q

Check for
updates

Predictable Performance for QoS-Sensitive,
Scalable, Multi-tenant Function-as-a-Service
Deployments

Andrzej Kuriata'®® and Ramesh G. Illikkal?®®

! Intel Technology Poland, Gdansk, Poland
andrzej. kuriata@intel. com
2 Intel Corp., Santa Clara, CA, USA
ramesh. g.illikkal@intel. com

Abstract. In this paper we present the results of our studies focused on
enabling predictable performance for functions executing in scalable, multi-
tenant Function-as-a-Service environments. We start by analyzing QoS and
performance requirements and use cases from the point of view of End-Users,
Developers and Infrastructure Owners. Then we take a closer look at functions’
resource utilization patterns and investigate functions’ sensitivity to those
resources. We specifically focus on the CPU microarchitecture resources as they
have significant impact on functions’ overall performance. As part of our studies
we have conducted experiments to research the effect of co-locating different
functions on the compute nodes. We discuss the results and provide an overview
of how we have further modified the scheduling logic of our containers
orchestrator (Kubernetes), and how that impacted functions’ execution times
and performance variation. We have specifically leveraged the low-level
telemetry data, mostly exposed by the Intel® Resource Director Technology
(Intel® RDT) [1]. Finally, we provide an overview of our future studies, which
will be centered around node-level resource allocations, further improving a
function’s performance, and conclude with key takeaways.

Keywords: Performance - Telemetry - Scheduling

1 Introduction

The general Cloud Computing model relies on centralizing computing power and then
re-distribution of this computing power among multiple users and tenants. The benefits
of such approach, among others, are inherit scalability and, from the end user per-
spective, simplified resources management.

Additional layers built on top of Cloud Computing, like Function-as-a-Service
deployments, release the burden of managing hardware and software resources, from
service developers, even further. At the same time, however, resource providers must
ensure that performance of services is stable and independent from performance and
resource utilization of other services running at the same time on the same set of
resources.

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 133-140, 2020.
https://doi.org/10.1007/978-3-030-58858-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_14

134 A. Kuriata and R. G. Illikkal

In this paper we investigate the methods for improving services’ performance
stability, which we view as an important aspect of overall Quality of Service.

1.1 The Importance of Predictable Functions Performance

The predictability of function execution performance (most often function execution
time) is important from several reasons. Here are the QoS and performance expecta-
tions from Users, Developers/Application Owners and Infrastructure Owners/Admins:

1. End users value performance consistency for practical reasons. Unexpected appli-
cation slowdown can cause frustration but also can negatively impact important
business operations. Positive overall user experience requires assurance that service
response time will have low, predictable latency.

2. Developers/Application Owners want predictable billing. Most often Infrastructure
Owners charge by millisecond of function execution time. Any churn in function
execution time can impact billing negatively. The reason for inconsistent function
execution time is only partially in control of Developers/Application Owners (e.g.
associated with function logic processing the input). Other issues, like resource
contention or noisy neighbor problems in shared-resources, multi-tenant environ-
ments, can be solved only by the Infrastructure Owners.

3. Infrastructure Owners want to provide predictable performance for their Users and
at the same time maximize resources utilization as this improves their Total Cost of
Ownership. As for FaaS, many CSPs adopt sub second billing, which puts stringent
SLA requirements in terms of run-to-run variability. When Infrastructure Owners
have awareness which resources are most critical for stable functions’ performance,
they can better optimize their scheduling policies to optimize their computing
resources utilization.

In this study we define predictable performance in relation to Coefficient of Vari-
ation (CV) for function execution time. The CV itself is defined as [2]:

Cv:; (1)

Where, ¢, is a coefficient of variation, ¢ is a standard deviation and u is a mean.

We consider function to have predictable performance when its CV is less than or
equal to 15%. Otherwise, we consider the performance to be unpredictable. When
average function execution time is 1 s, and resource utilization billing is done at 100 ms
granularity, then 15% execution time churn corresponds to up to 2 billing cycles, which
we consider tolerable from function owner perspective.

