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Abstract. Recursive proof composition has been shown to lead to powerful prim-
itives such as incrementally-verifiable computation (IVC) and proof-carrying data
(PCD). All existing approaches to recursive composition take a succinct non-
interactive argument of knowledge (SNARK) and use it to prove a statement
about its own verifier. This technique requires that the verifier run in time sublin-
ear in the size of the statement it is checking, a strong requirement that restricts
the class of SNARKSs from which PCD can be built. This in turn restricts the effi-
ciency and security properties of the resulting scheme.

Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to
recursive composition, and applied it to a particular SNARK construction which
does not have a sublinear-time verifier. However, they omit details about this
approach and do not prove that it satisfies any security property. Nonetheless,
schemes based on their ideas have already been implemented in software.

In this work we present a collection of results that establish the theoretical
foundations for a generalization of the above approach. We define an accumula-
tion scheme for a non-interactive argument, and show that this suffices to con-
struct PCD, even if the argument itself does not have a sublinear-time verifier.
Moreover we give constructions of accumulation schemes for SNARKSs, which
yield PCD schemes with novel efficiency and security features.

Keywords: Succinct arguments - Proof-carrying data + Recursive proof
composition

1 Introduction

Proof-carrying data (PCD) [CT10] is a cryptographic primitive that enables mutually
distrustful parties to perform distributed computations that run indefinitely, while ensur-
ing that every intermediate state of the computation can be succinctly verified. PCD sup-
ports computations defined on (possibly infinite) directed acyclic graphs, with messages
passed along directed edges. Verification is facilitated by attaching to each message a
succinct proof of correctness. This is a generalization of the notion of incrementally-
verifiable computation (IVC) due to [Val08], which can be viewed as PCD for the path
graph (i.e., for automata). PCD has found applications in enforcing language semantics
[CTV13], verifiable MapReduce computations [CTV 15], image authentication [NT16],
succinct blockchains [Co17,KB20,BMRS20], and others.
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Recursive Composition. Prior to this work, the only known method for constructing
PCD was from recursive composition of succinct non-interactive arguments (SNARGs)
[BCCT13,BCTV14,C0S20]. This method informally works as follows. A proof that
the computation was executed correctly for ¢ steps consists of a proof of the claim “the
t-th step of the computation was executed correctly, and there exists a proof that the
computation was executed correctly for ¢ — 1 steps”. The latter part of the claim is
expressed using the SNARG verifier itself. This construction yields secure PCD (with
IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness
property (i.e., is a SNARK). The efficiency and security properties of the resulting PCD
scheme correspond to those of a single invocation of the SNARK.

Limitations of Recursion. Recursion as realized in prior work requires proving a
statement that contains a description of the SNARK verifier. In particular, for effi-
ciency, we must ensure that the statement we are proving (essentially) does not grow
with the number of recursion steps ¢. For example, if the representation of the veri-
fier were to grow even linearly with the statement it is verifying, then the size of the
statement to be checked would grow exponentially in t. Therefore, prior works have
achieved efficiency by focusing on SNARKSs which admit sublinear-time verification:
either SNARKSs for machine computations [BCCT13] or preprocessing SNARKSs for
circuit computations [BCTV14,COS20]. Requiring sublinear-time verification signifi-
cantly restricts our choice of SNARK, which limits what we can achieve for PCD.

In addition to the above asymptotic considerations, recursion raises additional con-
siderations concerning concrete efficiency. All SNARK constructions require that state-
ments be encoded as instances of some particular (algebraic) NP-complete problem, and
difficulties often arise when encoding the SNARK verifier itself as such an instance. The
most well-known example of this is in recursive composition of pairing-based SNARKGs,
since the verifier performs operations over a finite field that is necessarily different
from the field supported “natively” by the NP-complete problem [BCTV14]. This type
of problem also appears when recursing SNARKSs whose verifiers make heavy use of
cryptographic hash functions [COS20].

A New Technique. Bowe, Grigg, and Hopwood [BGH19] suggest an exciting novel
approach to recursive composition that replaces the SNARK verifier in the circuit with a
simpler algorithm. This algorithm does not itself verify the previous proof m;_;. Instead,
it adds the proof to an accumulator for verification at the end. The accumulator must
not grow in size. A key contribution of [BGH19] is to sketch a mechanism by which
this might be achieved for a particular SNARK construction. While they prove this
SNARK construction secure, they do not include definitions or proofs of security for
their recursive technique. Nonetheless, practitioners have already built software based
on these ideas [Halo19, Pickles20].

1.1 Our Contributions

In this work we provide a collection of results that establish the theoretical founda-
tions for the above approach. We introduce the cryptographic object, an accumulation
scheme, that enables this technique, and prove that it suffices for constructing PCD. We
then provide generic tools for building accumulation schemes, as well as several con-
crete instantiations. Our framework establishes the security of schemes that are already
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being used by practitioners, and we believe that it will simplify and facilitate further
research in this area.

Accumulation Schemes. We introduce the notion of an accumulation scheme for
a predicate ¢: X — {0,1}. This formalizes, and generalizes, an idea outlined in
[BGH19]. An accumulation scheme is best understood in the context of the follow-
ing process. Consider an infinite stream q1, qo, . . . with each q; € X. We augment this
stream with accumulators acc; as follows: at time ¢, the accumulation prover receives
(qs,acc;—1) and computes acc;; the accumulation verifier receives (q;,acc;—1,acc;)
and checks that acc;_; and q; were correctly accumulated into acc; (if not, the process
ends). Then at any time ¢, the decider can validate acc;, which establishes that, for all
i € [t], ®(q;) = 1. All three algorithms are stateless. To avoid trivial constructions, we
want (i) the accumulation verifier to be more efficient than @, and (ii) the size of an
accumulator (and hence the running time of the three algorithms) does not grow over
time. Accumulation schemes are powerful, as we demonstrate next.

