
Forming and Assessing Student Teams in
Software Engineering Courses

Henrik Hillestad Løvold(B), Yngve Lindsjørn, and Viktoria Stray

Department of Informatics, University of Oslo, Oslo, Norway
{henrihlo,ynglin,stray}@ifi.uio.no

Abstract. In software development projects, working in teams is essen-
tial. Therefore, software engineering courses often require the students to
be working in teams to learn about team work behaviors and practices.
The instructors of software engineering courses are presented with several
challenges when teaching courses that require teamwork. For example,
how to form high-performing student teams, and how to assess their
work. The aim of this study is to evaluate whether there are differences
in performance whether the students form the teams themselves, or if
the teams are formed by the instructor. We evaluated a course involving
agile software development by 200 students working in 39 teams. A total
of 76% of the students chose to form their own teams, the remaining 24%
were placed in teams by the instructors. Our findings indicate that teams
formed by the students perform slightly better than the teams formed
by the instructors.

1 Introduction

To better prepare software engineering students for real work-life, it is important
to let them experience developing software in project teams. A main goal with
teamwork is that the participants value working together and learning from each
other. Teamwork in software engineering projects is harder than the students
expect [1]. A common problem with teamwork is a lack of commitment and con-
tribution of one or more members of the team [4] and communication challenges
among the team members [3]. Therefore, understanding how to form teams that
experience successful teamwork where everyone learns and contributes is of vital
importance.

There are many ways to form teams, ranging from the simple randomizing
of teams, to hand-picking students for each team based on their qualifications.
Research within the field of formation of teams (also called team composition [3]
and group selection [2]) within software engineering courses at the undergraduate
level is scarce. Some research on team formation within software engineering in
general has been carried out in the US, pointing instructors towards forming
teams themselves, without the involvement of the students [9]. Other research
points to using algorithm-based tools to automatically match students [5], or by
using personality tests to match team members [8].

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 298–306, 2020.
https://doi.org/10.1007/978-3-030-58858-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_31


Forming and Assessing Student Teams in Software Engineering Courses 299

Oakley et al. [9] found that simply putting students in groups to work on
assignments is not a sufficient condition for achieving the benefits of cooperative
learning and working in teams. One of the findings in this study is that the
teams should establish policies that will govern their operation and get them to
formulate their own expectations of one another using a Team Policies Statement
and the Team Expectations Agreement.

There seems to be no consensus on which way actually leads to more learn-
ing and better results in terms of students’ overall performance. Motivated by
this, we aimed to investigate the topic of team formation in a large software
engineering course.

2 Methods

In the spring of 2019, the University offered a software engineering course involv-
ing a major agile project where the students worked in teams to develop a mobile
application. The course was 20 ECTS credits; equivalent to a total workload
of 33% of one full academic year in Norway. The course was made manda-
tory for second-year undergraduate students following three study programmes;
Programming and Systems Architecture (ProSA), Design, Use and Interaction
(Design) and Digital Economy and Leadership (DigØk). This study was carried
out using the data recorded from the teams participating in this course.

2.1 Course Design

During a project period of 13 weeks, students were assigned to write an app for
the Android operating system involving API data gathered from the Institute of
Meteorology. The students were given introductions to agile methods of software
engineering, Scrum and Kanban in particular. All work was to be logged and
end up in a report which was then assessed together with the final product and
scored on a scale of 0–50 points. The report and product were assessed using the
criteria presented in Table 1.

In our course, all the teams followed an agile project model. While Scrum was
the process model most focused on in the lectures, this was not the most used
process model among the teams. Scrum was chosen by 17 teams. However, the
majority of the teams incorporated Kanban elements into their Scrum process
models. This process model, ScrumBan, was chosen by 21 teams. The two most
popular tools to use in the teams were Trello (used by 24 teams) and Slack
(used by 20 teams). Trello was used to keep track of tasks and visualize the
workflow. Slack was used to communicate and coordinate, and this tool has
been shown to increase team awareness and communication in agile teams [10].
In our teaching, we aimed to focus both technical and soft skills. This applies in
the learning elements of the course such as lectures, weekly tasks and mandatory
assignments, as well as in the assessment of the report and product as seen in
Table 1.



