
Chosen Ciphertext Security
from Injective Trapdoor Functions

Susan Hohenberger1(B), Venkata Koppula2(B), and Brent Waters3,4(B)

1 Johns Hopkins University, Baltimore, MD, USA
susan@cs.jhu.edu

2 Weizmann Institute of Science, Rehovot, Israel
venkata.koppula@weizmann.ac.il

3 University of Texas, Austin, TX, USA
bwaters@cs.utexas.edu

4 NTT Research, Palo Alto, CA, USA

Abstract. We provide a construction of chosen ciphertext secure public-
key encryption from (injective) trapdoor functions. Our construction is
black box and assumes no special properties (e.g. “lossy”, “correlated
product secure”) of the trapdoor function.

1 Introduction

A public-key encryption system is said to be chosen ciphertext attack (CCA)
secure [7,31,34] if no polynomial-time attacker can distinguish whether a chal-
lenge ciphertext ct∗ is an encryption of m0 or m1 even when given access to a
decryption oracle for all ciphertexts except ct∗. In most deployed encryptions
systems, CCA security is necessary to protect against an active attacker that
might induce a user to decrypt messages of its choosing or even gain leverage
from just the knowledge that an attempted decryption failed. See Shoup [37] for
an excellent discussion on the importance of CCA security.

Over time the cryptographic community has become rather adept at achiev-
ing CCA security from many of the same assumptions that can be used to
achieve chosen plaintext attack (CPA) security for public-key encryption, where
the adversary is not given access to a decryption oracle. For instance we now
have practical CCA secure encryption schemes from the Decisional [5,6] and

Susan Hohenberger is supported by NFS CNS-1414023, NSF CNS-1908181, the Office
of Naval Research N00014-19-1-2294, and a Packard Foundation Subaward via UT
Austin. Venkata Koppula is supported by the Binational Science Foundation (Grant
No. 2016726), and by the European Union Horizon 2020 Research and Innovation
Program via ERC Project REACT (Grant 756482) and via Project PROMETHEUS
(Grant 780701). This work was done in part while the author was visiting the Simons
Institute for the Theory of Computing. Brent Waters is supported in part by NSF CNS-
1414082, NSF CNS-1908611, a Simons Investigator Award and a Packard Foundation
Fellowship.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12170, pp. 836–866, 2020.
https://doi.org/10.1007/978-3-030-56784-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56784-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-56784-2_28


Chosen Ciphertext Security from Injective Trapdoor Functions 837

Search [3] Diffie-Hellman, the difficulty of factoring [20,23], Learning with Errors
(LWE) [33] and Learning Parity with Noise (LPN) [11,25] assumptions.

Despite the success in these ad-hoc number-theoretic rooted approaches,
there is a strong drive to be able to understand CCA security from the perspec-
tive of general assumptions with an ultimate goal of showing that the existence
of CPA secure public-key encryption implies CCA secure public-key encryption.
In this work we make significant progress in this direction by showing that CCA
secure public-key encryption can be built from any (injective) trapdoor function.
Recall that a trapdoor function is a primitive in which any user given a public
key tdf.pk can evaluate the input x by calling TDF.Eval(tdf.pk,x) → y. And a
user with the secret key tdf.sk can recover x from y as TDF.Invert(tdf.sk,y) → x.
However, a polynomial-time attacker without the secret key should not be able
to output x given y = TDF.Eval(tdf.pk,x) for a randomly chosen x. By injective,
we require a one-to-one mapping of the function input and evaluation spaces.

There is a strong lineage connecting trapdoor functions with chosen cipher-
text security. Fujisaki and Okamoto [13] showed how in the random oracle model
any CPA secure encryption scheme can be transformed into a CCA secure
scheme. Their transformation implicitly creates a trapdoor function (in a spirit
similar to the random oracle based TDF construction of [1]) where the decryp-
tion algorithm recovers encryption randomness and re-encrypts to test ciphertext
validity. If we allow the trapdoor function to be a “doubly enhanced” permuta-
tion [17], then they can be used to create non-interactive zero knowledge proofs
which are known to give chosen ciphertext security via non-black box construc-
tions [7,31]. Peikert and Waters [33] introduced the notion of lossy trapdoor
functions and showed that this primitive also gives rise to chosen ciphertext
secure public-key encryption. Other works (e.g., [22,29]) extended and general-
ized this notion including Rosen and Segev [36] who showed that a “correlated
product secure” TDF gives rise to CCA security. In each of these (standard
model) cases an additional property of the trapdoor function (i.e., permutation
and doubly enhanced, lossy, correlated product secure) was required and criti-
cal for achieving chosen ciphertext security leaving open the problem of build-
ing chosen ciphertext secure encryption by only assuming injective trapdoor
functions.

Finally, Koppula and Waters [27] recently showed how to achieve chosen
ciphertext security from CPA secure public-key encryption and a newly intro-
duced “Hinting PRG” which is a pseudorandom generator that has a special form
of circular security.1 Their construction can be viewed as a “partial trapdoor”
where the decryption process recovers some, but not all of the randomness used
to encrypt the ciphertext and re-encrypts parts of the ciphertext to check for
validity. They show how Hinting PRGs can be constructed from number theoretic
assumptions such as CDH and LWE using techniques similar to [2,4,8–10,15].

1 Kitagawa and Matsuda [26] show how the Hinting PRG assumption can alternatively
be replaced with the assumption of symmetric key encryption with key-dependent
security.



838 S. Hohenberger et al.

Our Results

In this work we show a black box approach to construct chosen ciphertext secu-
rity using just injective trapdoor functions (in addition to primitives known to
be implied by TDFs.) We outline our approach, which begins with two abstrac-
tions that we will use as building blocks in our construction. These abstractions
are called (1) encryption with randomness recovery, and (2) tagged set commit-
ments. We build the first generically from injective trapdoor functions and the
latter from pseudorandom generators, which are known to be implied by TDFs.
These abstractions are intentionally simple, but useful for building intuition.

Encryption with Randomness Recovery. The “Encryption with Randomness
Recovery” abstraction is simply an IND-CPA secure public-key encryption where
(1) the decryption algorithm recovers both the message and the encryption ran-
domness r and (2) where there is also a Recover algorithm which can recover the
message from a ciphertext given the encryption randomness r. That is, when
Enc(pk,m, r) → ct, then Dec(sk, ct) → (m, r) and Recover(pk, ct, r) → m. We
formally define this abstraction in Sect. 3, followed by an immediate construc-
tion of Encryption with Randomness Recovery from injective trapdoor functions.
Notably Yao’s method [38] of achieving encryption from trapdoor functions is
actually Encryption with Randomness Recovery for 1-bit messages, where many
such ciphertexts can be concatenated together to encrypt many bits.

Tagged Set Commitments. The “Tagged Set Commitment” abstraction is a
commitment scheme that commits to a B-sized set of indices S ∈ [N ] with
a tag tg (where N and B are inputs to a trusted setup algorithm) by produc-
ing a commitment together with a membership proof for each i ∈ S; that is,
Commit(pp, S, tg) → (com, (σi)i∈S). The verification algorithm checks the mem-
bership proof to verify that i ∈ S under tag tg. These algorithms take in a
set of public parameters pp generated by a Setup algorithm with a bound B
that enforces (the maximum) size of S. Additionally, for proof purposes, the
scheme must support an alternative setup algorithm AltSetup that takes in a
tag tg and produces public parameters together with a special commitment and
a proof of membership for this commitment for every element in the commit-
ting domain (which will exceed the bound B that all other commitments must
abide by). In addition to the regular soundness property, we will require that no
polynomial-time adversary can distinguish between when the parameters were
generated by the regular or the alternative setup algorithm. We formally define
this abstraction in Sect. 4, followed by a construction from pseudorandom gen-
erators. This abstraction is related to a number of prior works. It can be viewed
as a generalization of the commitment scheme used in [27] to achieve a generic
CCA compiler for attribute-based encryption schemes, which was itself related
to Naor’s commitment from pseudorandom generators [30].

Our CCA Construction. Our construction uses three building blocks: a one-
time signature scheme, a CPA-secure encryption scheme with randomness recov-
ery and tagged set commitments. Our construction will create a CCA key that



Chosen Ciphertext Security from Injective Trapdoor Functions 839

includes N CPA keys. To encrypt a message a user will encrypt it to a subset
of the keys. Decryption will then follow the paradigm of recovering randomness
from (some of) the CPA encryptions and then re-encrypting to check for valid-
ity. Conceptually, it is critical for us to perform a type of balancing act when
encrypting the ciphertexts in order to prove security. At one step in the proof we
want to have enough redundancy in the way randomness is chosen so that one
can decrypt given any N −1 of the private keys. However, at a later stage in the
proof we want the fact that we choose any redundancy at all to statistically wash
away. We sketch our construction below and show how we find this balance.

We begin by noting the parameterization of our scheme. The driving factor
will be the length of randomness �rnd = �rnd(λ) of the underlying encryption with
randomness recovery scheme for security parameter λ. We will choose integers
N,B such that N > B and

(
N
B

)
> 2�rnd+λ. For example, we could let N =

2(�rnd + λ) and B = N/2.
The CCA setup algorithm initially chooses N key pairs from the CPA with

randomness recovery scheme as (cpa.pki, cpa.ski) ← CPA.Setup(1λ). In addition,
it samples the tagged set commitment as tsc.pp ← TSC.Setup(1λ, 1N , 1B , 1t)
where t is the length of a verification key in the one-time signature scheme.