Recursion from Accumulation. We say that a SNARK has an accumulation scheme
if the predicate corresponding to its verifier has an accumulation scheme (so X is a set
of instance-proof pairs). We show that any SNARK having an accumulation scheme
where the accumulation verifier is sublinear can be used to build a proof-carrying
data (PCD) scheme, even if the SNARK verifier is not itself sublinear. This broadens
the class of SNARKSs from which PCD can be built. Similarly to [COS20], we show
that if the SNARK and accumulation scheme are post-quantum secure, so is the PCD
scheme. (Though it remains an open question whether there are non-trivial accumula-
tion schemes for post-quantum SNARKS.)

Theorem 1 (informal). There is an efficient transformation that compiles any SNARK
with an efficient accumulation scheme into a PCD scheme. If the SNARK and its accu-
mulation scheme are zero knowledge, then the PCD scheme is also zero knowledge.
Additionally, if the SNARK and its accumulation scheme are post-quantum secure then
the PCD scheme is also post-quantum secure.

The above theorem holds in the standard model (where all parties have access to a
common reference string, but no oracles). Since our construction makes non-black-box
use of the accumulation scheme verifier, the theorem does not carry over to the random
oracle model (ROM). It remains an intriguing open problem to determine whether or
not SNARKSs in the ROM imply PCD in the ROM (and if the latter is even possible).

Note that we require a suitable definition of zero knowledge for an accumulation
scheme. This is not trivial, and our definition is informed by what is required for
Theorem 1 and what our constructions achieve.

Proof-carrying data is a powerful primitive: it implies IVC and, further assuming
collision-resistant hash functions, also efficient SNARKSs for machine computations.
Hence, Theorem 1 may be viewed as an extension of the “bootstrapping” theorem of
[BCCT13] to certain non-succinct-verifier SNARKS.

See Sect. 2.1 for a summary of the ideas behind Theorem 1, and the full version for
technical details.
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Accumulation from Accumulation. Given the above, a natural question is: where
do accumulation schemes for SNARKs come from? In [BGH19] it was informally
observed that a specific SNARK construction, based on the hardness of the discrete
logarithm problem, has an accumulation scheme. To show this, [BGH19] first observe
that the verifier in the SNARK construction is sublinear except for the evaluation of a
certain predicate (checking an opening of a polynomial commitment [KZG10]), then
outline a construction which is essentially an accumulation scheme for that predicate.

We prove that this idea is a special case of a general paradigm for building accumu-
lation schemes for SNARKS.

Theorem 2 (informal). There is an efficient transformation that, given a SNARK whose
verifier is succinct when given oracle access to a “simpler” predicate, and an accumu-
lation scheme for that predicate, constructs an accumulation scheme for the SNARK.
Moreover, this transformation preserves zero knowledge and post-quantum security of
the accumulation scheme.

The construction underlying Theorem 2 is black-box. In particular, if both the
SNARK and the accumulation scheme for the predicate are secure with respect to an
oracle, then the resulting accumulation scheme for the SNARK is secure with respect
to that oracle.

See Sect. 2.3 for a summary of the ideas behind Theorem 2, and the full version for
technical details.

Accumulating Polynomial Commitments. Several works [MBKM19,GWC19,
CHM+20] have constructed SNARKSs whose verifiers are succinct relative to a spe-
cific predicate: checking the opening of a polynomial commitment [KZG10]. We prove
that two natural polynomial commitment schemes possess accumulation schemes in
the random oracle model: PCp,, a scheme based on the security of discrete logarithms
[BCC+16,BBB+18, WTS+18]; and PC,gy, a scheme based on knowledge assumptions
in bilinear groups [KZG10, CHM+20].

Theorem 3 (informal). In the random oracle model, there exist (zero knowledge) accu-
mulation schemes for PCy. and PC,q, that achieve the efficiency outlined in the table
below (n denotes the number of evaluation proofs, and d denotes the degree of commit-
ted polynomials).

Polynomial |Assumption |Cost to check Cost to check an Cost to check final| Accumulator
commitment evaluation proofs |accumulation step |accumulator size

PCoL DLOG +RO|O(nd) G mults. |O(nlogd) G mults.|©(d) G mults. |O(logd) G
PCacm AGM + RO |©(n) pairings O(n) G1 mults. 1 pairing 2Gy

For both schemes the cost of checking that an accumulation step was performed cor-
rectly is much less than the cost of checking an evaluation proof. We can apply Theorem 2
to combine either of these accumulation schemes for polynomial commitments with any
of the aforementioned predicate-efficient SNARKSs, which yields concrete accumulation
schemes for these SNARKSs with the same efficiency benefits.
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We remark that our accumulation scheme for PC,, is a variation of a construction
presented in [BGH19], and so our result establishes the security of a type of construction
used by practitioners.

We sketch the constructions underlying Theorem 3 in Sect. 2.4, and provide details
in the full version of our paper.

