
Diminuendo! Tactics in Support of FaaS
Migrations

Sebastian Werner1(B), Jörn Kuhlenkamp1, Frank Pallas1, Niklas Anders2,
Nebi Mucaj2, Olesia Tsaplina2, Christian Schmidt2, and Kann Yildirim2

1 Information Systems Engineering, Technische Universität Berlin, Berlin, Germany
{sw,jk,fp}@ise.tu-berlin.de

2 ProgPrak Team, Technische Universität Berlin, Berlin, Germany
pp1920@ise.tu-berlin.de

Abstract. Function-as-a-Service (FaaS) receives close attention due to
highly desirable characteristics, including pay-as-you-go pricing, high
elasticity, and its fully managed nature. To leverage these benefits for
existing applications, developers face the challenge of migrating legacy
code to a FaaS platform (FaaSification). Unfortunately, however, action-
able guidance on how to do so for real-world applications does not exist.
In this paper, we report on our experience from FaaSifying a data-
intensive application, and evaluating different options through extensive
experimentation, using approaches such as regression tests and tracing.
Based on the obtained results, we present five migration tactics in sup-
port of future FaaSification.

Keywords: Serverless · Migration · FaaS · FaaSification

1 Introduction

Function-as-a-Service (FaaS) is a new cloud execution model that receives close
attention due to highly desirable characteristics, including pay-as-you-go pricing,
millisecond elasticity, or provider-managed operational tasks for, e.g., deploy-
ment [6]. To leverage these benefits for existing applications, developers face the
challenge of migrating legacy code to a FaaS platform (FaaSification).

While an increasing number of supported programming languages and
relaxed limitations, e.g., maximum execution time, give the impression that
FaaSification is a trivial task, first exploratory research [4,7] indicates that lever-
aging the non-functional benefits of FaaS beyond correct execution requires a
careful redesign, profiling, and configuration. Unfortunately, little information is
available on how these and further subjects are (to be) addressed in the FaaSi-
fication of real-world web applications. Thus, many application developers are
unaware of the different fallacies of FaaSification.

In this paper, we report on our experience from FaaSifying a data-intensive
web application from a VM-based deployment. For the migration, we initially
used a näıve migration approach presented in [7] that expectedly resulted in
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 125–132, 2020.
https://doi.org/10.1007/978-3-030-58858-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_13


126 S. Werner et al.

failing non-functional end-to-end regression tests. We were able to significantly
reduce these degradations by 1) instrumenting application code for tracing
purposes, 2) identifying the root-cause for degradation in different third-party
libraries and some sections of legacy code, and, finally, 3) refactoring parts of
the application architecture and the usage of third-party libraries.

To let others profit from our experiences, we synthesize our insights from the
migration and additional previous research into five common migration tactics in
support of future FaaSification: Precompute, Reuse, Strip, Be Lazy, and Replace.

2 Application and Migration Goal

We selected the open participatory data platform OpenSense.network [2] as a
use-case to evaluate the effects of legacy code during the migration to FaaS envi-
ronments. OpenSense.network offers a horizontally scalable, Flask-based API to
let users contribute and access sensor data of globally distributed environmen-
tal sensors in a uniform, web-friendly way. To provide geospatial capabilities
and high-volume sensor data in a performant and scalable manner, it employs a
hybrid storage model, comprising a PostGIS database for static metadata and a
Cassandra cluster holding timeseries of actual measurements (see Fig. 1). Both
the API and databases of OpenSense.network are deployed on the TU Berlin
data center premises. For the migration, we were particularly interested in mov-
ing the Flask API to a FaaS platform to free up computation resources when the
API is not in use while at the same time being able to handle spiking loads in
case of, for instance, occasional bulk inserts or data access surges. Further, we
were interested in reducing operational overhead, e.g., the management of the
Flask API virtual machines.

API
Stateless REST

(Flask)

Sensor Metadata
Geospatial DB

(PostGIS)

Sensor Values
NoSQL DB

(Cassandra)
get/add metadata get/add values

forward request

Motivation for migration:

End Users Software Services

OpenSense.network

Clients

Serves volatile workloads Has low utilization, slow scale-up

Fig. 1. OpenSense.network architecture with selected component for migration.

We selected Apache OpenWhisk1 as the target platform and deployed it
in the same network as the current OpenSense.network deployment to allow
1 https://openwhisk.apache.org/.

https://openwhisk.apache.org/


Diminuendo! Tactics in Support of FaaS Migrations 127

connections to the same databases as the original APIs and, thus, to avoid the
need for data migration.