To encrypt one first chooses a uniformly random B-size subset S ⊂ [N ]. Next,
choose a signing/verification key (sig.sk, sig.vk) ← Sig.Setup(1λ). And then get a
commitment to the set elements as (tsc.com, (tsc.σi)i∈S) ← TSC.Commit(tsc.pp,
S, sig.vk). At this point the encryptor will select the randomness used for encryp-
tion. For all i ∈ S choose ri ∈ {0, 1}�rnd uniformly at random with the constraint
that these values XOR to 0�rnd . Observe that this slight redundancy implies that
for a correctly formed ciphertext if we are given the set S along with the ri

values for B − 1 of the indices in S, then we can derive the last one by simply
XORing all the others together. For i /∈ S simply choose ri at random.

To finalize encryption for i ∈ [N ], if i ∈ S encrypt the message along with
proof for index i as cpa.cti = CPA.Enc(cpa.pki, 1|tsc.σi|m; ri). Otherwise for i /∈ S
encrypt the all 0’s string as cpa.cti = CPA.Enc(cpa.pki, 0�cpa ; ri). Finally, sign(
tsc.com, (cpa.cti)i∈[N ]

)
with sig.sk to get sig.σ and output the ciphertext ct as

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
.

The decryption algorithm on ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
will

first verify the signature and reject if that fails. Next, it will initialize a set
U = ∅ and use the cpa.ski to decrypt all cpa.cti using the respective cpa.ski.
For each i ∈ [N ], it gets a message yi which is parsed as gi|σi|mi and ran-
domness ri. The decryption algorithm adds (i, yi) to U if decryption is suc-
cessful and (1) TSC.Verify(tsc.pp, tsc.com, i, tsc.σi, sig.vk) = 1 and (2) cpa.cti =
CPA.Enc(cpa.pki, yi; ri). It then checks that there are exactly B entries in the set
U , they all encrypt the same message and that ⊕(i,yi)∈U ri = 0�. If so, it outputs
the message. We emphasize that the decryption algorithm both checks the well
formness of ciphertext components in U via re-encryption and checks for the
redundancy in randomness via the XOR operation. However, ciphertext com-
ponents outside of the set U are not verified in this way. Indeed, the algorithm



840 S. Hohenberger et al.

will allow decryption to proceed even it “knows” some components outside of U
were malformed.

Our proof is given as a sequence of games where we show that for any poly-
time attacker the advantage of the attacker must be negligibly close in successive
games. We sketch the proof at a high level here and refer the reader to the main
body for details.

1. In the first step of our proof the decryption algorithm rejects all ciphertexts
that come with a signature under sig.vk∗ where sig.vk∗ is the signing key of
the challenge ciphertext. This step is proven via a standard reduction to a
strongly secure one-time signature scheme.

2. In the next security game the set commitment parameters are chosen via
alternate setup:

(
tsc.com∗, (tsc.σi)i∈[N ]

)
← AltSetup(1λ, 1N , 1B , 1t, sig.vk∗).

This means that for the tag sig.vk∗ (and only the tag sig.vk∗) proof values
exist for every single index in [N ]. However, in the challenge ciphertext tsc.σi

are only used for i ∈ S∗ where S∗ is the set used in creating the challenge
ciphertext.

3. In our proof for all indices i /∈ S∗ we will want to change cpa.cti from an
encryption of the all 0’s string to an encryption of 1|tsc.σ∗

i |mb. We will change
these one at a time. Suppose we want to argue that no attacker can detect such
a change on the j-th index. To prove this we need a reduction that will not
have access to the j-th secret key cpa.skj , but will still be able to decrypt in
an equivalent (but not identical) manner to the original decryption algorithm.
To do this the alternative decryption algorithm uses all N −1 secret keys that
it has to build a partial set U as in the actual decryption algorithm above.
It then branches its behavior on the size of U : (1) If |U | > B, then reject.
In this case the missing j-th component can only add to the size of U which
is already too big and will be rejected. (2) If |U | < B − 1, then reject. The
missing j-th component can make the set size at most B−1 which is too small
and will be rejected. (3) If |U | = B, then proceed with the remaining checks
of decryption using the set U and ignore the j-th component. By soundness
of the tagged set commitment scheme, this could not have contained tsc.σj

for a tag sig.vk �= sig.vk∗ so we can safely ignore the j-th component. (4)
If |U | = B − 1, compute rj = ⊕i∈Uri and use this candidate randomness to
decrypt cpa.ctj in lieu of the key cpa.skj . Once this step is done, the result can
be added (or not) to the set U and the rest of decryption proceeds as before.
We can show that the required redundancy checks make this decryption case
equivalent to the original as well.
Once this proof step has occurred for all j ∈ [N ] we have that each message
is 1|tsc.σ∗

i |mb, but that the challenge ciphertext has the redundancy in the
randomness ⊕i∈S∗ ri = 0�rnd .

4. For the next game we want to remove the redundancy in the randomness so
that ri is chosen uniformly at random for all indices i. It turns out that by the
setting of our parameters this is statistically already done! A random set of
ri variables will have a 1

2�rnd
chance of XORing to 0�

rnd. Thus, we could then
expect there will be approximately

(
N
B

)
· 1
2�rnd

sets of size B that satisfy this



Chosen Ciphertext Security from Injective Trapdoor Functions 841

condition if all ri are chosen randomly. Recall that since we set
(
N
B

)
> 2�rnd+λ

we might then expect there to be an exponential amount of sets meeting this
condition. Therefore we would intuitively expect that planting a single set S∗

with this condition and choosing all ri randomly will be statistically close.
In the main body, we formalize this intuition by applying the Leftover Hash
Lemma [21].

5. Now that the randomness in the challenge ciphertext is uncorrelated we want
to change all encryptions from 1|tsc.σ∗

i |mb to 0�
rnd. This can be done by a

hybrid over all j from 1 to N . (At this point in the security game there is no
set S∗.) This is done by again using an alternative decryption algorithm that
can decrypt using all but the j-th secret key.

Stepping back we can see that the XORing to 0�
rnd condition on S gave enough

redundancy where one could decrypt with all but one of the keys allowing Steps
3 and 5 of the proof above to proceed. However, the redundant condition was
limited enough where it could be statistically washed away in Step 4 of the proof.

A Further Comparison to Koppula-Waters (CRYPTO 2019). We provide a
closer comparison between our work and that of Koppula and Waters [27]. To
do so we will imagine modifying our scheme above and arrive at something anal-
ogous to [27]. Suppose that instead of choosing the values ri in the set S at
random with ⊕i∈S∗ ri = 0�rnd , we instead ran a pseudorandom generator (of
output length B · �rnd) on S as PRG(S) to determine the ri values for i ∈ S. The
ri for i /∈ S are random as before.

Using this encryption algorithm, one can create an analogous decryption
algorithm that first recovers a candidate set U almost as before. However, instead
of getting the random coins ri from decryption once it has U , the decryption
algorithm can run PRG(U) to determine the candidate set of ri values. At this
point it can perform the same re-encryption and other checks as we outlined
above. Indeed, the underlying encryption system does not even need to have
randomness recovery and thus is not necessarily trapdoor based.

If we try to prove this system secure, we can mostly march along the same
steps as above, but we hit a roadblock at Step 4. In our construction we argue
that choosing random ri is statistically close to embedding the XOR condition. Is
this true in the modified construction? Let’s imagine an arbitrary B-sized subset
S of indices with randomly chosen ri. The probability that PRG(S) outputs these
ri values is 2−�rnd·B . Even though there are

(
N
B

)
sets of size B, the chances of

there being just one of these subsets that meets this condition is still negligibly
small. Thus we cannot make a statistical argument.

To get past Step 4 in the modified construction then, we will be forced to
contrive an assumption that these two distributions are computationally indis-
tinguishable. Conceptually, this assumption is very analogous to the “Hinting
PRG” assumption introduced by Koppula and Waters. Altogether, our tech-
niques address the main limitation of [27] which was the need for a “Hinting
PRG” by creating an encryption scheme with less redundancy in the randomness.
This allows us to bridge over a critical proof step with a statistical argument.



842 S. Hohenberger et al.

1.1 Context on Trapdoor Functions

We conclude by providing some more context on trapdoor functions.

Constructions. For many years the only known standard model technique for
getting trapdoor functions was to use an assumption like RSA [35] that immedi-
ately gives a trapdoor function. Peikert and Waters [33] gave the first standard
model constructions for trapdoor functions from the DDH and the LWE assump-
tions. More recently, Garg and Hajiabadi [15] and Garg, Gay and Hajiabadi [14]
gave constructions from the Computational Diffie-Hellman assumption.

On (Im)Perfect Correctness. We observe that our security argument above relies
on the trapdoor function to be perfectly correct when switching from the origi-
nal decryption algorithm to the alternative decryption algorithm. Otherwise, an
attacker could potentially detect the change by constructing a ciphertext compo-
nent which is well formed, but does not decrypt correctly. (Even if the encryption
with randomness recovery correctness error is negligible for randomly sampled
coins, it might be easy to adversarially discover bad ciphertexts.) This creates
an issue for schemes such as [14,15] that are not perfectly correct.

To address this issue, we recall the notion of almost-all-keys perfect correct-
ness in encryption schemes, introduced by Dwork et al. [12]. In an almost-all-keys
perfectly correct scheme, the key generation algorithm Setup(1λ) will sample a
public, private key pair (pk, sk) such that, with all but negligible probability,
these particular keys will work perfectly. That is, any message m and coins r
used for encryption by pk will decrypt to m using sk. (This is a stronger notion
of (imperfect) correctness than the usual one where potentially every public,
secret key pair has a messages and coin pairs that cause decryption failures.) We
observe that almost-all-keys correctness is sufficient for our proof of security to
go through. Since the attacker has no influence on the key generation algorithm,
with all but negligible probability, he/she will be stuck with a keypair that has
perfect correctness.

The CDH based scheme of Garg, Gay and Hajiabadi [14] satisfies almost-all-
keys perfect correctness. However, for the scheme of Garg and Hajiabadi [15],
it is not clear if the above approach can directly work.2 One might hope to use
the transformation of [12] to go from an imperfectly correct encryption scheme
to one that satisfies almost-all-keys perfect correctness. Unfortunately this does
not appear to work as we require encryption with randomness recovery.