New Constructions of PCD. By combining our results, we (heuristically) obtain con-
structions of PCD that achieve new properties. Namely, starting from either PCy,_ or
PCacu, we can apply Theorem 2 to a suitable SNARK to obtain a SNARK with an
accumulation scheme in the random oracle model. Then we can instantiate the random
oracle, obtaining a SNARK and accumulation scheme with heuristic security in the
standard (CRS) model, to which we apply Theorem 1 to obtain a corresponding PCD
scheme. Depending on whether we started with PCy, or PC,q,, we get a PCD scheme
with different features, as summarized below.

— From PCy.: PCD based on discrete logarithms. We obtain a PCD scheme in the
uniform reference string model (i.e., without secret parameters) and small argument
sizes. In contrast, prior PCD schemes require structured reference strings [BCTV14]
or have larger argument sizes [COS20]. Moreover, our PCD scheme can be effi-
ciently instantiated from any cycle of elliptic curves [SS11]. In contrast, prior PCD
schemes with small argument size use cycles of pairing-friendly elliptic curves
[BCTV14,CCW19], which are more expensive.

— From PC,gy: lightweight PCD based on bilinear groups. The recursive statement
inside this PCD scheme does not involve checking any pairing computations,
because pairings are deferred to a verification that occurs outside the recursive state-
ment. In contrast, the recursive statements in prior PCD schemes based on pairing-
based SNARKSs were more expensive because they checked pairing computations
[BCTV14].

Note again that our constructions of PCD are heuristic as they involve instantiat-
ing the random oracle of certain SNARK constructions with an appropriate hash
function. This is because Theorem 3 is proven in the random oracle model, but
Theorem 1 is explicitly not (as is the case for all prior IVC/PCD constructions
[Val08,BCCT13,BCTV14,C0OS20]). There is evidence that this limitation might be
inherent [CL20].

Open Problem: Accumulation in the Standard Model. All known constructions of
accumulation schemes for non-interactive arguments make use of either random ora-
cles (as in our constructions) or knowledge assumptions (e.g., the “trivial” construction
from succinct-verifier SNARKSs). A natural question, then, is whether there exist con-
structions of accumulation schemes for non-interactive arguments, or any other inter-
esting predicate, from standard assumptions, or any assumptions which are not known
to imply SNARKS. A related question is whether there is a black-box impossibility for
accumulation schemes similar to the result for SNARGs of [GW11].

1.2 Related Work

Below we survey prior constructions of [IVC/PCD.
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PCD from SNARKS. Bitansky, Canetti, Chiesa, and Tromer [BCCT13] proved that
recursive composition of SNARKS for machine computations implies PCD for constant-
depth graphs, and that this in turn implies IVC for polynomial-time machine computa-
tions. From the perspective of concrete efficiency, however, one can achieve more effi-
cient recursive composition by using preprocessing SNARKSs for circuits rather than
SNARKS for machines [BCTV14,C0OS20]; this observation has led to real-world appli-
cations [Col7,BMRS20]. The features of the PCD scheme obtained from recursion
depend on the features of the underlying preprocessing SNARK. Below we summarize
the features of the two known constructions.

— PCD from Pairing-based SNARKs. Ben-Sasson, Chiesa, Tromer, and Virza
[BCTV14] used pairing-based SNARKSs with a special algebraic property to achieve
efficient recursive composition with very small argument sizes (linear in the secu-
rity parameter \). The use of pairing-based SNARKS has two main downsides. First,
they require sampling a structured reference string involving secret values (“toxic
waste”) that, if revealed, compromise security. Second, the verifier performs opera-
tions over a finite field that is necessarily different from the field supported “natively”
by the statement it is checking. To avoid expensive simulation of field arithmetic, the
construction uses pairing-friendly cycles of elliptic curves, which severely restricts
the choice of field in applications and requires a large base field for security.

— PCD from IOP-based SNARKs. Chiesa, Ojha, and Spooner [COS20] used a holo-
graphic IOP to construct a preprocessing SNARK that is unconditionally secure in
the (quantum) random oracle model, which heuristically implies a post-quantum pre-
processing SNARK in the uniform reference string model (i.e., without toxic waste).
They then proved that any post-quantum SNARK leads to a post-quantum PCD
scheme via recursive composition. The downside of this construction is that, given
known holographic IOPs, the argument size is larger, currently at O(\? log® N ) bits
for circuits of size N.

IVC from Homomorphic Encryption. Naor, Paneth, and Rothblum [NPR19] obtain
a notion of IVC by using somewhat homomorphic encryption and an information-
theoretic object called an “incremental PCP”. The key feature of their scheme is that
security holds under falsifiable assumptions.

There are two drawbacks, however, that restrict the use of the notion of IVC that
their scheme achieves.

First, the computation to be verified must be deterministic (this appears neces-
sary for schemes based on falsifiable assumptions given known impossibility results
[GW11]). Second, and more subtly, completeness holds only in the case where inter-
mediate proofs were honestly generated. This means that the following attack may be
possible: an adversary provides an intermediate proof that verifies, but it is impossible
for honest parties to generate new proofs for subsequent computations. Our construction
of PCD achieves the stronger condition that completeness holds so long as intermediate
proofs verify, ruling out this attack.

Both nondeterministic computation and the stronger completeness notion (achieved
by all SNARK-based PCD schemes) are necessary for many of the applications of
IVC/PCD.
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2 Techniques

2.1 PCD from Arguments with Accumulation Schemes

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data
(PCD) from any succinct non-interactive argument of knowledge (SNARK) that has an
accumulation scheme. For the sake of exposition, in this section we focus on the special
case of IVC, which can be viewed as repeated application of a circuit F'. Specifically,
we wish to check a claim of the form “F7 () = 27 where F'7' denotes F' composed
with itself 7" times.

