-round semi-honest MPC, which is cooperatively incoercible.

Notation and Indexing. Subscript ¢, j on the message of the protocol means that the
message is sent from P; to P;. Subscript 7, j of the randomness means that this ran-
domness is used as sender or receiver randomness in the protocol where ¢ is the sender
and j is the receiver.

For example, M 1; ; is the first message of aMPC, sent from P; to P;. Our protocol
transmits this message inside deniable encryption, which in turn consists of messages
al; ;, a2;;, and a3; ;. To compute these messages, party F; uses its sender randomness
84,5,1, and party P; uses its receiver randomness 75 ; 1.

4.2 Proof of the Theorem

Correctness. Correctness of the protocol immediately follows from correctness of the
underlying aMPC protocol and correctness of deniable encryption DE.

Incoercibility. We define a simulator which can simulate communication and internal
states of all parties, given inputs and outputs only, but without knowing whether these
inputs are real or fake.

We can assume that the simulator knows the output y before the protocol starts, due
to the following standard transformation, where parties additionally choose OTP keys k;
and use it to mask the output: f'((z1, k1), T2, k2) = f(x1,22)Bk1]||f(x1, 22)Pko. Due
to this transformation, the simulator can always choose output z of parties uniformly at
random, and once the first coercion occurs and the true output y becomes known, set
the corresponding k; to be z® (y||y). From now on we assume that the simulator knows
the output y ahead of time.

Simulation. The simulator is formally described on Fig. 8. Informally, the simulator
uses the underlying simulator of aMPC to simulate communication between parties, o”.
It then encrypts messages of o’ under deniable encryption. It encrypts randomly chosen
seed’ under deniable encryption as well. This concludes the description of simulation
of communication.

Upon coercion of a party, given an input z; (without knowing whether z; is real
or fake), the simulator computes fake random coins of aMPC by running the local
simulator aMPC.Sim; on input z,. These are the only coins which are faked by the
simulator; the simulator reveals true values of seed’ and all randomness of DE.

' Note that our CRS is global (recall that the notion of deniability or incoercibility only makes
sense in the global CRS model).
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4-round incoercible MPC protocol iMPC:

The CRS: CRS = (CRSpg, CRSampc), where CRSpe is a CRS of deniable encryption, and
CRS.wmpc is a CRS of adaptively secure MPC protocol.

Inputs: inputs 1, ..., x, of parties P, ..., P,, respectively;

Randomness: each party P; generates the following random values:

1. si4,1, 7,41, # %, which is sender and receiver randomness of DE, used to send and receive
aMPC messages of round 1;

2. Si,j,2, Tij,2,J 7 1, which is sender and receiver randomness of DE, used to send and receive
aMPC messages of round 2;

3. Sampc,i, Which is randomness of party P; in the underlying aMPC protocol.

In addition, party P; chooses at random:

1. seed, which will be used by parties to generate coins of the simulator 7, and fake seed’;
2. s1,5,3,J # 1, which is sender randomness of DE used to send seed;

Finally, parties P;, ¢ # 1 generate r ; 3, which is receiver randomness of DE, used to receive
seed.

We denote all randomness generated by each party P; by s;.

The protocol:

1. Round 1: Each party P; sends to each other party P;, j # i, the following:
al;; = DE.msgl(CRSpE; si 5,1).
2. Round 2: Each party P; sends to each other party P;, j # i, the following:
- G,Qi,j = DE.msg2(CRSDE;n-,j,1, alj?i).
- bl;; = DE.msg1(CRSpE; si,j,2).
In addition, P, sends to each other party P;, j # 1, the following:
- CILJ‘ = DE.mSgl(CRSDE;SLj,;;).

3. Round 3: Each party P; for each j # 4 computes {M1;1,...,M1;,,} <+

aMPC.msg1(CRSampc; oi; Sampc,: ), and sends the following:
- a3i,j = DE.mSg3(CRSDE; Si,j,1, Mli?j, CLL‘,]‘, a2j,i).
- b2i,j = DE.msg2(CRSDE; T’i,j,z,blj,i).

In addition, each party P; except P; sends to P; the following:
- 021‘,1 = DE.mSgQ(CRSDE; T1,4,3, 01112‘).