300 H. H. Løvold et al.

Table 1. Criteria for the evaluation of student reports and products, and their per-
centage of total score.

Criteria % of score

Title, abstract, team presentation, introduction 4

User documentation 11

Requirements analysis, modelling, patterns 15

Technical product documentation 15

Testing and test documentation 8

Process documentation, reflection on process 19

Overall impression, language, context 12

References, sources, appendices 4

Product and functionality 12

The report and product accounted for 50% of the final grade given to stu-
dents, the other half being the result of a final individual written exam. The
questions on the exam were both from theory presented in lectures and group
sessions and from the project they were a part of in the teamwork.

As we can see from Table 1, we assessed the product and functionality of the
projects. This includes the source code written by the teams; an aspect which
is inherently difficult to assess. In many courses where students write code, only
the final outcome and the product is assessed. We found it important not only
to look at the outcome and product, but also the source code, as this gives us
better insight in the architecture and design patterns chosen by the students,
and how this is reflected on in their final report.

2.2 Forming Teams

Early on in the process of designing the course, the question about how teams
were to be formed, and how involved in the forming of teams the instructors were
to be, arose. Initially, we aimed to minimize the work required by the lecturers,
and wanted all students to form their own teams consisting of 4–6 students.
We quickly became concerned about the students forming too homogeneous
teams in terms of study programme, gender and workload capacity. We were also
concerned that students who did not have a social network at the campus would
fall behind and not find other students to work together with. To solve these
problems, we went with a middle-ground solution where students could choose
to either form teams on their own, or be placed in a group manually by the
lecturers, based on the following: study programme, ambitions, and availability.

We initially aimed to make the teams as diverse as possible with regards
to study programme and gender, whilst minimising the distance between group
members level of ambition. This is in line with previous studies within the field
with successful results [11]. The students were also instructed to report to the



Forming and Assessing Student Teams in Software Engineering Courses 301

instructors immediately if any signs of dysfunction occurred. This would then
lead to a conversation with the course administration in order to solve the prob-
lems as they arose.

3 Results

In total, 76.3% of the students opted to organise teams by themselves, without
the involvement of the instructor. The rest of the students who answered wanted
to be placed in teams by the instructor. We were not surprised that the students
opting to be placed in teams by the instructor were outnumbered by students
opting to form teams on their own; these are second-year students who know
each other well and many have already formed study groups.

Unsurprisingly, most students (68.7%) answered that their ambitions were
to aim for grades A-B. About a third answered (31.3%) that they aimed at
an average grade, and no students answered that they were happy about just
passing the course. Furthermore, it is interesting to note that no students were
happy as long as they passed.

3.1 Group Formation Outcome

The instructors assessed the results of the survey and put together nine teams
of five to six individuals. Six of the teams were within the A-B ambition level,
and three of the teams were in the average grade ambition level.

As we see from Table 2, three teams formed by the instructors consisted of
only males, and males were over-represented in all but one team formed by the
instructor. For the 9 teams formed by the instructors 27% of the students were
female. For the 30 teams formed by the students themselves 31% of the students
were female. While some research suggests the gender balance within the team
is irrelevant in regards to result [6], we wanted our teams to be diverse. We made
it a rule that teams formed by the instructors should at least have two students
of each gender, or otherwise be a single-gender team. This was to prevent one
student from becoming the “odd one out”, and thus purely for social reasons.
However, in the student-formed teams, five of the teams chose to have only one
female. The average team size across all teams was 5.21.

As for study programme, on the other hand, we wanted diversity. Mishra et al.
state that most of the tasks of software development organizations are diverse in
nature, and suggests that Software Engineering educators should seek diversity

Table 2. Gender distribution of teams formed by the instructors and teams formed by
the students. M denotes male, F denotes female.

M only F only One F Mixed

Instructor formed 3 0 0 6

Student formed 9 2 5 14



302 H. H. Løvold et al.

Fig. 1. Distribution of students from each study programme grouped by team, from
the teams formed by the instructors.

Fig. 2. Distribution of students from each study programme grouped by team, from
the teams formed by the students themselves.

when preparing students for the industry [7]. Figure 1 shows the distribution
of students with regards to study programme, grouped by teams. We can read
from the figure that students from the programme ProSA were over-represented.
This comes as no surprise as this by far is the largest study programme at the
department with regards to number of students.