Prior Work: Recursion from Succinct Verification. Recall that in previous
approaches to efficient recursive composition [BCTV14,C0OS20], at each step i we
prove a claim of the form “z; = F(z;_1), and there exists a proof 7;_; that attests
to the correctness of z;_1”. This claim is expressed using a circuit R which is the con-
junction of F' with a circuit representing the SNARK verifier; in particular, the size of
the claim is at least the size of the verifier circuit. If the size of the verifier circuit grows
linearly (or more) with the size of the claim being checked, then verifying the final
proof becomes more costly than the original computation.

For this reason, these works focus on SNARKSs with succinct verification, where the
verifier runs in time sublinear in the size of the claim. In this case, the size of the claim
essentially does not grow with the number of recursive steps, and so checking the final
proof costs roughly the same as checking a single step.

Succinct verification is a seemingly paradoxical requirement: the verifier does not
even have time to read the circuit R. One way to sidestep this issue is preprocessing:
one designs an algorithm that, at the beginning of the recursion, computes a small cryp-
tographic digest of R, which the recursive verifier can use instead of reading R directly.
Because this preprocessing need only be performed once for the given R in an offline
phase, it has almost no effect on the performance of each recursive step (in the later
online phase).

A New Paradigm: IVC from Accumulation. Even allowing for preprocessing, suc-
cinct verification remains a strong requirement, and there are many SNARKSs that are
not known to satisfy it (e.g., [BCC+16,BBB+18, AHIV17,BCG+17,BCR+19]). Bowe,
Grigg, and Hopwood [BGH19] suggested a further relaxation of succinctness that
appears to still suffice for recursive composition: a type of “post-processing”. Their
observation is as follows: if a SNARK is such that we can efficiently “defer” the verifi-
cation of a claim in a way that does not grow in cost with the number of claims to be
checked, then we can hope to achieve recursive composition by deferring the verifica-
tion of all claims to the end.

In the remainder of this section, we will give an overview of the proof of Theorem 1,
our construction of PCD from SNARKSs that have this “post-processing” property. We
note that this relaxation of requirements is useful because, as suggested in [BGH19], it
leads to new constructions of PCD with desirable properties (see discussion at the end
of Sect. 1.1). In fact, some of these efficiency features are already being exploited by
practitioners working on recursing SNARKSs [Halo19, Pickles20].

The specific property we require, which we discuss more formally in the next
section, is that the SNARK has an accumulation scheme. This is a generalization of
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the idea described in [BGH19]. Informally, an accumulation scheme consists of three
algorithms: an accumulation prover, an accumulation verifier, and a decider. The accu-
mulation prover is tasked with taking an instance-proof pair (z, 7) and a previous accu-
mulator acc, and producing a new accumulator acc* that “includes” the new instance.
The accumulation verifier, given ((z,7),acc,acc*), checks that acc* was computed
correctly (i.e., that it accumulates (z,7)) into acc). Finally the decider, given a sin-
gle accumulator acc, performs a single check that simultaneously ensures that every
instance-proof pair accumulated in acc verifies.'

Given such an accumulation scheme, we can construct IVC as follows. Given a
previous instance z;, proof 7;, and accumulator acc;, the IVC prover first accumulates
(2, ;) with acc; to obtain a new accumulator acc; ;. The IVC prover also generates
a SNARK proof 7; 11 of the claim: “z;1; = F(2;), and there exist a proof 7; and an
accumulator acc; such that the accumulation verifier accepts ((z;, 7;), acc;, acci+1)”,
expressed as a circuit R. The final IVC proof then consists of (7p,accy). The IVC
verifier checks such a proof by running the SNARK verifier on 77 and the accumulation
scheme decider on accy.

Why does this achieve IVC? Throughout the computation we maintain the invariant
that if acc; is a valid accumulator (according to the decider) and 7; is a valid proof,
then the computation is correct up to the i-th step. Clearly if this holds at time 7" then
the IVC verifier successfully checks the entire computation. Observe that if we were
able to prove that “z; 1 = F(z;), m; is a valid proof, and acc; is a valid accumulator”,
by applying the invariant we would be able to conclude that the computation is correct
up to step ¢ + 1. Unfortunately we are not able to prove this directly, for two reasons: (i)
proving that 7; is a valid proof requires proving a statement about the argument verifier,
which may not be sublinear, and (ii) proving that acc; is a valid accumulator requires
proving a statement about the decider, which may not be sublinear.

Instead of proving this claim directly, we “defer” it by having the prover accumu-
late (2;,7;) into acc; to obtain a new accumulator acc;11. The soundness property of
the accumulation scheme ensures that if acc;; is valid and the accumulation verifier
accepts ((z;,m;),acc;,acc;+1), then 7; is a valid proof and acc; is a valid accumula-
tor. Thus all that remains to maintain the invariant is for the prover to prove that the
accumulation verifier accepts; this is possible provided that the accumulation verifier is
sublinear.

From Sketch to Proof. In the full version of our paper, we give the formal details of our
construction and a proof of correctness. In particular, we show how to construct PCD, a
more general primitive than IVC. In the PCD setting, rather than each computation step
having a single input z;, it receives m inputs from different nodes. Proving correctness
hence requires proving that all of these inputs were computed correctly. For our con-
struction, this entails checking m proofs and m accumulators. To do this, we extend the
definition of an accumulation scheme to allow accumulating multiple instance-proof
pairs and multiple “old” accumulators.
We now informally discuss the properties of our PCD construction.