FaaS deployments are intrinsically multi-tenant and expected to scale rapidly, on-
demand. To enable such scaling, without sacrificing performance, we propose to pay
special attention to CPU microarchitecture resources utilization, as it directly correlates
with functions’ performance. Here is the high-level view of resources for Intel Xeon
Processor (Fig. 1).

Predictable Performance for QoS-Sensitive, Scalable

Core

Core

Core

Core

Level 1 Cache

Level 1 Cache

Level 1 Cache

Level 1 Cache

Level 2 Cache

Level 2 Cache

Level 2 Cache

Level 2 Cache

135

Level 3 Cache (Shared)

Integrated Memory Controller

Shared memory bandwidth

DDR

Fig. 1. High level view of Intel Xeon processor

Especially shared resources, like memory bandwidth to DRAM (controlled by the
Integrated Memory Controller) and Last Level Cache (i.e. Third Level Cache) should
be closely monitored, as minimizing contention on those resources improves overall
functions’ performance. Also, for multi-socket platforms, crossing socket or NUMA
node boundary might be associated with performance penalty (due to narrower remote
memory bandwidth). The study analyzing impact of memory latency and memory
bandwidth to the workload’s performance is described in [3].

In general, the pool of CPU cores is also a constrained resource on which con-
tention might happen. But we leave the task of allocating software threads to CPU
cores to the Linux scheduler and did not interfere with that in our study.

2 Analyzing Functions Performance and Performance
Predictability

In the following sections we describe how we were analyzing functions performance.
We have started with gathering information about functions characteristics, especially
resources sensitivity patterns. That enabled us to further analyze performance related
problems and propose solutions.

2.1 Test Stack and Test Functions

We’ve conducted our experiments on a 4-node Kubernetes cluster, with 1 master and 3
worker nodes. All nodes are 2-socket Intel Skylake platforms (Intel® Xeon® Gold
6140 CPU @ 2.30 GHz, with 18 physical cores and HyperThreading enabled).

For the software stack we used: Kubernetes as containers orchestrator, Docker as
containers engine/runtime, OpenFaaS as a FaaS framework and Intel Workload Col-
location Agent [4] as a main telemetry framework.

136 A. Kuriata and R. G. Illikkal

In our experiments we are using following functions:

Incept, which uses Tensorflow for image recognition

Nmt, which uses Tensorflow for English to German translation
Sgemm, which does single precision floating General Matrix Multiply
Stream, the STREAM benchmark [5].

2.2 Introduction to Top-Down Microarchitecture Analysis Methodology

Our test functions have been profiled using Top-Down Microarchitecture Analysis
methodology [6, 7]. This approach facilitates finding categories of platform resources,
and individual resources, that are most critical to the workload (e.g. function) and can
limit performance when not available. The results of the profiling, at high CPU uti-
lization (ranging from 95 to 100%), are presented in the Table 1 below.

Table 1. TMA profiles of the test functions

Function | A B C D E F G

Incept 1.13160.7 | 17.0 | 56.1 | 22.2 /4.7 |3.1
Nmt 2.35/52.4/22.8|60.6/10.8/5.8 0.1
Sgemm |0.49|32.8|17.7|25.8|40.8|15.6(29.4
Stream |2.40|71.6{1.5 {93.0|/55 |0.1 |0.1

Where: A — Last Level Cache Misses per 1000 Instructions, B — Memory Band-
width Utilization [%], C — Frontend Bound [%], D — Backend Bound [%], E — Retiring
[%], F — Bad Speculation, G — Flops Used/Flops Max [%].

This knowledge can be leveraged in optimizing scheduling and load balancing
logic, so that functions’ performance is not hampered by the lack of critical platform
resources. This is specifically important in large scale, multi-tenant deployment where
noisy neighbor effects are most prominent.

2.3 Platform Resources Utilization Monitoring

During functions’ execution we collect telemetry data to better understand resources
utilization patterns. For each function instance, per each call, we are collecting the
following:

e Memory bandwidth utilization — exposed by the Linux ‘resctr]’ filesystem, the
source of data is Intel RDT Memory Bandwidth Monitoring technology

e Last Level Cache Occupancy — exposed by the Linux ‘resctrl’ filesystem, the source
of data is Intel RDT Cache Monitoring Technology

e Last Level Cache Misses Per Kilo Instructions — exposed by the platform as a CPU
architectural performance monitoring event, can be collected, for example: via
Linux perf tool

e CPU utilization — exposed by the Linux CGroup filesystem

Predictable Performance for QoS-Sensitive, Scalable 137

We also record function execution times as an indicator of a function’s
performance.

