
Equally Distributed Bus-Communication
Access Rights for Inter MCU

Communication Using Multimaster SPI

Manuel Dentgen(B), Sebastian Renner, and Jürgen Mottok

Laboratory for Safe and Secure Systems (LaS3), Technical University of Applied
Sciences, Seybothstraße 2, 93053 Regensburg, Germany

{manuel.dentgen,sebastian1.renner,juergen.mottok}@oth-regensburg.de

Abstract. With the rising complexity and processing power of mod-
ern computer systems, the amount of MCU on a single PCB also rises.
These microcontrollers often need to communicate with each other to
exchange payload and control information in a bidirectional manner.
Today’s well-established communication protocols in MCUs either do
not fit modern transmission speed requirements or do have an inappro-
priate master-slave attribute, which does not allow the communication
partners to have equal bus access rights. Therefore, this paper introduces
an extension of the Serial Peripheral Interface (SPI) to allow an equally
distributed access right for the communication interface between two
microcontrollers. It simultaneously does fit modern transmission speed
requirements of a common network interface, so that the message trans-
mission does not constitute a bottleneck in data processing. Besides the
protocol design, we do also provide a first prototype implementation,
which constitutes a proof of concept.
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1 Introduction

Within the context of the research project Energy Safe and Secure System Mod-
ule (ES3M) [9] at the Technical University of Applied Sciences (Ostbayerische
Technische Hochschule - OTH) in Regensburg, a module for the separation of
the security protocol layer from the network stack is developed. To achieve this,
the individual tasks of those layers are divided among several Microcontroller
Units (MCUs) on a single Printed Circuit Board (PCB). The goal of this con-
cept is to get a higher security level, since the sensitive security mechanisms
are outsourced to a distinct centralized controller, which is not directly acces-
sible from the external network. At the same time the controller, which can
be accessed from the external network, has no security tasks. A third controller
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enables the module to communicate with an additional independent and isolated
communication interface. This principle is shown in Fig. 1.

Fig. 1. Task separation of the security protocol layer and the network stack with the
third Input/Output-controller on the left

1.1 Contribution

During the development of the research project it has become apparent, that
the task separation principle used can easily be adopted to other application
fields, e.g. for automotive or aviation. The third controller could communicate
with an already existing sensor or actuator by connecting them via a standard
communication interface. Our concept shall enable the conversion of low-level
communication networks to Ethernet with an increased security level in those
fields, without the need to exchange every single device, but by simply including
this kind of module in a network.

However, the used MCUs only contain a single Ethernet Media Access Con-
trol (MAC) interface, which is used for the communication with the external net-
work. This results in the necessity to implement another communication channel
between the microcontrollers. The approach for this has to reach a similar trans-
mission speed to what Ethernet already offers, to not create a bottleneck in
data processing. It also has to allow bus access control on both sides with equal
rights to allow an unconditional transmission in both directions. This paper will
introduce such a communication interface.

1.2 Structure

The paper is structured as follows. In Sect. 2, some similar concepts to the one
introduced in this paper are presented and compared to each other. It shall also
be clarified why those are not fitting for our kind of task. Then in Sect. 3, the idea
and theory behind the introduced architecture is presented, while considering
the points previously mentioned. Section 4 focuses on the implementation of the
concept within the context of the research project. Next, in Sect. 5 a proof of
concept is presented, because the final implementation is not yet finished due to
limitations of the current hardware. Section 6 summarizes the current state of
the inter-controller communication and gives a brief outlook on future work.
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2 Related Work

The idea of connecting several microcontroller units together and thereby gener-
ating a network of multiple controllers is not a new task in the embedded world.
Various connection and design approaches have been made over the last years,
all with the goal to achieve a fast, robust and secure communication between
multiple controllers.

Niedermaier et al. [4] introduced a robust communication for the Industrial
Internet of Things (IIoT) sector. They provide a concept to connect a communi-
cation interface with a following proof of concept. The presented architecture is
similar to the one presented in this paper. However, they have used a standard
serial peripheral interface for the inter-controller communication, with one of the
controllers being the SPI master. This implies that the two communication part-
ners are not equally permitted to access the communication bus. Besides other
properties, this is not suitable for our project. We desire an inter-controller com-
munication where both communication partners are fully authorized to access
the bus.

Peng et al. [5] have presented a similar approach to our idea. They have real-
ized an inter-controller communication using a dual-port Random Access Mem-
ory (RAM), and with that converting RS232 or RS485 to an Ethernet interface.
However, they have developed a non-protected Ethernet endpoint, while we want
to use a loop-through with an additional security mechanism.

Szekacs et al. [8] have implemented an inter-controller communication using
the two interfaces SPI and Inter Integrated Circuit (I2C) simultaneously. Their
original goal was to connect a huge amount of sensors to one master using the
I2C-interface. As they have found out that they are not able to connect the
estimated amount of sensors using only this communication type, they decided to
extend their layout with several microcontrollers, all having their own connection
to the sensors and communicating via SPI to the master. Maemunah et al. [3]
have implemented a similar concept to them, by connecting multiple sensors to
a MCU and sending all the measured data via a single interface to a processing
master. The master is again the reason why we cannot use these approaches,
since we want to use an equal bus access method.