To compare the behavior and responses of the migrated API to those of the
original one, we additionally created and continuously extended a rich set of
end-to-end regression tests.

3 FaaS Migration Approach

In this section, we outline our approach in migrating OpenSense.network. We
start by describing our initial näıve approach, followed by the steps taken to
identify root-causes of performance degradations and the subsequent refactoring.

3.1 Näıve Migration

In the first step of the migration, we followed a näıve reuse approach similar to
Llyod et al. [7]. Accordingly, we implemented a custom runtime container, based
on the OpenWhisk Python runtime2 with the necessary Python dependencies
for OpenSense.network already built-in. These custom runtimes can reduce cold-
start problems as less code needs to be downloaded and compiled initially.

Furthermore, we used a modified version of the flask-openwhisk3 wrapper
to map OpenWhisk requests to Flask, resulting in a FaaS version of the pre-
existing Flask API with almost zero modification.4 In line with our expectations
and previous findings [7], this näıve FaaSification approach was successful on a
functional level but exhibited significant performance degradation compared to
the original deployment. For instance, a request for a single sensor value for the
migrated API took between 2 and 20 s for cold and warm functions, respectively,
while it took less than a second on the original API.

In the following, we first describe our approach to identifying the root-causes
of this degradation.

3.2 Regression Detection

Determining the root-cause of problems in FaaS applications is challenging [4]
since FaaS platforms offer no out-of-the-box facilities for remote-debugging and
-profiling. Instead, developers have to rely on application and system log infor-
mation which can be limited in volume, making debugging and profiling tasks
tedious and cumbersome.

As a first step of refactoring towards a more FaaS-aware implementation, we,
therefore, created a simple, lightweight profiling tool that instruments Open-
Whisk’s logging facilities and allows to easily include start- and endpoints of

2 https://github.com/apache/openwhisk-runtime-python.
3 https://github.com/alexmilowski/flask-openwhisk.
4 Initially we considered more mature frameworks, e.g., Zappa (https://github.com/

Miserlou/Zappa). However, OpenWhisk is not supported in most of them.

https://github.com/apache/openwhisk-runtime-python
https://github.com/alexmilowski/flask-openwhisk
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa


128 S. Werner et al.

initialize ():

topen ("init")

topen ("flask")

flask()

tclose ("flask")

...

tclose ("init")

Fig. 2. Example of instrumented code

relevant functional sections in the code. An accompanying evaluation tool allows
to easily analyze respective runtimes5. Using these tools, we instrumented the
migrated application with a set of tracepoints, see Fig. 2.

We placed each trace-point at potential bottlenecks and points of interest
within the code. In particular, we measured object creation, database connec-
tion initialization, overall initialization, execution [5], and serialization and de-
serialization times. Figure 3 shows exemplary results of these measurements for
a simple sensor query, before and after refactoring.

We were quickly able to pin down the root causes of the observed performance
degradation based on the gathered information. In particular, we observed that
in the initial, näıve approach, the API implementation took substantial time to
(re-) initialize certain libraries on every single request. Large portions of these
initialization overheads could be attributed to Flask and the Cassandra driver.
Accordingly, the inefficient pattern of continuous re-initialization for both Flask
and the Cassandra driver was a particular subject of refactoring, described fur-
ther in the next section.

3.3 Refactoring

The data from the regression detection provided a road-map to address the
performance issues in the näıvely migrated application. Based on the identified
bottlenecks, the following measures particularly helped us to significantly reduce
FaaS-specific overheads:

Reuse: We initially focused on reducing the re-initialization of objects and
libraries on every single request, see the Reuse tactic in Sect. 4. Specifically,
we moved the initialization of most libraries away from the OpenWhisk handler
so that initialized libraries remain in memory. We faced some minor challenges as
the OpenWhisk runtime did not offer simple mechanisms to execute code before a
handler call. However, Python packages allow code execution on imports through
including the code to be executed in the init method, which enabled us to
shift all expensive initializations to the OpenWhisk runtime creation.

5 https://bit.ly/2Z4TpsR.

https://bit.ly/2Z4TpsR


Diminuendo! Tactics in Support of FaaS Migrations 129

Flask Cassandra
Library Initialization

0

200

400

600

800

1000

1200

1400

tim
e 

[m
s]

Experimentes
Naïve
Refactored

Fig. 3. Comparison of cold-start initialization times. “Näıve” refers to the initial migra-
tion, see Sect. 3.1. “Refactored” refers to the code-base after the changes described
in Sect. 3.3 (Precompute). Results a based on 200 sensor range queries.