For the self organised teams, as we can read from Fig. 2, there were 99 from
ProSA, 37 from Design and 17 from DigØk. 12 of the 30 teams had team mem-
bers from a single study programme, 10 of them were from ProSA, 1 from Design,
and 1 from DigØk. It is interesting to note that the student-made teams seem to
be just as diverse as the teams formed by the instructors in terms of study pro-
gramme. This is likely a result of the students signing up to be placed in groups
by the instructors mainly coming from a single study programme (ProSA).



Forming and Assessing Student Teams in Software Engineering Courses 303

Table 3. Team project score and individual exam score grouped by student-formed
and instructor-formed teams.

Average points Standard deviation

Team score

Student-formed teams 42.5 4.70

Instructor-formed teams 40.3 4.27

Individual exam score

Student-formed teams 40.1 6.47

Instructor-formed teams 38.5 7.55

3.2 Project Performance

The first section of Table 3 shows the average final points on a scale between 0
and 50 for all teams, grouped by those formed by students and those formed by
the instructor, as well as the standard deviation within the teams. As we can see
from the results, the teams formed by the students themselves performed slightly
better than the teams formed by the instructor. The difference is, however, well
within one standard deviation, and with a p-value of p = 0, 114 we cannot draw
a clear conclusion from our data.

Although the data is somewhat inconclusive, it is interesting to note that the
results seem to indicate that teams formed by the students themselves perform
slightly better than teams formed by the instructor. The implications of these
results will be further analysed in Sect. 4.

3.3 Individual Exam

In addition to the project report and the software product, all students had
an individual exam with questions from the curriculum and from the project
and teamwork. The second section of Table 3 shows the average points for the
individual exam on a scale from 0 to 50 for all teams, grouped by those formed
by students and those formed by the instructor, as well as the standard deviation
within the teams. For each team we calculated the average of the points (exam
results) for all the individual team members in the team. The results are similar
to the results presented in Table 3 for average team score, but with a higher
standard deviation due to the differences in the results of the individual team
members within the teams.

4 Discussion

In this study we have analysed the results of student teams in a large 20 ECTS
course on software engineering. The students were given the choice to either
form teams on their own, or be placed in a team by the instructors based on a
small questionnaire at the beginning of the semester. The instructors’ goal was



304 H. H. Løvold et al.

to make teams as diverse as possible, as previous studies seem to support the
claim that diverse teams perform better overall than homogeneous teams [11].

We found that 31% of the students chose to be placed in teams by the instruc-
tor, while the majority (69%) formed their own teams. Many of the students who
opted to form their own teams probably knew each other well on beforehand.
This course was offered exclusively to students in their 4th semester of computer
science studies, and it is not unlikely that many of the students already had a
group of 4–6 peers with which they have collaborated with on other courses. This
means that the students who formed teams on their own had the advantage of
already knowing they work well together with their teammates, compared to the
students who were placed in teams by the instructor.

Furthermore, our analysis might indicate that individuals in teams formed by
the students themselves performed slightly better than the individuals in teams
formed by the instructors, both on the team evaluation, and the individual final
exam.

4.1 Study Limitations

Although we aimed to make the teams as diverse as possible, we do not know
the level of diversity, both professionally and in terms of gender and study pro-
gramme of the teams that the students created themselves. In other words; we
cannot be sure whether the teams created by the instructor are, in fact, more
diverse than the teams created by the students themselves. We did, though, find
it plausible to assume that the general level of diversity probably was in fact
lower, as students from the same programmes usually attend the same lectures
and spend spare time together.

Although more than 200 students attended the course, and with 39 teams
included in our study, there were only 9 teams formed by the instructors. A
sample size this small makes it hard to draw definite conclusions, as personal
factors of each student within the teams affect the final result.

5 Conclusion and Future Work

We studied 39 teams in a major software engineering course. Our results suggest
that teams formed by the instructors intended to be as diverse as possible, do not
necessarily perform better than teams formed by the students themselves. Our
data indicate that the teams formed by the students perform slightly better, but
there is no significant difference between the teams in each group. We have no
conclusive evidence of why this is the case, but we assume that the social factor
plays a major role in this regard. Teams consisting of peers who know each other
on beforehand have an advantage over teams who have to get to know each other
before starting to work.