TDFs with a Sample Algorithm. The work of Bellare et al. [1] as well as the
Katz-Lindell [24] textbook provide an alternative definition of trapdoor func-
tions. In the standard definition the domain is simply all the strings of length
�inp and the security experiment chooses x ∈ {0, 1}�inp to evaluate the trapdoor

2 In [15], it appears that it is computationally difficult for an attacker to discover
a TDF input x where y = TDF.Eval(tdf.pk,x) and TDF.Invert(tdf.sk,y) �= x. We
believe this property is also sufficient for our CCA transformation, but do not show
this formally.



Chosen Ciphertext Security from Injective Trapdoor Functions 843

function on. In the alternative “sampling” definition there is an additional algo-
rithm Sample that takes the public key along with random coins and outputs an
element x in the domain. The TDF evaluation algorithm can then be run on x
to give TDF.Eval(tdf.pk,x) → y. Notably, the domain can depend on the public
key and while correctness stipulates that TDF.Invert(tdf.sk,y) → x, there is no
requirement to recover the coins of the Sample algorithm.

At first glance it might appear that the differences in these two definitions
is conceptually minor. However, these nuances are actually very important. As
observed by Pandey [32] there exists a trivial construction of the sampling form
of trapdoor functions from public key encryption. The public and secret key of
the trapdoor function will just come from the PKE key generation algorithm.
For a given public key pk, the domain consists of all (ct,m) pairs such that
ct = Enc(pk,m; r) for some randomness r. The Sample algorithm will choose a
random message m of sufficient length and output an encryption ct of m under
the public key to give x = (ct,m). The TDF.Eval algorithm can simply drop
m. That is TDF.Eval(tdf.pk,x = (ct,m)) → ct. And the inversion algorithm can
recover (ct,m) from ct by simply decrypting. Security follows immediately from
the IND-CPA security of the underlying encryption scheme.

If we want the Sample algorithm to sample uniformly in the domain, we
will need two additional properties of the encryption algorithm. First, that for
every public key pk and every pair of messages (m1,m2) the number of distinct
ciphertexts that can be generated from encrypting m1 under pk is the same as
the number that can be generated by encrypting m2 under pk. And that for any
pk and message m the likelihood of any ciphertext that it is in the support of
encrypting m under pk is the same.

This construction feels like a cheat as it does not match our intuitive con-
cept of what a trapdoor function is. It takes advantage of the fact that one is
not required to recover the random coins used in the Sample algorithm. Thus
the definition essentially allows for one to dispense with the recovery of coins
requirement and seems to lose the spirit of trapdoor functions. An interesting
question is whether such a transformation could be done in a definition where
the Sample algorithm only took as input the security parameter and not the
TDF’s public key.

Looking Forward. It is interesting to think what implications our work might
have on the ultimate question of whether chosen plaintext security implies chosen
ciphertext security. An immediate barrier is that there are black box separations
on building TDFs from PKE [16]. However, it might be possible to leverage our
construction or lessons from it into an abstraction that delivers “most” of the
properties of a TDF.

2 Preliminaries

For any positive integer n, let [n] denote the set of integers {1, 2, . . . , n}. For
any prime p and positive integer �, let Fp� denote the (unique) field of order



844 S. Hohenberger et al.

p�. We will use bold letters to denote a vector/array of elements, and subscript
i denotes the ith element (e.g. if w ∈ {0, 1}n, then wi denotes the ith bit).
Given two distributions D1,D2 over finite domain X , let SD(D1,D2) denote the
statistical distance between D1 and D2.

Definition 1 (Pseudorandom Generator). Let n, � ∈ N and let PRG
be a deterministic polynomial-time algorithm such that for any s ∈ {0, 1}n,
PRG(s, 1�) outputs a string of length �. (Here, we will not require that � be polyno-
mial in n.) We say that PRG is a pseudorandom generator if for all probabilistic
polynomial-time distinguishers D, there exists a negligible function negl(·) such
that for all n, �, λ ∈ N,

|Pr [D(r) = 1] − Pr
[
D(PRG(s, 1�)) = 1

]
| ≤ negl(λ),

where r is chosen uniformly at random from {0, 1}�, s is chosen uniformly at
random from {0, 1}n, and the probabilities are taken over the choice of r and s
and the coins of D.

Definition 2 (Strongly Unforgeable One-Time Signature [28]). Let
Σ = (KeyGen,Sign,Verify) be a one-time signature scheme for the message
space M . Consider the following probabilistic experiment SU-OTS(Σ,A, λ) with
A = (A1,A2) and λ ∈ N:

SU-OTS(Π,A, λ)
(pk, sk) ← KeyGen(1λ)
(m, z) ← A1(pk) s.t. m ∈ M
σ ← Sign(sk,m)
(m∗, σ∗) ← A2(σ, z)
Output 1 iff (m �= m∗ and Verify(pk,m∗, σ∗) = 1) or

(σ �= σ∗andVerify(pk,m, σ∗) = 1).

Signature scheme Σ is SU-OTS-secure if ∀ p.p.t. algorithms A, there exists a
negligible function negl(·) such that

Pr [SU-OTS(Π,A, λ) = 1] ≤ negl(λ),

where this probability is taken over all random coins used in the experiment.

Definition 3 (IND-CPA [19]). Let Π = (KeyGen,Enc,Dec) be an encryption
scheme for the message space M . Consider the following probabilistic experiment
IND-CPA(Π,A, λ) with A = (A1,A2) and λ ∈ N:

IND-CPA(Π,A, λ)
(pk, sk) ← KeyGen(1λ)
(m0,m1, z) ← A1(pk) s.t. m0,m1 ∈ M
y ← Enc(pk,mb)
b′ ← A2(y, z)
Output 1 if b′ = b and 0 otherwise.



Chosen Ciphertext Security from Injective Trapdoor Functions 845

Encryption scheme Π is IND-CPA-secure if ∀ p.p.t. algorithms A, there exists a
negligible function negl(·) such that

Pr [IND-CPA(Π,A, λ) = 1] ≤ 1
2

+ negl(λ),

where this probability is taken over all random coins used in the experiment.

Definition 4 (IND-CCA [7,31,34]). Let Π = (KeyGen,Enc,Dec) be an encryp-
tion scheme for the message space M and let experiment IND-CCA(Π,A, λ) be
identical to IND-CPA(Π,A, λ) except that both A1 and A2 have access to an ora-
cle Dec(sk, ·) that returns the output of the decryption algorithm and A2 cannot
query this oracle on input y. Encryption scheme Π is IND-CCA-secure if ∀ p.p.t.
algorithms A, there exists a negligible function negl(·) such that

Pr [IND-CCA(Π,A, λ) = 1] ≤ 1
2

+ negl(λ),

where this probability is taken over all random coins used in the experiment.

Injective Trapdoor Functions. An injective trapdoor function family T with
input space {0, 1}�inp and output space {0, 1}�out , where �inp and �out are poly-
nomial functions of the security parameter λ, consists of three PPT algorithms
with syntax:

TDF.Setup(1λ) → (tdf.pk, tdf.sk): The setup algorithm takes as input security
parameter λ and outputs a public key tdf.pk and secret key tdf.sk.

TDF.Eval(tdf.pk, x ∈ {0, 1}�inp , ) → y: The evaluation algorithm takes as input
an input x ∈ {0, 1}�inp and public key tdf.pk, and outputs y ∈ {0, 1}�out .

TDF.Invert(tdf.sk, y ∈ {0, 1}�out) → x ∈ {0, 1}�inp ∪{⊥}: The inversion algorithm
takes as input y ∈ {0, 1}�out and secret key tdf.sk, and outputs x, which is
either ⊥ or a �inp-bit string.

Almost-All-Keys Injectivity. We require that for nearly all public/secret keys,
inversion works for all inputs. More formally, there exists a negligible function
negl(·) such that for all λ ∈ N,

Pr [∃ x s.t. TDF.Invert(TDF.Eval(tdf.pk, x), tdf.sk) �= x] ≤ negl(λ),

where this probability is over the choice of (tdf.pk, tdf.sk) ← TDF.Setup(1λ).

Definition 5. An injective trapdoor family is hard-to-invert if for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr
[
x ← A(tdf.pk, y) :

(tdf.pk, tdf.sk) ← TDF.Setup(1λ)
x ← {0, 1}�inp , y = TDF.Eval(tdf.pk, x)

]
≤ negl(λ).

Define (r · x) = ⊕n
i=1ri · xi where r = r1 . . . rn and x = x1 . . . xn. The

Goldreich-Levin theorem for hard-core predicates [18] states that no polynomial
time algorithm can compute (r ·x) given a random r, the TDF public key tdf.pk
and evaluation TDF.Eval(tdf.pk, x) on random input x, where |r| = |x|.



846 S. Hohenberger et al.

Theorem 1 (Goldreich-Levin Hardcore Bit [18]). Assuming TDF is an
injective trapdoor family, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds:
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣b ← A(tdf.pk, s, y, zb) :

(tdf.pk, tdf.sk) ← TDF.Setup(1λ)
x, s ← {0, 1}�inp ,

y = TDF.Eval(tdf.pk, x)
z0 = s · x, z1 ← {0, 1}, b ← {0, 1}

⎤

⎥
⎥
⎦ − 1

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

3 Encryption Scheme with Randomness Recovery

An encryption scheme with randomness recovery is an IND-CPA secure encryp-
tion scheme with two additional properties: (a) the decryption algorithm can
be used to recover the message as well as the randomness used for encryption
(b) the randomness used for encryption can be used to decrypt the ciphertext.
Formally, it consists of four PPT algorithms with the following syntax. Here
the message length �msg and the length of the randomness �rnd are polynomial
functions of the security parameter λ.