These steps already reduced performance degradations for warm6 execution
environments significantly.

Precompute: Based on a more in-depth analysis of the execution times, we
identified that the initialization of both Flask and the Cassandra driver still
created notable performance impacts during cold-starts.

For Flask, we managed to precompile most of the Flask object state through
the pickle api7, which we could store as part of the deployment artifact. Using the
precompiled object allows that most of the dynamic computation which Flask
performs during server initialization can be removed. The effects of this can be
seen in the left part of Fig. 3, see the Precompute tactic in Sect. 4.

We tried to follow a similar strategy for the Cassandra driver. However, we
could not reduce the initialization time significantly with this method. Further-
more, we tried to disable thread-pooling and other functionality that is unnec-
essary in a FaaS context, but these steps also slightly reduced the initialization
time.

Strip: To address the Cassandra driver’s performance issues, we observed that
the Cassandra driver is not used for every request. For instance, an API method
only returning sensor metadata based on several query parameters does not
need access to the timeseries data stored in Cassandra and could, therefore,
be included in a “Cassandra-less” function. Thus, we decided to strip away
the Cassandra driver splitting the Flask API into two functions. Of course, this

6 Warm execution environments are functions that were deployed by the platform
for a previous event. State in these functions can be reused, reducing expensive
initializations, that occur during cold-starts [8].

7 https://docs.python.org/3/library/pickle.html.

https://docs.python.org/3/library/pickle.html


130 S. Werner et al.

step did not help to reduce the start-up time for Cassandra-related requests but
significantly improved the request-response time for all other requests. Signifi-
cantly decreasing the Cassandra-related overheads for API methods with time-
series functionality, however, would have required us to replace or rewrite the
Cassandra library. Even though this would have gone beyond the scope of our
migration project, this nonetheless illustrates the need for more lightweight, and
possibly less feature-rich libraries and drivers in the FaaS context.

4 Migration Tactics

Beyond those explicitly mentioned above, we also experimented with further
approaches of adjusting our code and the underlying runtime to FaaS-specific
givens, which mostly took a similar line, albeit with less significant impacts.
Altogether, however, our experiences can be synthesized into five general tac-
tics for FaaSification. Each of these tactics implies different prerequisites, the
potential for performance improvements, and development costs.

Precompute: This tactic precomputes intermediate results that are included
as static content in the deployment package of a function. The tactic requires
that the intermediate result does not depend on runtime information and that
the size of the intermediate result is comparatively small due to FaaS platform
limitations – e.g., 3-250MB for AWS Lambda8. In addition, it increases cold-start
times with the size of a deployment package [9]. The tactic affects all invocations
of a function handler and requires additional development efforts.

Reuse: This tactic caches intermediate results over multiple invocations of a
function handler on the same function container. It requires that multiple exe-
cutions occur on the same function container. This tactic is quite simple to
implement by storing intermediate results in global class variables of a function
handler or on the ephemeral storage available. However, it benefits only a subset
of executions, namely those that actually run on the same function container
repeatedly. Thus, Reuse becomes less effective with increasing numbers of cold
starts. Different approaches for experiment-driven analysis of cold/warm start
ratios [3,5,9] can indicate the effectiveness of this tactic to developers.

Strip: Strip implies that the developer removes source code from the function
handler that is initialized but not used on the execution paths of any invocation.
It requires that such source code exists and is identifiable by developers. While
all invocations benefit, the tactic implies additional development efforts due to
profiling and exhaustive testing. We envision that system providers will begin
offering specialized lightweight client libraries for short-lived ephemeral compute
environments like FaaS platforms.

Be Lazy: This tactic is applicable for function handlers with multiple initial-
izations that are not required on all execution paths. The application developer
can conditionally initialize by relying on conditional statements in a function
8 https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html.

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html


Diminuendo! Tactics in Support of FaaS Migrations 131

handler. As an alternative, a developer can decompose a function into multiple
focused functions [1]. The potential for performance improvements depends on
the distribution of the different execution paths. It implies additional develop-
ment efforts and potentially changes the application on an architectural level.