The discussion shows that there are many inter-controller connection tech-
niques, but none of them fitted perfectly for our task. Therefore, we have elab-
orated our requirements for the inter-controller communication more precisely
and compared it to well established protocols with the goal to find a fitting
interface.

3 Protocol Design

The previous chapter showed which elaborated communication systems are
already available and why those are not suitable for the system presented here.
Therefore, this chapter clarifies the requirements of the aspired communication
interface. On the basis of this information, some well established communication
protocols can be evaluated and eventually one is chosen.



Inter MCU Communication Using Multimaster SPI 203

3.1 Abstracting the Problem to Two Controllers

While speaking of three controllers for the research project prior to this section,
the actual aspired communication interface represents a point-to-point (PTP)
connection between two MCUs, which will be used twice originating from the
centralized security controller. Therefore the problem can be abstracted to a
data transmission between two controllers which is shown in Fig. 2. This repre-
sents another security benefit next to the task separation. The two connections
are not implemented via a single bus system, but are separated from each other
to prevent the data from being intentionally looped past the actual security con-
troller. Thereby we achieve a higher security level, already during the hardware
design phase.

Fig. 2. Communication principle broken down to two controllers

As mentioned before, an important setting for our communication protocol
is the transmission speed between the controllers. The connection of the network
controller can have a transmission speed of up to 100 Mbit/s. To not constitute
a bottleneck in data processing, the inter-controller communication should also
achieve a similar transmission speed to this extent. Another important property
of the protocol is the fully equal transmission right in both directions. The
reason for this is the possibility for both controllers to start a communication,
as independent asynchronous data transmission is possible in our architecture.
However, this results in the need for a full duplex transmission or the presence
of a flow control between the two controllers, as no data shall be lost during
transmission. These three aspects are the essential prerequisites for the transfer
protocol.

3.2 Communication Protocols

With this information, some already well-established communication protocols
can be elaborated and compared to each other. Communication protocols are
sufficiently available, all having different advantages and disadvantages compared
to each other. Examples for well-established communication interfaces, used by
embedded devices in our daily life, are UART, I2C, SPI, CAN or Ethernet.
Besides those, there are a lot of proprietary communication protocols, which are
specially adapted to an application by the developer of a device. Besides the
aspect that it is difficult to get access to these proprietary interfaces, we have
decided to use and extend a widespread protocol to make it available for a wider
range of microcontrollers.
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As already mentioned, Ethernet is not included in the evaluation due to the
insufficient amount of hardware-modules on a single MCU. If it was possible
to connect the controllers via several Ethernet networks, this would be the pre-
ferred solution for our problem. To compare the well-established interfaces, some
characteristics of them have to be clarified. This includes transmission direction
and the usage of a clock signal.

Transmission Variants. Transmission protocols can be subdivided according
to their possible transmission directions in relation to the time course. There
are two different types of transmission types which can be considered for our
application. They are called Half-Duplex and Full-Duplex. Half-Duplex describes
the possible data flow in both directions, but not at the same time. This means
that a message transmission between controller 1 and controller 2 can only take
place in one direction at a time, which would be a clear limitation in our system.
Full-Duplex on the other hand allows transmission in both directions at the same
time. To make this possible, the transmission is usually realized on two different
channels (lines). UART and SPI offer a Full-Duplex transmission, while I2C and
CAN are Half-Duplex due to restrictions caused by fewer lines.

Clock Line. Next to the transmission direction, the protocols can also be
divided into the groups asynchronous and synchronous. The difference here is the
presence or absence of a clock line. This means that with synchronous protocols
there is an additional line over which a clock signal is transmitted. It is always
generated by one of the communication partners and read by the others. A valid
data bit can then be generated and detected at the falling or rising edge of the
clock line. This allows independent operation of the two controllers and simul-
taneously synchronous data transmission, because edge sampling is one way of
resynchronizing the transmission. When using an asynchronous interface, a valid
data bit has to be detected by a specified bit length. The critical part with asyn-
chronous protocols is, that the controllers have to work synchronously during
a transmission. When the internal processing clock of the controllers and with
that the calculation of the bit length gets out of sync, a reliable detection of the
bit states can no longer be guaranteed. This effect gets worse when transmitting
large messages. It also results in the fact that asynchronous protocols usually do
allow a lower maximum transfer rate than synchronous protocols. While UART
and CAN are asynchronous protocols, SPI and I2C belong to the category of
synchronous protocols. A further detailed comparison of several serial commu-
nication protocols can also be found at [2]. We have summarized the attributes
described in this chapter in Table 1, including the four presented communication
protocols:

Next to the comparison of the already mentioned aspects, it is also possible
to compare the energy consumption. Solheim et al. [6] have done exactly that
with I2C and SPI. They found out that I2C has a higher energy consumption
than SPI and assume that the necessary pull-up resistors for the I2C bus are the
reason for this.
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Table 1. Comparison of the attributes of different communication protocols

Transmission direction Clock line

SPI Full-Duplex synchronous
I2C Half-Duplex synchronous
UART Full-Duplex asynchronous
CAN Half-Duplex asynchronous

3.3 Selected Communication Interface

The previous section shows clear advantages of SPI in comparison to the other
interfaces presented. The higher transmission speed, the Full-Duplex attribute
and the low energy consumption of SPI has led to the decision to use this interface
in our system.