4. Round 4: Each party P;,, for each j #* i, computes M1;; —
DE.Dec(CRSpE; 7j,i,1,alj,i,a2; 5,a3;4). Next for each j # 4 it computes
{MQi,l,...,MQi,n} — aMPC.mSgQ(CRSaMPc;Ii,Mllyi,...,Mln’i;SaMPC,i),
and sends the following:

- b3i,j = DEmSgS(CRSDB Si,5,2 M2i7j, bliﬂj, b2j,7:).
In addition, P; sends to each other party P;, j # 1, the following:
- C31,j = DE.msg3(CRSDE; 51,5,3;5 Seed, 611,]', 829"1).

5. Evaluation: Each party P;, for each j #* i, computes M2;; —
DE.Dec(CRSpg; 7j,i,2, b1, b2, j,b3;:). Next for each j # ¢ it computes
Yy — aMPC.Eval(CRSaMPCQCL‘i,Mll,i,..,,Mln,i,leyi,...,M2n,i;83MPc1i). It
sets y to be its output in the protocol.

By = = iMPC(CRS, (z1,81), ..., (Zn, Sn)) = ({ali;j,a2i5,a3i5 .,
{b1i5,024,5,b3i5},,; 5 {cl1,5,¢25,1,¢31,5} ;) we denote the transcript of our protocol.

By g = aMF’C(CRS;,MPC7 (.%17 SaMPC,1)7 ey (acn, SaMPC,n)) = ({ML_',]‘, MZiyj}i;é]‘) we de-
note the transcript of underlying adaptive MPC protocol aMPC.

Fig. 6. 4-round incoercible MPC protocol.
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Faking procedure of party P;,: =1,....,n

Inputs: P;’s true input z;, fake input z}, true output y, real random coins s;, and the protocol
transcript 7.

1. learning the seed: P, knows the seed seed (which it generated). For ¢ # 1, P; computes
seed < DE.Dec(CRSpg; r1,i,3, cl1,i, €241, €31,4).

2. expanding the seed: P; computes prg(seed) and parses the result as rsim||seed’, where
|seed| = |seed’|.

3. computing fake transcript: P; computes the fake transcript and state (o', state) <
aMPC.Sim(CRSampc, ¥, rsim) of the underlying 2-round MPC protocol. Let o' =
(M1} 5, M2 5} ).

4. computing fake coins of the underlying MPC: P; computes the fake coins siypc; <
aMPC.Sim;(CRSampc, state, x5, y) of the underlying MPC protocol, using the local simula-
tor.

5. computing fake coins of deniable encryption: P; computes the fake coins for each instance
of deniable encryption as follows:
si ;1 < DE.SFake(CRSpE, s 5,1, M1, 5, M1} ;,ali j,a2;,,a3; ;; ), to claim that it sent
M1} ; instead of M1,,;;

S,Ii’j’g — DE.SFake(CRSDB Si g2, M2; 5, M2;-7]', bl;,5,02;54,b3; 53 -), to claim that it sent
M?2; ; instead of M2; ;;

r;,j,l — DE.RFake(CRSDE, Ti,5,15 Mlj,i, Ml;,i, alj,i, a2i,j, a3j,i; '), to claim that it re-
ceived M1 ; instead of M1;;;

rg,m — DE.RFake(CRSDE, rig,2, M2;, M2;’,i: blj#i, b2i,j, b?)j,i; '), to claim that it re-
ceived M2} ; instead of M2;,;.

Further, if ¢ = 1, then for each j # 1 the party computes:

14,3 < DE.SFake(CRSpE, s1,;,3,seed, seed’, c11 5, ¢2;,1, ¢31 55 ), to claim that it sent
seed’ instead of seed.

If ¢ # 1, then P; computes

71,43 < DE.RFake(CRSpg, r1,:,3, seed, seed’, c11,4, €251, ¢31,4; -), to claim that it received
seed’ instead of seed.

The output of the faking procedure: Finally, P; gives the adversary its fake internal state s,
where:

-Ifi#l s = {Sg,j,l}j¢i ) {Ti,j,l}#i ) {Sé,j,z}#i ) {7”:;,]‘72}#1. Ariists shupca-
-Ifi = 1, s = {Sé,j,l}j# ) {Tz,',j,l}j#i > {Sg,j,z}‘#i ) {Té,j,Q}_#i ) {3/1,]',3}_#1,
SIaMPC,iv seed’.