Having insight into nodes’ resource utilization and availability is critical in order to
improve placement of functions on the nodes. Here are the most important telemetry
data that we collect per each compute node:

e CPU utilization — exposed by the Linux/proc/stat file

e Memory bandwidth utilization — exposed by the CPU Performance Monitoring Unit
(of Integrated Memory Controller), can be calculated from events collected, for
example via Linux perf tool

e Average memory latency — exposed by the CPU Performance Monitoring Unit (of
Integrated Memory Controller), can be calculated from events collected, for
example via Linux perf tool.

3 Improving Performance Predictability

3.1 Analyzing Functions’ Co-location Cases

In this experiment we use “hey” [8] to stress the test functions. We start from light load
(low Request-Per-Second values) and continue stressing functions up to the point
where all cores (36 total for 2 sockets, 18 cores per function) on the platform are
utilized, thus translating to high RPS values. Theoretically, functions with moderate
memory bandwidth consumption should co-exist better on the same node than func-
tions with high memory bandwidth requirements. The reason is less contention on the
resource required by both functions. We should also see improved function execution
times and lower resources utilization when functions are not competing over the same,
shared resource.

The results for the “Incept” function scheduled along with other functions are
depicted below (Fig. 2):

incept's CV when collocated with:
nmt
sgemm
stream

-
=
S

i~
=

=
53
S

®
S

60

40

Coefficient of Variation (%]

7
Requests Per Second

Fig. 2. Incept’s CV when scheduled with other test functions (red, dashed line at 15% represents
our threshold, below which, we consider function to have predictable performance) (Color figure
online)

138 A. Kuriata and R. G. Illikkal

We can observe that, if Incept is located with Sgemm it achieves the best perfor-
mance predictability (lowest CV values across the RPS range) and best throughput
(lowest average function execution time). An optimal scheduler should co-locate Incept
with Sgemm, rather than Nmt or Stream. The worst colocation case is placing Incept
and Nmt on the same node, and optimal scheduler should avoid that. Incept and Nmt
are poor candidates for colocation because they are heavy memory bandwidth users
and natural contenders for this resource.

The table below presents comparison of average node resources utilization when
Incept is collocated with Nmt (sub-optimal placement) and when Incept is collocated
with Sgemm (optimal placement) in case when all CPU cores on the platform are
utilized (Table 2).

Table 2. Comparison of average node resources utilization between optimal (Incept + Sgemm)
and sub-optimal (Incept + Nmt) co-location scenarios

Resource Optimal placement | Sub-optimal placement
Memory bandwidth utilization [%] | 30 47
Average memory latency [ns] 41 92
CPU Utilization [%] 55 78
LLC MPKI* 50 110

“LLC MPKI — Last Level Cache Misses Per Kilo Instructions

Sub-optimal placement results in almost 20% higher memory bandwidth utilization,
increased memory latency, and around 20% higher CPU utilization. And as we’ve seen
before, wrong placement decision ultimately impacts function execution time and
execution time variability.

3.2 Scheduling Improvements

By leveraging per-container telemetry (especially memory bandwidth utilization) and
per-node resource availability we tried to improve the scheduling logic. In Kubernetes,
which we are using as our containers’ orchestrator, scheduling is a two-stage process.
In the first step (filtering) we exclude any nodes without enough available memory
bandwidth. In the second step (prioritization) we assign scores to the nodes and select
the node with the highest score. Here are the scoring categories:

e Available memory bandwidth — nodes are sorted with available memory bandwidth
in descending order. The node with maximum available memory bandwidth is
assigned highest score, and the one with the lowest amount of available memory
bandwidth is assigned the lowest score.

e Memory Latency — nodes are sorted and assigned scored based on the memory
latency (lower values are preferred over higher values)

o CPU utilization — nodes are sorted based on available CPU (more available CPU
equals to higher score)

Predictable Performance for QoS-Sensitive, Scalable 139

Scores from all categories are summarized per node and the node with highest
overall score is selected.