Future research should go deeper into investigating if and why student-formed
groups perform better, as well as to analyse the effect of diversity. Furthermore, it
is a need to understand how this diversity affects the quality of the different parts



Forming and Assessing Student Teams in Software Engineering Courses 305

of the project (such as testing, documentation, usability and maintainability). It
would also be interesting to investigate how teamwork quality, meeting frequency
and agile practices differed with regards to how the teams were formed. As other
research shows promising results using algorithm-based tools to match students
[5], this might also be something worth looking further into.

This course was offered again in spring 2020 with a different approach to
forming teams. Students could not select all team members by themselves, but
were instructed to suggest 1–3 peers they wanted to have in their team. Based
on their wishes, we put together teams of 5–6 members, and thus all students
had to work with at least one team member they did not know beforehand. This
approach has shown promising results, which might be worth looking further
into.

References

1. Bastarrica, M.C., Perovich, D., Samary, M.M.: What can students get from a soft-
ware engineering capstone course? In: 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), pp. 137–145 (2017). https://doi.org/10.1109/ICSE-SEET.2017.15

2. Dugan Jr., R.F.: A survey of computer science capstone course literature. Comput.
Sci. Educ. 21(3), 201–267 (2011)

3. Dzvonyar, D., Alperowitz, L., Henze, D., Bruegge, B.: Team composition in soft-
ware engineering project courses. In: 2018 IEEE/ACM International Workshop on
Software Engineering Education for Millennials (SEEM), pp. 16–23. IEEE (2018)

4. Iacob, C., Faily, S.: Exploring the gap between the student expectations and the
reality of teamwork in undergraduate software engineering group projects. J. Syst.
Softw. 157, 110393 (2019)

5. Jahanbakhsh, F., Fu, W.T., Karahalios, K., Marinov, D., Bailey, B.: You want
me to work with who?: stakeholder perceptions of automated team formation in
project-based courses. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 3201–3212. ACM (2017)

6. Lingard, R., Berry, E.: Teaching teamwork skills in software engineering based on
an understanding of factors affecting group performance. In: 32nd Annual Frontiers
in Education, vol. 3, pp. S3G–S3G. IEEE (2002)

7. Mishra, A., Mishra, D.: Industry oriented advanced software engineering education
curriculum. Croatian J. Educ. 14(3), 595–624 (2012)

8. Rodŕıguez Monteqúın, V., Mesa Fernández, J.M., Balsera, J.V., Garćıa Nieto, A.:
Using MBTI for the success assessment of engineering teams in project-based learn-
ing. Int. J. Technol. Des. Educ. 23(4), 1127–1146 (2012). https://doi.org/10.1007/
s10798-012-9229-1

9. Oakley, B., Felder, R.M., Brent, R., Elhajj, I.: Turning student groups into effective
teams. J. Stud. Cent. Learn. 2(1), 9–34 (2004)

10. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! Using enterprise social
networking tools in virtual agile teams. In: 2019 ACM/IEEE 14th International
Conference on Global Software Engineering (ICGSE), pp. 111–121. IEEE (2019)

11. Tafliovich, A., Petersen, A., Campbell, J.: Evaluating student teams. In: Proceed-
ings of the 47th ACM Technical Symposium on Computing Science Education
- SIGCSE 2016, pp. 181–186. ACM Press, New York (2016). https://doi.org/10.
1145/2839509.2844647, http://dl.acm.org/citation.cfm?doid=2839509.2844647

https://doi.org/10.1109/ICSE-SEET.2017.15
https://doi.org/10.1007/s10798-012-9229-1
https://doi.org/10.1007/s10798-012-9229-1
https://doi.org/10.1145/2839509.2844647
https://doi.org/10.1145/2839509.2844647
http://dl.acm.org/citation.cfm?doid=2839509.2844647


306 H. H. Løvold et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Forming and Assessing Student Teams in Software Engineering Courses
	1 Introduction
	2 Methods
	2.1 Course Design
	2.2 Forming Teams

	3 Results
	3.1 Group Formation Outcome
	3.2 Project Performance
	3.3 Individual Exam

	4 Discussion
	4.1 Study Limitations

	5 Conclusion and Future Work
	References