! We remark that the notion of an accumulation scheme is distinct from the notion of a crypto-
graphic accumulator for a set (e.g., an RSA accumulator), which provides a succinct represen-
tation of a large set while supporting membership queries.
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— Efficiency requirements. Observe that the statement to be proved includes only the
accumulation verifier, and so the only efficiency requirement for obtaining PCD is
that this algorithm run in time sublinear in the size of the circuit R. This implies, in
particular, that an accumulator must be of size sublinear in the size of R, and hence
must not grow with each accumulation step. The SNARK verifier and the decider
algorithm need only be efficient in the usual sense (i.e., polynomial-time).

— Soundness. We prove that the PCD scheme is sound provided that the SNARK is
knowledge sound (i.e., is an adaptively-secure argument of knowledge) and the accu-
mulation scheme is sound (see Sect. 2.2 for more on what this means). We stress that
in both cases security should be in the standard (CRS) model, without any random
oracles (as in prior PCD constructions).

— Zero knowledge. We prove that the PCD scheme is zero knowledge, if the underly-
ing SNARK and accumulation scheme are both zero knowledge (for this part we
also formulate a suitable notion of zero knowledge for accumulation schemes as
discussed shortly in Sect. 2.2).

— Post-quantum security. We also prove that if both the SNARK and accumulation
scheme are post-quantum secure, then so is the resulting PCD scheme. Here by
post-quantum secure we mean that the relevant security properties continue to hold
even against polynomial-size quantum circuits, as opposed to just polynomial-size
classical circuits.

2.2 Accumulation Schemes

A significant contribution of this work is formulating a general notion of an accumu-
lation scheme. An accumulation scheme for a non-interactive argument as described
above is a particular instance of this definition; in subsequent sections we will apply the
definition in other settings.

We first give an informal definition that captures the key features of an accumulation
scheme. For clarity this is stated for the (minimal) case of a single predicate input q and
a single “old” accumulator acc; we later extend this in the natural way to n predicate
inputs and m “old” accumulators.

Definition 1 (informal). An accumulation scheme for a predicate »: X — {0,1}
consists of a triple of algorithms (P, V, D), known as the prover, verifier, and decider,
that satisfies the following properties.

— Completeness: For all accumulators acc and predicate inputs q € X, if D(acc) = 1
and &(q) = 1, then for acc* — P(acc,q) it holds that V(acc,q,acc*) = 1 and
D(acc*) = 1.

— Soundness: For all efficiently-generated accumulators acc,acc* and predicate
inputs q € X, if D(acc*) = 1 and V(acc,q,acc*) = 1 then, with all but negli-
gible probability, (q) = 1 and D(acc) = 1.

An accumulation scheme for a SNARK is an accumulation scheme for the predicate
induced by the argument verifier; in this case the predicate input q consists of an
instance-proof pair (x, 7). Note that the completeness requirement does not place any
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restriction on how the previous accumulator acc is generated; we require that complete-
ness holds for any acc the decider D determines to be valid, and any q for which the
predicate & holds. This is needed to obtain a similarly strong notion of completeness
for PCD, required for applications where accumulation is done by multiple parties that
do not trust one another.

Zero Knowledge. For our PCD application, the notion of zero knowledge for an accu-
mulation scheme that we use is the following: one can sample a “fake” accumulator
that is indistinguishable from a real accumulator acc*, without knowing anything about
the old accumulator acc and predicate input q that were accumulated in acc*. The exis-
tence of the accumulation verifier V complicates matters here: if the adversary knows
acc and q, then it is easy to distinguish a real accumulator from a fake one using V. We
resolve this issue by modifying Definition 1 to have the accumulation prover P produce
a verification proof my in addition to the new accumulator acc*. Then V uses 7y in
verifying the accumulator, but 7y is not required for subsequent accumulation. In our
application, the simulator then does not have to simulate 7y . This avoids the problem
described: even if the adversary knows acc and g, unless 7y is correct, V can simply
reject, as it would for a “fake” accumulator. Our informal definition is as follows.

Definition 2. An accumulation scheme for @ is zero knowledge if there exists an effi-
cient simulator S such that for all accumulators acc and inputs q € X such that
D(acc) = 1 and ¥(q) = 1, the distribution of acc* when (acc*,my) «— P(acc,q)
is computationally indistinguishable from acc* « S(1*).

Predicate Specification. The above informal definitions omit many important details;
we now highlight some of these. Suppose that, as required for IVC/PCD, we have some
fixed circuit R for which we want to accumulate pairs (x;, 7;), where 7; is a SNARK
proof that there exists w; such that R(x;, w;) = 1. In this case the predicate corre-
sponding to the verifier depends not only on the pair (x;,m;), but also on the circuit
R, as well as the public parameters of the argument scheme pp and (often) a random
oracle p.

Moreover, each of these inputs has different security and efficiency considerations.
The security of the SNARK (and the accumulation scheme) can only be guaranteed
with high probability over public parameters drawn by the generator algorithm of the
SNARK, and over the random oracle. The circuit R may be chosen adversarially, but
cannot be part of the input q because it is too large; it must be fixed at the beginning.