Setup(1λ) → (pk, sk): The setup algorithm takes as input the security parameter
λ and outputs a public key pk and secret key sk.

Enc(pk,m) → ct: The encryption algorithm is randomized; it takes as input a
public key pk and a message m, uses �rnd bits of randomness and outputs a
ciphertext ct. We will sometimes write Enc(pk,m; r), which runs Enc(pk,m)
using r as the randomness.

Dec(sk, ct) → z ∈
(
{0, 1}�msg × {0, 1}�rnd

)
∪ {⊥}: The decryption algorithm

takes as input a secret key sk and a ciphertext ct, and either outputs z =⊥
or z = (m, r) where m ∈ {0, 1}�msg , r ∈ {0, 1}�rnd .

Recover(pk, ct, r) → z ∈ {0, 1}�msg ∪{⊥}: The recovery algorithm takes as input
a public key pk, a ciphertext ct and string r ∈ {0, 1}�rnd . It either outputs
⊥ or a message m ∈ {0, 1}�msg .

These algorithms must satisfy the following almost-all-keys perfect correct-
ness property.

Almost-All-Keys Perfect Correctness. We require perfect correctness of decryp-
tion and recovery for all but a negligible fraction of (pk, sk) pairs. More formally,
there exists a negligible function negl(·) such that for any security parameter λ,

Pr [∃ m, r s.t. Dec(sk,Enc(pk,m; r)) �= (m, r)] ≤ negl(λ) and
Pr [∃ m, r s.t. Recover(pk,Enc(pk,m; r), r) �= m] ≤ negl(λ)

where m ∈ {0, 1}�cpa , r ∈ {0, 1}�rnd , and the probability is over the choice of
(pk, sk) ← Setup(1λ).

Koppula and Waters [27] defined a notion of “recovery from randomness”
which has the above almost-all-keys perfect correctness requirement on the
Recover algorithm, but not also on the Dec algorithm.



Chosen Ciphertext Security from Injective Trapdoor Functions 847

3.1 Construction: Encryption Scheme with Randomness Recovery
from Injective TDFs

We show an IND-CPA secure encryption scheme with randomness recovery for
messages of length �msg where encryption uses �rnd-bits of randomness based
on injective trapdoor functions. This construction is closely related to the
CPA-secure encryption scheme of Yao [38]. Let tdf = (TDF.Setup,TDF.Eval,
TDF.Invert) be an injective trapdoor function (see Sect. 2) with input space
{0, 1}�inp and output space {0, 1}�out . Here �inp, �out, �msg and �rnd = �msg · �inp
are polynomial functions in the security parameter λ.

Setup(1λ) → (pk, sk): The setup algorithm chooses (tdf.pk, tdf.sk) ←
TDF.Setup(1λ). Next, it choses a uniformly random string t ← {0, 1}�inp . The
public key is set to be pk = (tdf.pk, t) and the secret key is sk = (tdf.sk, t).

Enc
(
pk = (tdf.pk, t) ,m = (m1, . . . , m�msg)

)
→ ct: For each i ∈ [�msg], the

encryption algorithm:
– chooses a random string ri ← {0, 1}�inp .
– sets ct1,i = (ri · t) + mi and ct2,i = TDF.Eval(tdf.pk, ri).
For w ∈ {0, 1}, it sets ctw = (ctw,1, . . . , ctw,�msg) and outputs (ct1, ct2).

Dec (sk = (tdf.sk, t), ct = (ct1, ct2)) → z: For each i ∈ [�msg], the decryption
algorithm computes ri = TDF.Invert(tdf.sk, ct2,i). If ri =⊥, it outputs ⊥
and aborts. Else, it sets mi = ct1,i + (ri · t)(mod 2).
Finally, it outputs m = (m1, . . . , m�msg) and r = (r1, . . . , r�msg).

Recover (pk = (tdf.pk, t), ct = (ct1, ct2), r) → z: The recovery algorithm per-
forms the following for each i ∈ [�msg]: it computes zi = TDF.Eval(tdf.pk, ri).
If zi �= ct2,i, it outputs ⊥ and aborts. Else it sets mi = ct1,i + zi(mod 2).
Finally it outputs m = (m1, . . . , m�msg).

Almost-all-keys perfect correctness follows from the almost-all-keys perfect
injectivity TDFs.

Encrypting Long Messages. In the construction above the number of random
bits, �rnd required by encryption grows linearly in the message size as �rnd = �msg·
�inp. We observe that to encrypt long messages we could instead use the system
above to encrypt a PRG seed k ∈ {0, 1}λ and then encrypt the message itself as
PRG(k) ⊕ m for a pseudorandom generator of appropriate output length. This
hybrid encryption method would maintain the randomness recovery property,
but the growth of the random coins would be independent of the message length.

IND-CPA Security

Theorem 2. The Sect. 3.1 construction is IND-CPA-secure (per Definition 3)
assuming TDF is a hard-to-invert injective trapdoor family (per Definition 5).

The proof of security follows via a simple sequence of hybrid experiments
{Hj}j∈{0,...,�msg+1} defined as follows. H0 corresponds to the IND-CPA experi-
ment of the construction in Sect. 3.1, While in hybrid H�msg+1, the adversary
will have advantage 0.

Hybrid Hj with security parameter λ, for j ∈ {1, . . . , �msg + 1}:



848 S. Hohenberger et al.

– The challenger chooses (tdf.pk, tdf.sk) ← TDF.Setup(1λ) and a random string
t ← {0, 1}�inp . It sends (tdf.pk, t) to the adversary.

– On receiving challenge messages m0,m1 ∈ {0, 1}�msg from the adversary,
the challenger chooses b ← {0, 1}. Next, it chooses ri ← {0, 1}�inp for all
i ∈ [�msg]. For i < j, it sets ct1,i uniformly at random. For i ≥ j, it sets
ct1,i = (ri · t) + mb,i. In either case, it sets ct2,i = TDF.Eval(tdf.pk, ri). It
sends (ct1, ct2) to the adversary and receives guess b′. Adversary wins if
b = b′.

Analysis: For any PPT adversary A, let advA,j(λ) denote the advantage of A in
Hj (with sec. par. λ).

Claim. Assuming the hard-to-invert property of the injective TDF family T (see
Definition 5), for any PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N and j ∈ [0, �msg], advA,j(λ) − advA,j+1(λ) ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A and 0 ≤ j ≤ �msg such that
advA,j − advA,j+1 = ε, where ε is non-negligible.3 Then there exists a PPT
algorithm B that breaks the hardcore bit property of T , since this property
follows from the hard-to-invert property of T and Theorem 1, we have a con-
tradiction. The algorithm B receives (tdf.pk, s, y, z) from the challenger, where
y = TDF.Eval(tdf.pk, x) for a uniformly random x ∈ {0, 1}�inp , and z is either
(s · x) or a uniformly random bit. B sets t = s and sends (tdf.pk, t) to A, and
receives challenge messages m0,m1. The reduction then chooses w ← {0, 1}.
For all i �= j, the challenge ciphertext components ct1,i, ct2,i are identically dis-
tributed, and the reduction algorithm can compute them using tdf.pk and t. It
sets ctj,1 = z + mw,j and ctj,2 = y, and sends (ct1, ct2) to A. The adversary
sends its guess w′. If w = w′, then the reduction B outputs 0 (indicating that
z = s · x), else it outputs 1 (indicating that z is uniformly random).

Note that if y = TDF.Eval(tdf.pk, x) and z = (s ·x), then this corresponds to
Hj ; if z is uniformly random, then this corresponds to Hj+1. Let advT

B denote
B’s advantage in the hardcore bit experiment against T .

advT
B = Pr[B outputs 0 | z = (s · x)] − Pr[B outputs 0 | z is random]

= Pr[A wins in Hj ] − Pr[A wins in Hj+1] = ε.

4 Tagged Set Commitment

We introduce an abstraction called a “tagged set commitment” and show that it
can be constructed generically from a pseudorandom generator. We employ this
abstraction shortly in our Sect. 5 construction.

Setup(1λ, 1N , 1B , 1t) → pp: The setup algorithm takes as input the security
parameter λ, the universe size N , bound B on committed sets and tag
length t, and outputs public parameters pp.

3 We drop dependence on λ for notational convenience.



Chosen Ciphertext Security from Injective Trapdoor Functions 849

Commit(pp, S ⊆ [N ], tg ∈ {0, 1}t) → (com, (σi)i∈S): The commit algorithm is
randomized; it takes as input the public parameters pp, set S of size B and
string tg, and outputs a commitment com together with ‘proofs’ σi for each
i ∈ S.4

Verify(pp, com, i ∈ [N ], σi, tg ∈ {0, 1}t) → {0, 1}: The verification algorithm
takes as input the public parameters, an index i, a proof σi, and tg. It
outputs 0/1.

AltSetup(1λ, 1N , 1B , 1t, tg) → (pp, com, (σi)i∈[N ]): The scheme also has an ‘alter-
nate setup’ which is used in the proof. It takes the same inputs as Setup
together with a special tag tg, and outputs public parameters pp, commit-
ment com together with proofs σi for all i ∈ [N ].

These algorithms must satisfy the following perfect correctness requirements:

Correctness of Setup and Commit: For all λ, N , B ≤ N , t, tg ∈ {0, 1}t and
set S ⊆ [N ] of size B, if pp ← Setup(1λ, 1N , 1B , 1t) and (com, (σi)i∈S) ←
Commit(pp, S, tg), then for all i ∈ S, Verify(pp, com, i, σi, tg) = 1.

Correctness of AltSetup: For all λ, N , B ≤ N , t, tg ∈ {0, 1}t, if (pp, com,
(σi)i∈[N ]) ← AltSetup(1λ, 1N , 1B , 1t, tg), then for all i ∈ [N ], Verify(pp, com, i,

σi, tg) = 1.