Graph below present comparison of Incept’s CV when using default scheduling
logic vs scheduling logic which takes memory bandwidth and memory latency into
account. Scheduling enhancement were done by leveraging Kubernetes scheduler
extender mechanism [9] (Fig. 3).

Default scheduler
Intel Faas scheduler
————— 15% threshold

Coefficient of Variation [%]

2 a 6 8 10 12 14 16 18 20 22
Requests Per Second

Fig. 3. The comparison of Incept’s CV when using default scheduler vs. scheduler which is
memory bandwidth and memory latency aware.

For lower RPS (up to around 7), the scheduler extender reduces CV to acceptable
level (15%). Execution time also improves slightly, which can result in improved
cluster throughput. Those results can be further improved with RDT Memory Band-
width Allocation feature, which we plan to leverage in future experiments.

4 Future Work

As a next step we plan to research how at-node-level allocation of resources (e.g. by
using Intel RDT Memory Bandwidth Allocation and Cache Allocation Technology)
impacts functions’ performance.

We would also like to deepen studies on differentiated performance for QoS-
sensitive workloads. The Service Level Agreements are commonly used for managing
QoS. At its simplest form the SLA can be expressed as a two-level function prioriti-
zation agreement, distinguishing between high and low priority tasks (e.g. functions).
We’d like to research how high-level SLAs can be mapped to resource allocations and
how allocations enforcement can be used for improving performance predictability
even further.

140 A. Kuriata and R. G. Illikkal

5 Conclusions

We have demonstrated that low level telemetry data (especially related to memory
bandwidth utilization) can be used to improve functions performance predictability, for
example by optimizing scheduling logic.

By leveraging memory bandwidth monitoring capabilities of Intel Resource
Director Technology, we were able to optimize resource utilization and provide best
performance for memory bandwidth sensitive workloads (ML-based inference work-
loads in our experiment).

References

1. Intel® Resource Director Technology (Intel® RDT). https:/www.intel.com/content/www/us/
en/architecture-and-technology/resource-director-technology.html. Accessed 10 Mar 2020

2. Everitt, B.: The Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge
(1998). ISBN 978-0521593465

3. Clapp, R., et al.: Quantifying the performance impact of memory latency and bandwidth for
big data workloads. In: IEEE International Symposium on Workload Characterization. IEEE
(2015). ISBN 978-1-5090-0088-3

4. Workload Collocation Agent. https://github.com/intel/workload-collocation-agent. Accessed
10 Mar 2020

5. STREAM benchmark. http://www.cs.virginia.edu/stream/ref.html. Accessed 10 Mar 2020

6. Yasin, A.: A top-down method for performance analysis and counters architecture. In: 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE (2014). ISBN 978-1-4799-3606-9

7. Yasin, A.: Software Optimizations Become Simple with Top-Down Analysis Methodology
on Intel® Microarchitecture, Code Name Skylake, Intel Developer Forum, IDF 2015, Intel
(2015)

8. Hey GitHub web page. https://github.com/rakyll/hey. Accessed 10 Mar 2020

9. Kubernetes Scheduler Extensions. https://kubernetes.io/docs/concepts/extend-kubernetes/
extend-cluster/#scheduler-extensions. Accessed 10 Mar 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://github.com/intel/workload-collocation-agent
http://www.cs.virginia.edu/stream/ref.html
https://github.com/rakyll/hey
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/#scheduler-extensions
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/#scheduler-extensions
http://creativecommons.org/licenses/by/4.0/

	Predictable Performance for QoS-Sensitive, Scalable, Multi-tenant Function-as-a-Service Deployments
	Abstract
	1 Introduction
	1.1 The Importance of Predictable Functions Performance

	2 Analyzing Functions Performance and Performance Predictability
	2.1 Test Stack and Test Functions
	2.2 Introduction to Top-Down Microarchitecture Analysis Methodology
	2.3 Platform Resources Utilization Monitoring

	3 Improving Performance Predictability
	3.1 Analyzing Functions’ Co-location Cases
	3.2 Scheduling Improvements

	4 Future Work
	5 Conclusions
	References