These considerations lead us to define an accumulation scheme with respect to both
a predicate @: U(x) x ({0,1}*)3 — {0, 1} and a predicate-specification algorithm H.
We then adapt Definition 1 to hold for the predicate ¢(p, pps, is, -) where p is a random
oracle, ppg is output by H, and ig is chosen adversarially. In our SNARK example,
‘H is equal to the SNARK generator, ig is the circuit R, and &(p, pp, R, (x, 7)) =
VP (pp, R, x, ).

Remark 1 (helped verification). We compare accumulation schemes for SNARKSs with
the notion of “helped verification” [MBKM19]. In a SNARK with helped verification,
an untrusted party known as the helper can, given n proofs, produce an auxiliary proof



Recursive Proof Composition from Accumulation Schemes 11

that enables checking the n proofs at lower cost than that of checking each proof indi-
vidually. This batching capability can be viewed as a special case of accumulation, as
it applies to n “fresh” proofs only; there is no notion of batching “old” accumulators. It
is unclear whether the weaker notion of helped verification alone suffices to construct
IVC/PCD schemes.

2.3 Constructing Arguments with Accumulation Schemes

A key ingredient in our construction of PCD is a SNARK that has an accumulation
scheme (see Sect. 2.1). Below we summarize the ideas behind Theorem 2, by explaining
how to construct accumulation schemes for SNARKs whose verifier is succinct relative
to an oracle predicate @, that itself has an accumulation scheme.

Predicate-Efficient SNARKSs. We call a SNARK ARG predicate-efficient with respect
to a predicate &, if its verifier V operates as follows: (i) run a fast “inner” verifier Ve
to produce a bit b and query set Q; (ii) accept iff b = 1 and for all q € Q, P,(q) = 1. In
essence, ) can be viewed as a circuit with “oracle gates” for &,.2 The aim is for Vpe tO
be significantly more efficient than V; that is, the queries to @, capture the “expensive”
part of the computation of V.

As noted in Sect. 1.1, one can view recent SNARK constructions [MBKM19,
GWC19,CHM+20] as being predicate-efficient with respect to a “polynomial commit-
ment” predicate. We discuss how to construct accumulation schemes for these predi-
cates below in Sect. 2.4.

Accumulation Scheme For Predicate-Efficient SNARKSs. Let ARG be a SNARK that
is predicate-efficient with respect to a predicate @,, and let AS, be an accumulation
scheme for @,. To check n proofs, instead of directly invoking the SNARK verifier
V, we can first run Ve n times to generate n query sets for @,, and then, instead of
invoking @, on each of these sets, we can accumulate these queries using AS,. Below
we sketch the construction of an accumulation scheme AS,x; for ARG based on this
idea.

To accumulate n instance-proof pairs [(x;, ;)] starting from an old accumulator
acc, the accumulation prover AS . P first invokes the inner verifier V,e on each (x;, m;)
to generate a query set (); for @,, accumulates their union Q) = U} ;(); into acc using
AS,.P, and finally outputs the resulting accumulator acc*. To check that acc* indeed
accumulates [(x;, ;)] ; into acc, the accumulation verifier ASygc.V first checks, for
each 7, whether the inner verifier Ve accepts (x4, m;), and then invokes AS,.V to check
whether acc* correctly accumulates the query set = Uj~;(;. Finally, to decide
whether acc* is a valid accumulator, the accumulation scheme decider AS,rc.D sim-
ply invokes AS,.D.

From Sketch to Proof. The foregoing sketch omits details required to construct a
scheme that satisfies the “full” definition of accumulation schemes as stated in the full
version of our paper. For instance, as noted in Sect. 2.3, the predicate 9, may be an
oracle predicate, and could depend on the public parameters of the SNARK ARG. We

2 This is not precisely the case, because the verifier is required to reject immediately if it ever
makes a query q with &,(q) = 0.
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handle this by requiring that the accumulation scheme for &, uses the SNARK gen-
erator G as its predicate specification algorithm. We also show that zero knowledge
and post-quantum security are preserved. See the full version of our paper for a formal
treatment of these issues, along with security proofs.

From Predicate-Efficient SNARKS to PCD. In order to build an accumulation scheme
AS,rc that suffices for PCD, ARG and AS, must satisfy certain efficiency properties.
In particular, when verifying satisfiability for a circuit of size N, the running time of
AS .V must be sublinear in N, which means in turn that the running times of Ve
and AS,.V, as well as the size of the query set (), must be sublinear in V. Crucially,
however, AS,.D need only run in time polynomial in V.

2.4 Accumulation Schemes for Polynomial Commitments

As noted in Sect. 2.3, several SNARK constructions (e.g., [MBKM19,GWC19,
CHM+20]) are predicate-efficient with respect to an underlying polynomial commit-
ment, which means that constructing an accumulation scheme for the latter leads (via
Theorem 2) to an accumulation scheme for the whole SNARK.

Informally, a polynomial commitment scheme (PC scheme) is a cryptographic prim-
itive that enables one to produce a commitment C' to a polynomial p, and then to prove
that this committed polynomial evaluates to a claimed value v at a desired point z. An
accumulation scheme for a PC scheme thus accumulates claims of the form “C' commits
to p such that p(z) = v” for arbitrary polynomials p and evaluation points z.

In this section, we explain the ideas behind Theorem 3, by sketching how to con-
struct (zero knowledge) accumulation schemes for two popular (hiding) polynomial
commitment schemes.

— In Sect. 2.4.1, we sketch our accumulation scheme for PCp, a polynomial com-
mitment scheme derived from [BCC+16,BBB+18, WTS+18] that is based on the
hardness of discrete logarithms.