Security. We require two security properties of a tag set commitment.

Indistinguishability of Setup: In this experiment, the adversary chooses a tag
tg, set S and receives either public parameters, together with commitments for
(S, tg), or receives public parameters and commitment/proofs (corresponding to
set S) generated by AltSetup (for tag tg). The scheme satisfies indistinguishability
of setup if no PPT adversary can distinguish between the two scenarios. This
experiment is formally defined below.

Definition 6. A tagged set commitment scheme Com = (Setup,Commit,Verify,
AltSetup) satisfies indistinguishability of setup if for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |Pr[1 ←
Expt-Ind-SetupA(λ)]−1/2| ≤ negl(λ), where Expt-Ind-SetupA is defined in Fig. 1.

Soundness Security: The soundness property informally states that if public
parameters are generated for bound B (using either regular setup or AltSetup),
then no PPT adversary can produce a commitment with greater than B ‘proofs’.
However, for our CCA application, we need a stronger guarantee: if the challenger
generates the public parameters for a tag tg using AltSetup and the adversary
gets all N proofs, even then it cannot generate a commitment with B +1 proofs
for a different tag tg′.

4 We require S to be of size exactly B for simplicity of presentation, however, one
could generalize this to allow S to be of size at most B.



850 S. Hohenberger et al.

Fig. 1. Experiment for indistinguishability of setup

Definition 7. A tagged set commitment scheme Com = (Setup,Commit,Verify,
AltSetup) satisfies soundness security if for any PPT adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, Pr[1 ← Expt-SoundA(λ)] ≤
negl(λ), where Expt-SoundA is defined in Fig. 2.

Fig. 2. Experiment for soundness security

4.1 Construction of Tagged Set Commitment

In this section, we will present a Tagged Set Commitment scheme TSC whose
security is based on PRG security. Let PRG : ({0, 1}λ, 1�) → F2� be a pseu-
dorandom generator. Let emb be an injective and efficiently-computable func-
tion that maps strings in {0, 1}t (tags) to elements in F2� . Below the notation
p ← F2� [x]B−1 means that p is set to be a random degree B − 1 polynomial over
variable x, where p is represented in canonical form with B randomly chosen
coefficients in F2� .

Setup(1λ, 1N , 1B , 1t): The setup algorithm sets � = 2t+(B +1) · log N +λ · (B +
1)+λ. Next it chooses N random elements Ai,Di ← F2� for all i ∈ [N ]. The
public parameters is set to be pp = (1�, (Ai,Di)i∈[N ]).



Chosen Ciphertext Security from Injective Trapdoor Functions 851

Commit(pp = (1�, (Ai,Di)i), S ⊆ [N ], tg): The commitment algorithm first
chooses si ← {0, 1}λ for each i ∈ S. Next, it chooses the degree B−1 polyno-
mial p(·) over F2� such that for all i ∈ S, p(i) = PRG(si, 1�)+Ai+Di·emb(tg).
(Since we fix B points, there is a unique degree B − 1 polynomial p, which
is described in canonical form using B coefficients in F2� .) The commitment
com is the polynomial p, and the proof σi = si for each i ∈ S.

Verify(pp = (1�, (Ai,Di)i), com = p, i, σi, tg): The verification algorithm outputs
1 iff p(i) = PRG(σi, 1�) + Ai + Di · emb(tg).

AltSetup(1λ, 1N , 1B , 1t, tg): The alternate setup algorithm chooses random
strings si ← {0, 1}λ, Di ← F2� for each i ∈ [N ], p ← F2� [x]B−1 and sets
Ai = p(i) − PRG(si, 1�) − Di · emb(tg).

The correctness properties follow immediately from the construction.

Security Proofs. We need to show that the scheme satisfies indistinguishability
of setup and soundness security (Definition 7). Due to space constraints, the
proofs are included in the full version of our paper.

5 Our CCA Secure Encryption Scheme

In this section, we will present a CCA secure encryption scheme with message
space {0, 1}�cca satisfying almost-all-keys perfect correctness. We require the fol-
lowing parameters/notations for our construction.

– λ: security parameter
– N : number of ciphertext components of underlying CPA scheme
– B: size of set for ‘selected’ ciphertext components
– �tsc.σ: size of proofs output by tagged set commitment scheme
– �cpa: message space for underlying CPA scheme
– �rnd: number of random bits used by CPA scheme to encrypt �cpa bit message
– �vk: size of verification key of signature scheme

The construction uses the following primitives, which are defined in Sects. 2,
3 and 4 respectively:

– A Strongly Unforgeable One-Time Signature Scheme P1 = (Sig.Setup,
Sig.Sign, Sig.Verify).

– A CPA Secure almost-all-keys perfectly correct Encryption Scheme with
Randomness Recovery P2 = (CPA.Setup,CPA.Enc,CPA.Dec,CPA.Recover),
parameterized by polynomials �cpa (denoting the message space) and �rnd
(denoting the number of random bits used for encryption).5

5 For security parameter λ, the scheme will support �cpa(λ) bit messages, and the
encryption algorithm will use �rnd(λ) bits of randomness. We will drop the depen-
dence on λ when it is clear from context.



852 S. Hohenberger et al.

– A Tagged Set Commitment Scheme P3 = (TSC.Setup,TSC.Commit,
TSC.Verify, TSC.AltSetup), parameterized by polynomials �tsc.σ (denoting the
length of proof for each index) and �com (denoting the length of commitment).

These parameters must satisfy the following constraints:

– �cpa = 1 + �tsc.σ + �cca

– log
((

N−1
B−1

))
> �rnd + 2λ

Setup(1λ): The setup algorithm performs the following steps:
1. It first chooses public parameters for the commitment scheme. Let

tsc.pp ← TSC.Setup(1λ, 1N , 1B , 1�vk).
2. Next, it chooses N public/secret keys for the encryption scheme. Let

(cpa.pki, cpa.ski) ← CPA.Setup(1λ).
3. It sets pk =

(
tsc.pp, (cpa.pki)i∈[N ]

)
and sk = (cpa.ski)i∈[N ].

Enc(pk,m): The encryption algorithm takes as input pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)

and m ∈ {0, 1}�cca , and performs the following steps:
1. It chooses a uniformly random B size subset S ⊂ [N ]. Let S =

{i1, i2, . . . , iB} where i1 < i2 < . . . < iB .
2. Next, it chooses a signing/verification key (sig.sk, sig.vk) ← Sig.Setup(1λ).
3. It commits to the set S using sig.vk as tag. It computes

(tsc.com, (tsc.σi)i∈S) ← TSC.Commit(tsc.pp, S, sig.vk).
4. For all i �= iB , it chooses random values ri ← {0, 1}�

rnd, and sets riB
=

⊕j<B rij
.

5. Using the ri values, the encryption algorithm computes N ciphertext com-
ponents. For i ∈ S, it computes cpa.cti = CPA.Enc(cpa.pki, 1|tsc.σi|m; ri).
Else it sets cpa.cti = CPA.Enc(cpa.pki, 0�cpa ; ri).

6. Finally, it computes sig.σ ← Sig.Sign
(
sig.sk,

(
tsc.com, (cpa.cti)i∈[N ]

))

and outputs
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
.

Dec(sk, ct): Let sk = (cpa.ski)i∈[N ] and ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
.

The decryption algorithm performs the following steps:
1. It first verifies sig.σ. If 0 ← Sig.Verify(

sig.vk, sig.σ,
(
tsc.com, (cpa.cti)i∈[N ]

))
then decryption outputs ⊥.

2. Next, it initializes a set U to be ∅. For each i ∈ [N ] it does the following:
(a) Let (yi, ri) = CPA.Dec(cpa.ski, cpa.cti).6 The decryption algorithm

adds (i, yi) to U if Check(i, yi, ri) = 1, where Check is defined in
Fig. 3.

3. If the set U does not have exactly B elements then the decryption algo-
rithm outputs ⊥.

6 Recall the decryption algorithm also recovers the randomness used for encryption.



Chosen Ciphertext Security from Injective Trapdoor Functions 853

4. If ⊕(i,yi)∈U ri �= 0�rnd , it outputs ⊥.
5. Finally, the decryption algorithm checks that for all (i, ri) ∈ U , the mi

values recovered from yi are the same. If not, it outputs ⊥. Else it outputs
this common mi value as the decryption.

Fig. 3. Routine Check for checking if tuple (i, y) should be added to set U

Perfect Correctness. The message space is {0, 1}�cca , where �cca is a polynomial
function in the security parameter λ. There exists a negligible function negl(·)
such that for any security parameter λ,

Pr
[
∃ m, r ∈ {0, 1}�cca s.t. Dec(sk,Enc(pk,m)) �= m

]
≤ negl(λ)

where the probability is over the choice of (pk, sk) ← Setup(1λ) and the random
coins of Enc.

The almost-all-keys perfect correctness of the CCA scheme follows from the
almost-all-keys perfect correctness of the CPA scheme and the (perfect) correct-
ness of the signature and tagged set commitment schemes.

Remark 1. Any signature or tagged set commitment scheme with negligible cor-
rectness error can be transformed into one with perfect correctness. A signer
or committer can check whether the respective signature or commitment veri-
fies using the public verification algorithm. If it does not, the signing algorithm
can fall back to a trivial signature that is perfectly correct, but has no security
against forgeries. In the case of commitments use a trivial scheme that is binding,
but is not hiding. Since the correctness error is negligible, this will only happen
with negligible probability in the security argument.



854 S. Hohenberger et al.

5.1 Proof of Security

Theorem 3. The above construction is IND-CCA-secure (per Definition 4) and
almost-all-keys perfectly correct, assuming P1 is a strongly unforgeable one-time
signature scheme (Definition 2), P2 is an IND-CPA-secure encryption scheme
(Definition 3) with randomness recovery with almost-all-keys perfect correctness
(Sect. 3) and P3 is a secure tagged set commitment scheme (Definitions 6 and 7).