Replace: Application developers can resort to re-implementing third-party
libraries. A particular form of replacement could be the inclusion of lightweight
database connectors within FaaS platforms, allowing FaaS application develop-
ers to offload respective functionalities from their code-base. This tactic has no
prerequisites and a high potential for improvement but can imply significant
development costs. In a FaaS context, the potential additional costs of feature-
rich client libraries in terms of higher execution latency and monetary execution
costs motivate coexisting lightweight clients with a reduced set of features.

Besides, we argue that a high degree of automation is achievable in order
to reduce the development efforts for the different tactics significantly. However,
it remains an open question on which level of the technology stack each tactic
is applied best. For example, a tactic might be best applied automatically by
the cloud platform, integrated with application frameworks, or supported by
additional developer tooling in support of FaaSification. We argue that future
work should discuss and give guidance on the different associated trade-offs.

5 Conclusion

In this paper, we introduced five tactics in support of migrating legacy-
-applications to FaaS, that we synthesized from a real-world migration effort.
We argue that a high degree of automation is achievable in order to reduce
the development efforts for migrations in the future. We additionally see that
an extension to current FaaS platforms by offloading expensive operations like
database connections to the platform could be an area for investigation. Fur-
ther, we argue that application framework developers could support FaaS best-
practices like lazy loading directly. Lastly, we see an opportunity for third-party
library vendors to offer more lightweight options aligned with the FaaS context.

Acknowledgments. The work in this paper was partially performed in the context
of the SMILE and BloGPV.Blossom projects. BloGPV.Blossom is partially funded by
the German Federal Ministry for Economic Affairs and Energy (BMWi) under grant
no. 01MD18001E. SMILE is funded by the German Federal Ministry of Education
and Research (BMBF) as part of the Software-Campus 2.0 grand, project number
01IS17052. The authors assume responsibility for the content.

References

1. Baldini, I., et al.: The serverless trilemma: function composition for serverless com-
puting. In: International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward 2017, pp. 89–103. ACM, New York (2017)



132 S. Werner et al.

2. Borges, M.C., Pallas, F., Peise, M.: Providing open environmental data–the scal-
able and web-friendly way. In: Bungartz, H.J., Kranzlmüller, D., Weinberg, V.,
Weismüller, J., Wohlgemuth, V. (eds.) Advances and New Trends in Environmental
Informatics, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99654-7 2

3. Jackson, D., Clynch, G.: An investigation of the impact of language runtime on
the performance and cost of serverless functions. In: 3rd International Workshop on
Serverless Computing, WoSC 2018, Zurich, Switzerland, pp. 154–160. IEEE (2018)

4. Kuhlenkamp, J., Werner, S., Tai, S.: The ifs and buts of less is more: a serverless
computing reality check. In: Proceedings of The International Conference on Cloud
Engineering (IC2E 2020), 21–24 April 2020, Sydney, Australia. IEEE (2020)

5. Kuhlenkamp, J., Werner, S., Borges, M.C., Ernst, D., Wenzel, D.: Benchmarking
elasticity of FaaS platforms as a foundation for objective-driven design of serverless
applications. In: 34th ACM/SIGAPP Symposium on Applied Computing. Associa-
tion for Computing Machinery, New York, SAC 2019, pp. 284–291 (2019)

6. Leitner, P., Wittern, E., Spillner, J., Hummer, W.: A mixed-method empirical study
of function-as-a-service software development in industrial practice. J. Syst. Softw.
149, 340–359 (2018)

7. Lloyd, W., Vu, M., Zhang, B., David, O., Leavesley, G.: Improving application
migration to serverless computing platforms: latency mitigation with keep-alive
workloads. In: Proceedings of the 3rd International Workshop on Serverless Com-
puting, pp. 195–200. IEEE (Dec 2018)

8. Manner, J., EndreB, M., Heckel, T., Wirtz, G.: Cold start influencing factors in
function as a service. In: International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 181–188. IEEE (2018)

9. Manner, J., Endreß, M., Heckel, T., Wirtz, G.: Cold start influencing factors in func-
tion as a service. In: Proceedings of the 3rd International Workshop on Serverless
Computing, WoSC 2018, Zurich, Switzerland, pp. 181–188. IEEE (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-99654-7_2
https://doi.org/10.1007/978-3-319-99654-7_2
http://creativecommons.org/licenses/by/4.0/

	Diminuendo! Tactics in Support of FaaS Migrations
	1 Introduction
	2 Application and Migration Goal 
	3 FaaS Migration Approach 
	3.1 Naïve Migration
	3.2 Regression Detection
	3.3 Refactoring

	4 Migration Tactics 
	5 Conclusion
	References