(Note that all other information which P; should know in the honest execution, e.g. seed’ or M 12, s

can be derived by the adversary using random coins s}, input z;, the transcript 7, and the CRS.)

Fig.7. Faking procedure of party P;,i =1,...,n

Let x1,...,2, and 2}, ..., 2, be some inputs to the protocol, and let y be some
output. Consider the following distributions:

— Hybg,,: this is the distribution corresponding to the real execution of the protocol
with inputs 2}, .. ., z,, where parties disclose their frue inputs and randomness.
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Simulation of communication
Inputs given to simulate the communication: CRS; output of the protocol y

1. computing simulated transcript: the simulator chooses rsin at random and computes the
simulated transcript and state (o”, state) < aMPC.Sim(CRSampc, y, sim) of the underlying
MPC protocol. Let o’ = ({ M1} ;, M2; ; }i#j).

2. computing messages of 7: the simulator chooses seed’ at random. It also chooses
{sigatjzAriant;z {siael; s Arisel . {riist 2 {s153},,, uniformly at
random, and uses these randomness to compute messages of deniable encryp-
tion, ({aliyj, a2ij, (L?’ivj}i;éj s {bli,]‘, b2; ;, bg’i«,j}i;éj s {Cll,j, €2j1,¢31,; }j;él)’ encrypt-
ing M1; ;, M2; ;,seed’, respectively.

3. the output of the simulator: The simulator outputs the simulated communication
7Tl = ({alw, a2i,j, a3¢,j}i# 5 {bli,j, b2i7j, b3i»j}i;ﬁj 5 {0111]', 02]'71, 0311]'}]-#1).

Simulation of coercion of P;

Inputs additionally given to simulate the coercion of the party P;: P;’s input =/ (without the
information whether this input is real or fake)

1. computing fake coins of the underlying MPC: the simulator computes the fake coins
sampc.i < aMPC.Sim;(CRS.mpc, state, 7, y; -) of the underlying MPC protocol, using the
local simulator.

2. The output of the simulator: The simulator gives the adversary simulated internal state s

of P;, where:
=i L si = {sig}ju o Arigat s {sige} o {riged o {rish sivec-
=i = L osi = {sigaljzoArigat;e {siiel o Ariel . {stistan

s;MPC,ia seed’.
(Note that all other information which P; should know in the honest execution, e.g. seed’ or
M1} ;, can be derived by the adversary using random coins s;, input 2, the transcript 7,
and the CRS.)

Fig. 8. Simulation

— Hybg,: this is the distribution corresponding to the real execution of the protocol
with inputs 21, . . ., z,,, where parties disclose fake inputs 2}, ..., z/,, output y, and
fake randomness.

— Hybg;,,: this is the distribution corresponding to the simulation from Fig. 8, where

the simulator is given output y and claimed inputs =7, . .., a7,.

We need to show the following:

1. If ,..., 2, and y are consistent (i.e. f(z),...,z}) = y), then we need to show
that Hybg;, =~ Hybge, and Hybg;, = Hybg,.
2. If 2}, ...,z and y are not consistent, then we need to show that Hybg; ., ~ Hybg,,..

We show this below. First, we show indistinguishability between Hybg;,, ~ Hybg,..
for any values z1, ..., 2, 24, ..., 2, and y:
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— Hybg,,.. We start with the distribution corresponding to the real-world execution of
the protocol, where parties fake their random coins upon coercion. In other words,
the adversary sees CRS, 7, and «, s} for each 4, generated as in Figs. 6, 7. In partic-
ular, the truly sent transcript o of the underlying MPC is a transcript on inputs x;;
however, parties claim that they instead sent (simulated) transcript o, which appears
consistent with fake inputs /.

— Hyb,. In this hybrid P; sends seed” instead of seed inside {cl1,5,¢2;1,¢31 ; }#1,
and parties (both senders and receivers) give the adversary true randomness for this
deniable encryption (instead of faking it to seed”). Indistinguishability between this
and the previous distribution holds by n—1 invocations of bideniability of encryption
for plaintexts seed and seed’.