The following result follows immediately from the above theorem and known
constructions of other building blocks from injective trapdoor functions.

Corollary 1 (IND-CCA -secure Public-Key Encryption is Implied by
(Injective) Trapdoor Functions). The above construction is IND-CCA-secure
(per Definition 4) assuming injective trapdoor functions.

Proof of the main theorem proceeds via a sequence of hybrid experiments.

Hybrid H0: This experiment corresponds to the CCA experiment. Here, we spell
out the setup and encryption algorithms again in order to set up notations for
the proof.

– Setup phase: This is identical to the scheme’s setup.
1. The challenger first chooses tsc.pp ← TSC.Setup(1λ, 1N , 1B , 1t).
2. Next, it chooses (cpa.pki, cpa.ski) ← CPA.Setup(1λ) for all i ∈ [N ].
3. It sends pk =

(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ]

for handling decryption queries.
– Pre-challenge decryption queries: The adversary makes polynomially many

decryption queries. For each query ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
,

the challenger outputs Dec(sk, ct).
– Challenge ciphertext: The adversary sends two challenge messages m0,m1 ∈

{0, 1}�cca . The challenger chooses a bit b and does the following.
1. It chooses a uniformly random B size subset S∗ = {ij}j∈[B] ⊂ [N ].
2. Next, it chooses a signing/verification key (sig.sk∗, sig.vk∗) ←

Sig.Setup(1λ).
3. It then commits to the set S using sig.vk∗ as the tag. It computes

(tsc.com∗, (tsc.σ∗
i )i∈S) ← TSC.Commit(tsc.pp, S∗, sig.vk∗).

4. For all i �= iB , it chooses ri ← {0, 1}�rnd , and sets riB
= ⊕j<B rij

.
5. Using the ri values, the encryption algorithm computes N ciphertexts. If

i ∈ S, it computes cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗
i |mb; ri). Else it sets

cpa.ct∗i = CPA.Enc(cpa.pki, 0�cpa ; ri).
6. Finally, it computes sig.σ∗ ← Sig.Sign

(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))

and outputs
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

– Post-challenge decryption queries: Same as pre-challenge decryption queries,
but challenge ciphertext not allowed as a decryption query.

– Guess: The adversary sends bit b′ and wins if b = b′.



Chosen Ciphertext Security from Injective Trapdoor Functions 855

Hybrid H1: This experiment is identical to the previous one except that the
challenger chooses sig.vk∗ and S∗ during setup, and uses these to compute the
challenge ciphertext.

– Setup phase:
1. The challenger first chooses tsc.pp ← TSC.Setup(1λ, 1N , 1B , 1t).
2. Next, it chooses (cpa.pki, cpa.ski) ← CPA.Setup(1λ) for all i ∈ [N ].
3. Then it chooses a uniformly random B size subset S∗ = {ij}j∈[B] ⊂ [N ]

and (sig.sk∗, sig.vk∗) ← Sig.Setup(1λ).
4. It sends pk =

(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ]

for handling decryption queries.

Hybrid H2: In this experiment, the challenger outputs ⊥ during the decryption
queries if the queried ciphertext ct =

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
is such

that sig.vk = sig.vk∗.

– Pre-challenge decryption queries: The adversary makes polynomially many
decryption queries. For each query ct =

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
,

if sig.vk = sig.vk∗, then the challenger outputs ⊥, else it outputs Dec(sk, ct).
– Post-challenge decryption queries: Same as pre-challenge decryption queries,

but challenge ciphertext not allowed as a decryption query.

Hybrid H3: Here, the challenger runs TSC.AltSetup instead of TSC.Setup during
the setup phase. During the challenge phase, it uses the commitment and proofs
generated by TSC.AltSetup instead of computing them using TSC.Commit.

– Setup phase:
1. The challenger first chooses (cpa.pki, cpa.ski) ← CPA.Setup(1λ) for all

i ∈ [N ].
2. Next, it chooses a uniformly random B size subset S∗ ⊂ [N ] and (sig.sk∗,

sig.vk∗) ← Sig.Setup(1λ).
3. It chooses

(
tsc.com∗, (tsc.σi)i∈[N ]

)
← TSC.AltSetup(1λ, 1N , 1B , 1t,

sig.vk∗).
4. It sends pk =

(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ]

for handling decryption queries.
– Challenge phase: Note that the signature keys (sig.sk∗, sig.vk∗), set S∗ and

commitment tsc.com∗ together with proofs (tsc.σi)i∈[N ] were chosen during
setup. Below we include the full challenge phase for readability.
1. For all i �= iB , it chooses ri ← {0, 1}�rnd , and sets riB

= ⊕j<B rij
.

2. Using the ri values, the encryption algorithm computes N ciphertexts. If
i ∈ S, it computes cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗

i |mb; ri). Else it sets
cpa.ct∗i = CPA.Enc(cpa.pki, 0�cpa ; ri).

3. Finally, it computes sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))

and outputs
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.



856 S. Hohenberger et al.

Hybrid H4: In this experiment, the challenger modifies the challenge ciphertext.
Instead of encrypting 0�cpa at N −B positions, the challenger encrypts 1|tsc.σi|mb

at position i for all i ∈ [N ].

– Challenge phase:
1. For all i �= iB , it chooses ri ← {0, 1}�rnd , and sets riB

= ⊕j<B rij
.

2. Using the ri values, the encryption algorithm computes N ciphertexts.
For all i ∈ [N ], it computes cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗

i |mb; ri).
3. Finally, it computes sig.σ∗ ← Sig.Sign

(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))

and outputs
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

Hybrid H5: In this experiment, the challenger encrypts at all positions using true
randomness.

– Challenge phase:
1. For all i ∈ [N ], the challenger chooses ri ← {0, 1}�rnd .
2. Using the ri values, the encryption algorithm computes N ciphertexts.

For all i ∈ [N ], it computes cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗
i |mb; ri).

3. Finally, it computes sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))

and outputs
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

Hybrid H6: In the final hybrid experiment, the challenger switches all challenge
ciphertext components to encryptions of 0�cpa . As a result, in this hybrid, the
adversary has advantage 0.

– Challenge phase:
1. For all i ∈ [N ], it chooses ri ← {0, 1}�rnd .
2. Using the ri values, the encryption algorithm computes N ciphertexts.

For all i ∈ [N ], it computes cpa.ct∗i = CPA.Enc(cpa.pki, 0�cpa ; ri).
3. Finally, it computes sig.σ∗ ← Sig.Sign

(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))

and outputs
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

Analysis

Lemma 1. For all λ ∈ N, and any adversary A, prA,0(λ) − prA,1(λ) = 0.

Proof. In game H0 the challenge phase is used to choose a random S∗ =
{ij}j∈[B] ⊂ [N ] and sample (sig.sk∗, sig.vk∗) ← Sig.Setup(1λ). Both of these
samplings will use a fresh set of coins and their distribution will be completely
independent of any attacker actions including the challenge messages selected
by the attacker. Therefore the attacker’s sampling them in the challenge phase
as in H0 or earlier as in H1 is identical.



Chosen Ciphertext Security from Injective Trapdoor Functions 857

Lemma 2. Assuming that P1 is a strongly-unforgeable one-time signature
scheme, there exists a negligible function negl(·) s.t. for all λ ∈ N, and any
ppt. adversary A, prA,1(λ) − prA,2(λ) ≤ negl(λ).

Proof. In game H1, the challenger answers all decryption queries, except when
queried on the challenge ciphertext ct∗ =

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

In gameH2, the challengerwill not respond todecryption queries on ct∗ and returns
⊥ on any decryption query for ct =

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
where

ct �= ct∗ and sig.vk = sig.vk∗. However, there are two cases to explore. First, if
ct �= ct∗ and sig.vk = sig.vk∗ but the signature sig.σ does not verify under sig.vk
on message (tsc.com, (cpa.cti)i∈[N ])), then the challenger of game H2 immediately
outputs ⊥ and the challenger of game H1 would also have returned ⊥ (via rejection
of this ciphertext by the regular decryption algorithm) and the two responses are
identical.

Second if ct �= ct∗ and sig.vk = sig.vk∗, but the signature does verify,
then the adversary’s view of these two games differ, but we argue that due
to the strong unforgeability of the one-time signature scheme P1, this case
occurs with only negligible probability. To see this, we argue that any adver-
sary with non-negligible prA,1(λ) − prA,2(λ) can be used to break P1 as fol-
lows. The reduction generates (pk, sk) ← Setup(1λ) and sends pk to A. It
receives sig.vk∗ from the SU-OTS challenger. If sig.vk∗ appears as the sign-
ing key in any phase I decryption query, then it aborts. Since A has no
information about sig.vk∗ at this point, this can happen with probability at
most the number of decryption queries (polynomial) divided by the size of
the public key space for the signature scheme (exponential), so with negli-
gible probability. Once A outputs challenge messages m0,m1, the reduction
selects one of these messages randomly and encrypts it according to the nor-
mal encryption algorithm, except it uses sig.vk∗ as the verification key and
obtains the corresponding signature sig.σ∗ by calling the SU-OTS challenger to
sign the message (tsc.com∗, (cpa.ct∗i )i∈[N ]) (this message is computed accord-
ing to the normal encryption algorithm). It passes this properly-distributed
ciphertext ct∗ =

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
back to A. When A

issues a Phase II decryption query ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)

where ct �= ct∗, sig.vk = sig.vk∗ and sig.σ verifies, then the reduction outputs
((tsc.com, (cpa.cti)i∈[N ]), sig.σ) to win the SU-OTS challenge.

Lemma 3. Assuming that P3 is a tagged set commitment scheme with indistin-
guishability of setup (Definition 6), there exists a negligible function negl(·) s.t.
for all λ ∈ N, and any ppt. adversary A, prA,2(λ) − prA,3(λ) ≤ negl(λ).