— In Sect. 2.4.2, we sketch our accumulation scheme for PC,gy, a polynomial com-
mitment scheme based on knowledge assumptions over bilinear groups [KZG10,
CHM+20].

In each case, the running time of the accumulation verifier will be sublinear in the
degree of the polynomial, and the accumulator itself will not grow with the number of
accumulation steps. This allows the schemes to be used, in conjunction with a suitable
predicate-efficient SNARK, to construct PCD.

We remark that each of our accumulation schemes is proved secure in the random
oracle model by invoking a useful lemma about “zero-finding games” for committed
polynomials. Security also requires that the random oracle used for an accumulation
scheme for a PC scheme is domain-separated from the random oracle used by the PC
scheme itself. See the full version for details.

2.4.1 Accumulation scheme for PC;,
We sketch our accumulation scheme for PC,, . For univariate polynomials of degree
less than d, PCp, achieves evaluation proofs of size O(Alogd) in the random oracle
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model, and assuming the hardness of the discrete logarithm problem in a prime order
group G. In particular, there are no secret parameters (so-called “toxic waste””). How-
ever, PCp, has poor verification complexity: checking an evaluation proof requires £2(d)
scalar multiplications in G. Bowe, Grigg, and Hopwood [BGH19] suggested a way to
amortize this cost across a batch of n proofs. Below we show that their idea leads to an
accumulation scheme for PC,, with an accumulation verifier that uses only O(n logd)
scalar multiplications instead of the naive ©(n - d), and with an accumulator of size
O(log d) elements in G.

Summary of PC,, . The committer and receiver both sample (consistently via the ran-
dom oracle) a list of group elements {Go, G1, ..., G4} € G in a group G of prime
order ¢ (written additively). A commitment to a polynomial p(X) = Z?:o a; X' €
IFqu[X ] is then given by C' := Z?:o a;G;. To prove that the committed polynomial
p evaluates to v at a given point z € F, it suffices to prove that the triple (C, z,v)
satisfies the following NP statement:

Jag,...,aq EFstv= Z?:o a;z" and C = Z:'i:o a;Gi .

This is a special case of an inner product argument (IPA), as defined in [BCC+16],
which proves the inner product of two committed vectors. The receiver simply ver-
ifies this inner product argument to check the evaluation. The fact that the vector
(1,2,...,2%) is known to the verifier and has a certain structure is exploited in the
accumulation scheme that we describe below.

Accumulation Scheme for the IPA. Our accumulation scheme relies on a special
structure of the IPA verifier: it generates O(logd) challenges using the random ora-
cle, then performs cheap checks requiring O(logd) field and group operations, and
finally performs an expensive check requiring {2(d) scalar multiplications. This latter
check asserts consistency between the challenges and a group element U contained in
the proof. Hence, the IPA verifier is succinct barring the expensive check, and so con-
structing an accumulation scheme for the IPA reduces to the task of constructing an
accumulation scheme for the expensive check involving U.

To do this, we rely on an idea of Bowe, Grigg, and Hopwood [BGH19], which
itself builds on an observation in [BBB+18]. Namely, letting (&1, ..., &g, a) be the
protocol’s challenges, U can be viewed as a commitment to the polynomial h(X) :=
H,liozgg (@)1 (1+&1og, (4)—i X e Fqu[X |- This polynomial has the special property that
it can be evaluated at any point in just O(log d) field operations (exponentially smaller
than its degree d). This allows transforming the expensive check on U into a check that
is amenable to batching: instead of directly checking that U is a commitment to /, one
can instead check that the polynomial committed inside U agrees with h at a challenge
point z sampled via the random oracle.

We leverage this idea as follows. When accumulating evaluation claims about mul-
tiple polynomials py, . . ., p,, applying the foregoing transformation results in n checks
of the form “check that the polynomial contained in U; evaluates to h;(z) at the point 2”.
Because these are all claims for the correct evaluation of the polynomials h,; at the same
point z, we can accumulate them via standard homomorphic techniques. We now sum-
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marize how we apply this idea to construct our accumulation scheme AS = (P,V,D)
for PC,,.

Accumulators in our accumulation scheme have the same form as the instances to
be accumulated: they are tuples of the form (C, z, v, m) where 7 is an evaluation proof
for the claim “p(z) = v” and p is the polynomial committed in C'. For simplicity, below
we consider the case of accumulating one old accumulator acc = (C1, z1,v1,71) and
one instance (Cs, 22, v, T3) into a new accumulator acc* = (C, z, v, 7).

Accumulation prover P: compute the new accumulator acc* = (C, z, v, ) from the
old accumulator acc = (C1, 21, v1, 1) and the instance (Ca, 22, v2, m2) as follows.

— Compute Uy, Us from 71, mo respectively. As described above, these elements can
be viewed as commitments to polynomials hq, ho defined by the challenges derived
from 71, 7o.

— Use the random oracle p to compute the random challenge
a = p([(h1, U1), (he, U2)]).

— Compute C := Uy 4+ aUs, which is a polynomial commitment to p(X) := hy(X) +
Ozhg (X) .

— Compute the challenge point z := p(C, p), where p is uniquely represented via the
tuple ([hy, ho], @).

— Construct an evaluation proof 7 for the claim “p(z) = v”. (This step is the only
expensive one.)

— Output the new accumulator acc* := (C, z,v, 7).