— Hyb,. In this hybrid we switch rs;y||seed’ from prg(seed) to uniformly random.
Indistinguishability holds by security of a prg. Note that seed is not used anywhere
else in the distribution, thus the reduction is possible.

— Hybg;,,. In this hybrid we set {al, ;,a2; ;, a3i1j}i7&j to encrypt 1-round messages
of simulated o’ (consistent with fake z), instead of encrypting 1-round messages
of real transcript o (consistent with ;). Also, all parties give true randomness
{sij,1}jzi>{rij1} - instead of giving fake randomness consistent with o”.
Similarly, we change {b1; ;,b2; ;, b3i7j}iyéj to encrypt 1-round messages of sim-
ulated o’ (consistent with fake x}), instead of encrypting 1-round messages of
real transcript o (consistent with x;). Also, all parties give true randomness
{5i7j72}j 2> {1"7;7]-72}]. 20 instead of giving fake randomness consistent with o”.
Indistinguishability between this and the previous distribution holds by 2n(n — 1)
invocations of bideniability of encryption, where plaintexts are messages of o
and o’.

Note that this is the simulated distribution.

Further, for the case when f(,...,z],) = v, in one last step we show that Hybg;, =
HbeeaI:

— Hybg,,- Compared to Hybg;,,, we switch the messages of aMPC, encrypted inside
deniable encryption, from simulated ¢’ to real o, which is the true transcript
of aMPC on inputs z}. In addition, parties reveal their true randomness SaMPC,i
instead of computing simulated s;MPQ , consistent with 2 using the local simulator
aMPC.Sim;.

Indistinguishability between this and the simulation follows from adaptive security
of aMPC. Note that indeed rs;y,,, randomness of the simulator, is not used anywhere
else in the distribution.

This distribution corresponds to the real execution of the protocol on inputs z},
where parties disclose their true randomness upon being coerced.

This concludes the security proof.
5 Incoercible MPC with Lazy Parties is Impossible

In this section we describe our impossibility result for incoercible MPC protocols with a
certain communication pattern. We consider the synchronous model of communication,
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where parties send their messages in rounds. We call a party lazy, if it sends its messages
only in the first and in the last round of the protocol, but not in any other round'?. We
show that a protocol for 3 or more parties cannot be incoercible, as long as there is at
least one lazy party Z, and there is another party (different from Z) which receives the
output.

In particular, this impossibility rules out protocols with the following communi-
cation structure, which is a natural extention of a “ping-pong” communication of 3-
message 2PC to a multiparty setting: assume just one party receives the output; we call
this party the receiver, and call all other parties the senders. Then the communication
proceeds as follows:

— Inround 1 the senders send out their messages to everybody;
— In round 2 the receiver sends its messages to the senders;
— In round 3 the senders send out their messages to everybody'?.

Our impossibility is based on the fact that in an incoercible protocol with lazy party
Z it is possible to do a variation of a residual function attack, similar to impossibility of
standard (non-incoercible) non-interactive MPC. Concretely, we show that lazy party Z
can always pick an input 2’ different from its real input = and generate a different last
message of the protocol corresponding to new input z’, such that the resulting transcript
will be a valid transcript for this new input ', as if Z used z’ even in the first message
(despite the fact that in reality its first message was generated using ). As a result, the
adversary may coerce (or even corrupt) Z together with some output-receiving party
and evaluate the function on any possible input of Z, thus compromising security of
other parties.

Theorem 6. Let n > 3, and assume there exists an n-party protocol for evaluating
Sunction f(x1,...,xy), suchthat Py is lazy and P, receives the output. Further, assume
it is secure against up to one coercion and up to two corruptions. Then the function f
is such that for any inputs 1, . . ., T, it is possible, given x1, T, and f(x1,...,Ty), to
compute f(x, o, ..., x,) in polynomial time for any x of the same length as x1.

Note that, while the theorem statement also holds for the case of 2 parties, it doesn’t
imply any impossibility since for any 2-input function f it is always possible to compute
f(-,z2) given 1, 2, and thus the theorem doesn’t impose any restrictions on functions
f which can be computed incoercibly using 2-party protocols.

Proof of Theorem 6. Without loss of generality we assume that the lazy party is P;, and
party which receives the output is P,,. Further, we assume that P, is the first to send its
messages in round 1, and the last to send its messages in round V.