Proof. In game H2, the challenger uses TSC.Setup to generate the public com-
mitment parameters and TSC.Commit to generate the commitment and proofs
of membership (for the B items in S ⊆ [N ]), whereas in game H3, the challenger



858 S. Hohenberger et al.

uses TSC.AltSetup to generate the public parameters, commitment and proofs
of membership (for all items in [N ]). Otherwise, these games are identical. If
there exists an efficient A that can distinguish between H2 and H3, then we can
use this A to attack the indistinguishability of setup of P3. The reduction works
as follows. In both games, a random set S∗ ⊂ [N ] and a signing/verification
key (sig.sk∗, sig.vk∗) ← Sig.Setup(1λ) are chosen at the start of the game. The
reduction sets tg = sig.vk∗. It sends (1λ, 1B , 1t, tg, S∗) to the Expt-Ind-Setup chal-
lenger, who responds with (pp∗, com∗, (σ∗

i )i∈S), which are either generated by
TSC.Setup (making this equivalent to H2 or TSC.AltSetup (making this equiva-
lent to H3). The reduction uses CPA.Setup(1λ, 1CPA) to generate N public/secret
key pairs. It sets pk =

(
pp∗, (cpa.pki)i∈[N ]

)
and sk = (cpa.ski)i∈[N ]. It sends pk

to A. It answers each decryption query by running the normal decryption algo-
rithm using sk. (In both games, we already have that if any decryption (pre or
post challenge) query sig.vk = sig.vk∗, then the response is ⊥, so if this some-
how happens the response would be identical in both games.) Upon receiving
challenge messages m0,m1, it chooses a random bit b and encrypts mb, using S∗

(which it chose randomly earlier) in step 1 of the encryption algorithm, setting
(sig.sk∗, sig.vk∗) as the signing/verification key in step 2 (instead of generating
a new pair), using the commitment/proofs (com∗, (σ∗

i )i∈S) (obtained earlier) in
step 3, instead of computing them using TSC.Commit, and then following steps
3–5 as normal to generate ct∗. It sends this challenge ciphertext ct∗ to A. It
continues to answer decryption queries for A using sk. Once A outputs a guess
b′ if b = b′, then it outputs 0 (guessing H2) and otherwise outputs 1 (guessing
H3). Since our assumption is that A has a non-negligible advantage in Game
H2 over Game H3, then this reduction will have a non-negligible advantage in
the indistinguishability of setup experiment for the tagged commitment scheme.
Thus, we have a contradiction.

Lemma 4. Assuming encryption scheme with randomness recovery P2 is an
IND-CPA secure encryption scheme and the tagged set commitment scheme P3

satisfies statistical soundness (Definition 7), for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, advA,3(λ)−advA,4(λ) ≤
negl(λ).

Proof. First, we define the alternate decryption routine which works without the
jth decryption key.

Dec-Altj(sk−j , ct): Let the secret key sk = (cpa.ski)i�=j and the ciphertext ct =(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
. The ‘alternate’ decryption oracle performs

the following steps:

1. If 0 ← Sig.Verify
(
sig.vk, sig.σ,

(
tsc.com, (cpa.cti)i∈[N ]

))
then decryption out-

puts ⊥.



Chosen Ciphertext Security from Injective Trapdoor Functions 859

2. Next, it initializes a set U ′ to be ∅. For each i �= j it computes (yi, ri) =
CPA.Dec(cpa.ski, cpa.cti). Parse yi as gi|σi|mi. It adds (i, yi) to U ′ if
Check(i, yi, ri) = 1.7

3. If the set U ′ has B − 1 elements, then set rj = ⊕(i,yi)∈U ′ri. Use rj to recover
the message from cpa.ctj . Let yj = CPA.Recover(cpa.pkj , cpa.ctj , rj). If yj �=⊥
and Check(j, yj , rj) = 1, then add (j, yj) to U ′.

4. If the set U ′ does not have exactly B elements then the decryption algorithm
outputs ⊥.

5. If ⊕(i,yi)∈U ′ ri �= 0�, it outputs ⊥.
6. Finally, the decryption algorithm checks that for all (i, ri) ∈ U ′, the mi

values recovered from yi are the same. If not, it outputs ⊥. Else it outputs
this common mi value as the decryption.

We will now show that with overwhelming probability (over the choice of the
CPA keys and the output of TSC.AltSetup) there does not exist a ciphertext ct =(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
with sig.vk �= sig.vk∗ such that Dec(sk, ct) �=

Dec-Altj(sk−j , ct).

Claim. There exists a negligible function negl(·) such that for all λ ∈ N and
j ∈ [N ],

Pr

⎡

⎢
⎣

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk �= sig.vk∗ and
Dec(sk, ct) �= Dec-Altj(sk−j , ct)

⎤

⎥
⎦ ≤ negl(λ)

where the probability is over the choice of CPA keys8 and output of
TSC.AltSetup.

Proof. We consider the following cases:

1. Both decryptions output non-bot but distinct messages.

Pr

⎡

⎢
⎢
⎢
⎣

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk �= sig.vk∗ and
Dec(sk, ct) �= Dec-Altj(sk−j , ct) and
(Dec(sk, ct),Dec-Altj(sk−j , ct)) �= (⊥,⊥)

⎤

⎥
⎥
⎥
⎦

= 0.

This follows directly from the construction of our scheme. Note that Dec and
Dec-Altj agree on N − 1 of the sub-decryptions. Hence the message recovered
must be the same if the output message is non-bot.

7 Recall, Check was defined in Sect. 5. It outputs 1 if yi �=⊥, gi = 1, the commitment
verifies and encryption of yi using public key cpa.pki and randomness ri outputs
cpa.cti.

8 For simplicity, we are assuming that the underlying PKE scheme is perfectly correct,
instead of almost-all-keys perfect correctness. Note that in an almost-all-keys perfect
scheme, there is a negligible probability that the (pk, sk) output by setup does not
satisfy correct decryption on all messages. However, since only a negligible fraction
of the keys are ‘bad’, it suffices to focus our attention on perfectly correct encryption
schemes.



860 S. Hohenberger et al.

2. Decryption using sk outputs ⊥ but decryption using sk−j outputs non-bot
message.

Pr

⎡

⎢
⎢
⎢
⎣

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk �= sig.vk∗ and
Dec(sk, ct) �= Dec-Altj(sk−j , ct) and
Dec(sk, ct) =⊥

⎤

⎥
⎥
⎥
⎦

≤ negl(λ)

Here we have the following sub-cases, depending on which step of the decryp-
tion outputs ⊥. For each of the sub-cases, we show that Dec-Altj also outputs
⊥.
(a) Step 1 of Dec outputs ⊥ (that is, signature does not verify). Then Step 1

of Dec-Altj also outputs ⊥.
(b) Step 3 of Dec outputs ⊥ (that is, the set U constructed by Dec has size

not equal to B). If |U | < B − 1, then Step 4 of Dec-Altj outputs ⊥ since
the set U ′ after Step 3 in Dec-Altj also has size less than B.
If |U | > B, then this can be used to break the statistical soundness secu-
rity of TSC (see Definition 7) because this ciphertext can produce at least
B + 1 commitments for tag sig.vk �= sig.vk∗.
If |U | = B − 1, then we will show that the size of set U ′ after Step 3
in Dec-Altj is also B − 1, hence Dec-Altj rejects in Step 4. Suppose on
the contrary, the set U ′ has size B after Step 3. This means (j, yj) was
not added to U in Dec (Step 2), but the same tuple was added to U ′ in
Dec-Altj (Step 3). Note that this implies Check(j, yj , rj) = 1 and there-
fore, CPA.Enc(cpa.pkj , yj ; rj) = cpa.ctj . Using the perfect correctness of
the encryption scheme, CPA.Dec(cpa.skj , cpa.ctj) = (yj , rj). This leads to
a contradiction (as (j, yj) /∈ U).

(c) Step 4 outputs ⊥. In this case, Step 5 of Dec-Altj also outputs ⊥ since the
set U recovered by Dec is identical to the set U ′ recovered by Dec-Altj .

(d) Step 5 outputs ⊥. Here again, since the set U recovered by Dec is identical
to the set U ′ recovered by Dec-Altj , Step 6 of Dec-Altj also rejects here.

3. Decryption using sk−j outputs ⊥ but decryption using sk outputs non-bot
message.

Pr

⎡

⎢
⎢
⎢
⎣

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk �= sig.vk∗ and
Dec(sk, ct) �= Dec-Altj(sk−j , ct) and
Dec-Altj(sk−j , ct) =⊥

⎤

⎥
⎥
⎥
⎦

≤ negl(λ)

Here we have the following sub-cases, depending on which step of Dec-Altj
outputs ⊥. For each of the sub-cases, we show that Dec also outputs ⊥.
(a) Step 1 of Dec-Altj outputs ⊥ =⇒ Step 1 of Dec outputs ⊥.
(b) Step 4 of Dec-Altj outputs ⊥. Let U ′ be the set after Step 3 in Dec-Altj ,

and U the set after Step 2 in Dec. If |U ′| > B, then Step 3 of Dec outputs
⊥ since U also has size larger than B.
If |U ′| < B − 1, then |U | < B, hence Step 3 of Dec outputs ⊥.