Accumulation verifier V: to check that the new accumulator acc* = (C, z, v, ) was
correctly generated from the old accumulator acc = (C4, z1,v1, 1) and the instance
(Co, 29, v9, ma), first compute the challenges « and z from the random oracle as above,
and then check that (a) (C1, 21, v1, 1) and (Cy, 22, v2, 72 ) pass the cheap checks of the
IPA verifier, (b) C = Uy + aUs, and (¢) hq(2) + aha(z) = v.

Decider D: on input the (final) accumulator acc* = (C, z, v, 7), check that 7 is a
valid evaluation proof for the claim that the polynomial committed inside C evaluates
to v at the point z.

This construction achieves the efficiency summarized in Theorem 3.

We additionally achieve zero knowledge accumulation for the hiding variant of
PCyp.. Informally, the accumulation prover randomizes acc* by including a new ran-
dom polynomial kg in the accumulation step. This ensures that the evaluation claim in
acc* is for a random polynomial, thus hiding all information about the original evalu-
ation claims. To allow the accumulation verifier to check that this randomization was
performed correctly, the prover includes hg in an auxiliary proof 7.

In the full version, we show how to extend the above accumulation scheme to accu-
mulate any number of old accumulators and instances. Our security proof for the result-
ing accumulation scheme relies on the hardness of zero-finding games, and the security
of PCy,.

2.4.2 Accumulation scheme for PC g,
We sketch our accumulation scheme AS = (P, V,D) for PC,qy. Checking an evalua-
tion proof in PC,gy requires 1 pairing, and so checking n evaluation proofs requires n
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pairings. AS improves upon this as follows: the accumulation verifier V only performs
O(n) scalar multiplications in G; in order to check the accumulation of n evaluation
proofs, while the decider D performs only a single pairing in order to check the result-
ing accumulator. This is much cheaper: it reduces the number of pairings from n to 1,
and also defers this single pairing to the end of the accumulation (the decider). In partic-
ular, when instantiating the PCD construction outlined in Sect. 2.1 with a PC,g,-based
SNARK and our accumulation scheme for PC,¢,, we can eliminate all pairings from
the circuit being verified in the PCD construction.

Below we explain how standard techniques for batching pairings using random lin-
ear combinations [CHM+20] allow us to realize an accumulation scheme for PC,¢,
with these desirable properties.

Summary of PC,qy. The committer key ck and receiver key rk for a given maximum
degree bound D are group elements from a bilinear group (Gy, Gz, Gr,q,G, H,e):
ck .= {G,5G,...,pPG} € G1D+1 consists of group elements encoding powers of a
random field element 3, while rk := (G, H, 3H) € G, x G3.

A commitment to a polynomial p € F5”[X] is the group element C' := p(3)G €
G;. To prove that p evaluates to v at a given point z € [Fy, the sender computes a
“witness polynomial” w(X) := (p(X) —v)/(X — z), and outputs the evaluation proof
m:= w(B)G € Gy. The receiver can check this proof by checking the pairing equation
e(C —vG,H) = e(m, BH — zH). This pairing equation is the focus of our accumula-
tion scheme below. (This summary omits details about degree enforcement and about
hiding.)

Accumulation Scheme. We construct an accumulation scheme AS = (P,V,D) for
PCacnm by relying on standard techniques for batching pairing equations. Suppose that
we wish to simultaneously check the validity of n instances [(C;, z;, v;, m;)] -, . First,
rewrite the pairing check for the ¢-th instance as follows:

e(Ci—v;G,H) =e(mi, PH—2H) <— e(Ci—v;G+zm;, H) =e(m;, BH) . (1)

After the rewrite, the Go inputs to both pairings do not depend on the claim being
checked. This allows batching the pairing checks by taking a random linear combina-
tion with respect to a random challenge r := p([C}, z;, v;, m;]}_, ) computed from the
random oracle, resulting in the following combined equation:

el r(C —vG + zm), H) =e(> 1 r'm, BH) . )

We now have a pairing equation involving an “accumulated commitment” C* :=
S 74(Ci — v;G + zim;) and an “accumulated proof” 7* := >""" | rim;. This obser-
vation leads to the accumulation scheme below.

An accumulator in AS consists of a commitment-proof pair (C*,7*), which the
decider D validates by checking that e(C*, H) = e(7*, 3H). Moreover, observe that
by Eq. (1), checking the validity of a claimed evaluation (C, z, v, ) within PC,¢, corre-
sponds to checking that the “accumulator” (C' — vG + z7, ) is accepted by the decider
D. Thus we can restrict our discussion to accumulating accumulators.

The accumulation prover P, on input a list of old accumulators [acc]}; =
[(CF,7F)), computes a random challenge r := p([acc;]?,), constructs C* :=

10 M
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St r'CF oand 7 = >  r'mf, and outputs the new accumulator acc* :=
(C*,7*) € G3. To check that acc* accumulates [acc;|” ;, the accumulation verifier
V simply invokes P and checks that its output matches the claimed new accumulator
acc*.

To achieve zero knowledge accumulation, the accumulation prover randomizes acc*
by including in it an extra “old” accumulator corresponding to a random polynomial,
which statistically hides the accumulated claims. To allow the accumulation verifier
to check that this randomization was performed correctly, the prover includes this old
accumulator in an auxiliary proof 7y .

This construction achieves the efficiency summarized in Theorem 3.

In the full version of our paper, we show how to extend the above accumulation
scheme to account for additional features of PC,¢, (degree enforcement and hiding).
Our security proof for the resulting accumulation scheme relies on the hardness of zero-
finding games (see full version).
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