Let us denote the randomness of P, by r1, the concatenated randomness of all other
parties by R = rs|...]||rs, the input of P, by x1, the concatenated input of all other
parties by X = 3| ... ||z,. In addition, let X" denote some fixed set of inputs such

12 In particular, when the protocol requires only 2 rounds, each party is lazy by definition.

13 Note that in standard, non-deniable MPC the last message doesn’t need to be sent to parties
who don’t receive the output. However, in deniable MPC parties who don’t get the output may
still need the last message in order to fake.
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that | X | = | X |, e.g. all-zero inputs 0/X|. Let NMF; denote the next message function
of the protocol for party 1 in round i. Let Eval(x,,; transcript; r,,) denote the output
evaluation function of party P,, which takes as input its randomness r,,, input z,,, and all
communication in the protocol. Let « = NMF;(z1;71) denote the concatenated mes-
sages sent by P to all other parties in round 1, , =, (o; X; R) denote the concatenated
messages sent by parties P, ..., P, in all rounds, ,5_; denote , except for messages
of the last round, and 5 = NMFy(21,,§_1;71) denote the concatenated messages
sent by P; to all other parties in round N. Finally, let Fake;(r1, 1,27, ,; p) denote
the faking algorithm of party P;, which takes as input its true coins and input r1, z1,
desired fake input «/, and ,, all communication sent to P;. Fake; could be deterministic
or randomized; without loss of generality we assume that it is randomized using its own
random coins p.

Consider the following algorithm NewMessage (Fig. 9) which for any 2| allows
Py to generate a different 3’ such that («,,, ') is a valid transcript resulting in the
output f(z}, X). The intuition behind this procedure is as follows: First, P; computes
a transcript which starts with the same « but continues with a different ;] (computed
under freshly chosen randomness of other parties and fixed inputs X°). Next, it runs its
faking algorithm to generate fake coins r; which make this transcript look consistent
with 2} (in particular, this makes 7, x} look like valid coins and input for a, even
though « was generated under 7). Finally, it uses fake 7} to generate its last message
(' using the original communication , and new input 2. In the following Lemma 1 we
claim that /', together with the original communication («, , ), forms a valid transcript
for inputs x;, X which will be evaluated correctly by the output-receiving party:

Algorithm NewMessage

NewMessage(z1, 71, 1, @, com; p)

Inputs: input 1 and randomness 1 of P; in the MPC protocol; new desired input 2 ; communi-
cation of P; in round 1 v, communication of all other parties com; local random coins p = p1 | p2.
Constants: arbitrary fixed input X° of length | X|, e.g. all-zero input X° = 0l Xl,

— Compute com = com(c; X; p1).
— Compute 7 < Fakei(r1,z1, ], com; p2).
— Output ' = NMFx (2, comn_1;71).

Fig. 9. Algorithm NewMessage to generate the last message consistent with a different z .

Lemma 1. Let o, ,, 3 be generated as described above, and let the protocol be secure
against the coercion of Py. Then for any f,x1, X, x|, with overwhelming probability
over the choice of 1, R, p it holds that Eval(x,; a, ,, B';1) = f(2), X).

We defer the proof of Lemma 1 to the full version.
Now we finish the proof of the Theorem 6. We claim that the adversary who corrupts
Py and P, in the real world can compute f(z,zo,...,x,) for any input = (of the



Towards Multiparty Computation Withstanding Coercion of All Parties 437

same length as x1), where z1, ..., x, are inputs of the parties in the protocol. Indeed,
the adversary can do so in two steps: first it corrupts P; to learn r; and 27 and runs
G — NewMessage(x1,71, z, e, , ; p) for any desired input = and random p (as before,
@, , is the communication of P, in round 1 and of all other parties). Next it corrupts P,
to learn r,, and computes Eval(z,; «, ,, 8; ), which is with overwhelming probability
equal to f(z,xo,...,x,), as shown in the Lemma 1. Note that in the ideal world the
adversary who only corrupts P; and P, and learns x1,x,, and f(x1,...,x,) cannot
compute residual function f(-,xo,...,x,) (except for very special functions f), and
therefore the adversary in the real world has strictly more power. This finishes the proof
of the Theorem 6.

Finally, we note that a similar proof can be made in case when the adversary coerces
P; and P, instead of corrupting them.
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