Chosen Ciphertext Security from Injective Trapdoor Functions 861

We will now show that if |U ′| = B − 1, then either |U | is B − 1, or
Step 4 of Dec outputs ⊥. Since |U ′| = B − 1, this means the (j, y′

j , r
′
j)

tuple9 extracted in Step 3 does not satisfy Check(j, y′
j , r

′
j) = 1. Let us

now consider the implications of |U | = B and ⊕(i,yi)∈U ri = 0�rnd . First,
note that U = U ′ ∪ {(j, yj)}, and hence rj = ⊕(i,yi)∈U ri = r′

j . Since
Check(j, yj , rj) = 1, encryption of yj using randomness rj outputs cpa.ctj .
Using the perfect correctness of the encryption scheme, it follows that
y′

j = yj , but this leads to a contradiction.
(c) Step 5 of Dec-Altj outputs ⊥ =⇒ Step 4 of Dec outputs ⊥ (the set U ′

recovered by Dec-Altj is identical to the set U recovered by Dec).
(d) Step 6 of Dec-Altj outputs ⊥ =⇒ Step 5 of Dec outputs ⊥ (same

reasoning as above).

We will now use the alternate decryption algorithm to show that hybrids H3

and H4 are computationally indistinguishable. We will first define intermediate
hybrid experiments H3,j for 0 ≤ j ≤ N , where H3,0 corresponds to H3 and H3,N

corresponds to H4. In hybrid H3,j , for each i ≤ j, the ith challenge ciphertext
component cpa.cti is an encryption of 1|tsc.σ∗

i |mb. Therefore, it suffices to show
that for all j ∈ [N ], H3,j and H3,j−1 are computationally indistinguishable.

In order to prove H3,j−1 ≈c H3,j , we will introduce two more intermediate
hybrid experiments: Halt,j,0 and Halt,j,1. The experiment Halt,j,0 is identical to
H3,j−1, except that the challenger uses Dec-Altj instead of Dec for answering
decryption queries. Similarly, the experiment Halt,j,1 is identical to H3,j , except
that the challenger uses Dec-Altj instead of Dec for answering decryption queries.
(Note that in both these experiments, the challenger still rejects decryption
queries corresponding to sig.vk∗). We will show that H3,j−1 ≈c Halt,j,0, Halt,j,0 ≈c

Halt,j,1 and Halt,j,1 ≈c H3,j .
As before, let advA,x denote the advantage of adversary A in hybrid Hx.

Claim. There exists a negligible function negl(·) such that for any λ ∈ N and
any adversary A, advA,3,j−1(λ) − advA,alt,j,0(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim5.1.

Claim. Assuming the encryption scheme P1 is IND-CPA secure, for any
ppt. adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
advA,alt,j,0(λ) − advA,alt,j,1(λ) ≤ negl(λ).

Proof. Suppose there exists a ppt. adversary A such that advA,alt,j,0 −
advA,alt,j,1 ≤ negl(λ). We can use this adversary to build a reduction algorithm
B that breaks the IND-CPA security of the encryption scheme P1. The main
observation here is that in Halt,j,0 and Halt,j,1, the only component that possibly
changes is the jth ciphertext component cpa.ctj , and we can reduce the compu-
tational indistinguishability of these hybrids to the IND-CPA security because
both these hybrids do not use the jth secret key cpa.skj .

9 We use y′
j , r

′
j here to distinguish it from yj , rj which are computed in Step 2 of Dec.



862 S. Hohenberger et al.

The reduction algorithm receives the public key cpa.pkj from the challenger;
it chooses a uniformly random B size set S, signing keys (sig.sk∗, sig.vk∗), CPA
scheme’s keys (cpa.pki, cpa.ski)i�=j , runs TSC.AltSetup and sends pk to A. The
decryption queries are handled using (cpa.ski)i�=j since both hybrids use Dec-Altj .
The adversary sends its challenge messages m0,m1, and the reduction algorithm
chooses b ← {0, 1}. If j /∈ S,10 the reduction algorithm sends 0�cpa , 1|tsc.σ∗

j |mb

to the challenger as challenge messages, and receives cpa.ctj . It then computes
the remaining ciphertext components and sends the ciphertext ct to A. The
adversary then makes polynomially many post-challenge decryption queries, and
finally sends its guess b′. The reduction algorithm guesses that cpa.ctj is encryp-
tion of 0�cpa iff b = b′.

Claim. There exists a negligible function negl(·) such that for any λ ∈ N and
any adversary A, advA,alt,j,1(λ) − advA,3,j(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim 5.1.

Lemma 5. There exists a negligible function negl(·) s.t. for all λ ∈ N, and any
adversary A, prA,4(λ) − prA,5(λ) ≤ negl(λ).

Proof. First, let us consider the distribution D defined by the following experi-
ment:

– choose a random vector x = (x1, x2, . . . , xN−1) ←
(
{0, 1}�rnd

)N−1.
– choose a random vector z ← {0, 1}N−1 of Hamming weight B − 1.
– output (x,⊕i:zi=1xi).

Let U be the uniform distribution over
(
{0, 1}�rnd

)N .

Claim.
SD(D,U) ≤ 2−λ.

Proof. This follows from the Leftover Hash Lemma [21]. Let hx be a hash func-
tion defined by x = (x1, . . . , xN−1) which maps N −1 bits to �rnd bits as follows:
hx(z) = ⊕i:zi=1xi. Let Y denote the uniform distribution over all N − 1 bit
strings of Hamming weight B − 1. This distribution has min-entropy H∞(Y) =
log

((
N−1
B−1

))
. Since the hash function family {hx}x∈({0,1}�rnd )N−1 is a pairwise-

independent hash function family and H∞(Y) > �rnd + 2λ, SD(D,U) ≤ 2−λ.

As a corollary, it follows that the following distribution D′ is also close to
uniform:

– choose a random vector z′ ← {0, 1}N of Hamming weight B. Let i1 < i2 <
. . . < iB denote the indices such that z′

ij
= 1.

– for each i �= iB , choose x′
i ← {0, 1}�rnd .

– set x′
iB

= ⊕j<Bx′
ij

and output x′.

10 If j ∈ S, then these two hybrids are identical.



Chosen Ciphertext Security from Injective Trapdoor Functions 863

Corollary 2.
SD(D′, U) ≤ 2−λ.

Proof. Given a sample x which is either from D or U , one can generate a sample
from either D′ or U as follows: choose a random permutation π : [N ] → [N ],
and permute the components of x according to π; that is, set x′

i = xπ(i) for all

i ∈ [N ]. Clearly, if x is a uniformly random sample from
(
{0, 1}�rnd

)N , then the
resulting vector x′ is also a uniformly random sample.

Suppose x is a sample from D, and let z ∈ {0, 1}N−1 be the random B − 1
weight vector chosen by D sampler with 1 at positions {i1, . . . , iB−1}. Let z′ ∈
{0, 1}N be a B weight vector which has 1 at positions {π(i1), . . . , π(iB−1), π(N)}
and 0 elsewhere. Since π is a uniformly random permutation, the vector z′

is a uniformly random B weight vector and the resulting vector x′ is from
distribution D′.

Using this corollary, we can now prove our lemma. Note that the only dif-
ference between the two hybrid experiments is the choice of randomness for
encryptions. In Hybrid H4, the challenger chooses a B-size set S = {i1, . . . , iB},
chooses ri ← {0, 1}�rnd for all i �= iB and sets riB

= ⊕j∈[B] rij
. This corresponds

to the distribution D′. In Hybrid H5, all ri are chosen uniformly at random.

Lemma 6. Assuming encryption scheme with randomness recovery P2 is an
IND-CPA secure encryption scheme and the tagged set commitment scheme P3

satisfies statistical soundness (Definition 7), for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, advA,5(λ)−advA,6(λ) ≤
negl(λ).

Proof. The proof of this lemma is very similar to the proof of Lemma4, the only
difference being that there is no set S∗ here (that is, we switch all ciphertexts to
being encryptions of 0�cpa ; in Lemma 4, the ciphertext components corresponding
to indices in set S∗ were not altered). We include the proof in the full version of
our paper.

References

1. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0055735

2. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

3. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie–Hellman problem and applications.
J. Cryptol. 22(4), 470–504 (2009). https://doi.org/10.1007/s00145-009-9041-6

https://doi.org/10.1007/BFb0055735
https://doi.org/10.1007/BFb0055735
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/s00145-009-9041-6


864 S. Hohenberger et al.

4. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

5. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

6. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

7. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

8. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

9. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

10. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

11. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 30

12. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

13. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

14. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 2

15. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman
assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 13

16. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp.
126–135. IEEE Computer Society (2001)

https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13


Chosen Ciphertext Security from Injective Trapdoor Functions 865

17. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. Miscellanea on the Interplay Between Randomness and Computa-
tion. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22670-0 28

18. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp.
25–32 (1989)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 19

21. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

22. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomor-
phic hash proof systems. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 16, p. 127 (2009)

23. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 18

24. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC, Boca Raton (2008)

25. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 1

26. Kitagawa, F., Matsuda, T.: CPA-to-CCA transformation for KDM security. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 118–148. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 5

27. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 671–700. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 23

28. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, SRI International Computer Science Laboratory (1979)

29. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
296–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 18

30. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 13

31. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on The-
ory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 427–437 (1990)

32. Pandey, O.: Personal communication (2013)
33. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, 7–20 May 2008, pp. 187–196 (2008)

https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-540-89255-7_19
https://doi.org/10.1007/978-3-642-01001-9_18
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/978-3-030-36033-7_5
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/978-3-642-13013-7_18
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/0-387-34805-0_13


866 S. Hohenberger et al.

34. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

35. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

36. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

37. Shoup, V.: Why chosen ciphertext security matters. IBM TJ Watson Research
Center (1998)

38. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, pp. 80–91 (1982)

https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35

	Chosen Ciphertext Security from Injective Trapdoor Functions
	1 Introduction
	1.1 Context on Trapdoor Functions

	2 Preliminaries
	3 Encryption Scheme with Randomness Recovery 
	3.1 Construction: Encryption Scheme with Randomness Recovery from Injective TDFs

	4 Tagged Set Commitment 
	4.1 Construction of Tagged Set Commitment 

	5 Our CCA Secure Encryption Scheme
	5.1 Proof of Security

	References