The well-established Serial Peripheral Interface was originally designed by
Motorola Inc. to realize a fast, robust and synchronous data transmission
between a single master and several slaves [7]. With this transmission proto-
col, the master always is the initiator of a message transfer, while a slave can
only send an answer to a prior sent request. Furthermore, the master is gen-
erating the clock signal and with that the possibility of synchronizing the con-
trollers. This concept fitted most implementations in the embedded world so
far, because usually circuits had a single microcontroller which represented an
intelligent unit, while all other integrated circuits have just been passive and non-
intelligent (e.g. RaspberryPi1, BeagleBoneBlack2). However, this method cannot
fulfill our requirements of equally distributed communication rights between two
microcontrollers. The one-sided initiation possibility always results in one of the
controllers not being able to start a communication, which is not suitable for
the in this paper described task. A consequence of this fact is the extension of
the serial peripheral interface, while other attributes of the interface do already
fit pretty good into our task.

Additionally Tongsan et al. [10] provide a software-defined inter-processor
communication for embedded systems. They suggest to realize a software layer
with a well-defined API to make the controlled hardware exchangeable. We have
decided to use and integrate this technology into our system in order to remain
flexible for possible extensions or changes as SPI still has its downsides.

4 Implementation of the Communication

After describing the theoretical background of the communication presented in
this paper, we go on to the actual implementation. To do so, we briefly present
aspects of the research project and clarify some necessary details of the specific
controllers.
1 https://www.raspberrypi.org/.
2 https://beagleboard.org/black.

https://www.raspberrypi.org/
https://beagleboard.org/black
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4.1 Context of the Research Project

The research project, for which this inter-controller communication was devel-
oped, essentially consists of the three microcontrollers, which do implement the
task separation of security protocol and network stack. In the context of the
project, the TLS protocol for the security mechanism with an underlying TCP
connection is used. This is depicted in Fig. 3. The three controllers are of the
type STM32H73, which provide many interfaces established in the embedded
world, but, like already mentioned, just a single Ethernet interface. In theory,
other MCUs would fit into our project, but we have chosen this one, as it has
a high transmission speed Serial Peripheral Interface compared to other con-
trollers. Nevertheless, future developments on other controllers should remain
possible.

Like mentioned in the beginning of this paper, the main aspect of this multi-
controller architecture is the separation of the security protocol from the network
stack. The security protocol used in the project is Transport Layer Security
(TLS) 1.24, implemented by the open source project mbedTLS5, along with the
network stack LightweightIP6 licensed under the BSD license. For the MCUs the
real-time kernel (version 10.3.1) FreeRTOS7 for resource constrained systems
with custom developed low level drivers are used, because they offer a smaller
attack surface than e.g. a whole Linux-distribution, which has a higher amount
of security vulnerabilities.

Fig. 3. Task separation of the currently developed research project

4.2 Transmission Speed

The MCU used in our system can run an internal clock speed of up to 480 MHz.
This allows us to use the full SPI transmission speed of up to 133MHz as master
[1, p. 193], which results in the fact, that we should be able to realize the aspired
100 MBit/s transmission speed mentioned in Sect. 3. However, it is still necessary
to extend the interface, as not all attributes specified are fulfilled by standard
SPI.
3 https://www.st.com/resource/en/datasheet/stm32h743bi.pdf.
4 https://tools.ietf.org/html/rfc5246.
5 https://tls.mbed.org/download.
6 https://savannah.nongnu.org/projects/lwip/.
7 https://www.freertos.org/index.html.

https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
https://tools.ietf.org/html/rfc5246
https://tls.mbed.org/download
https://savannah.nongnu.org/projects/lwip/
https://www.freertos.org/index.html
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4.3 Necessary Connections of the Standard SPI

A standard serial peripheral interface has four lines to connect two communica-
tion partners. Those lines are the Clock (CLK), Master Out Slave In (MOSI),
Master In Slave Out (MISO) and Chip Select (CS - sometimes called Slave Select
(SS)). The last one is necessary when SPI is used as a bus system, where more
than two controllers span the communication network. This is not intended for
our project as we do only have two controllers. The resulting Point-To-Point
(PTP) connection makes this line unnecessary for our concept.

4.4 Equal Transmission Rights

Another special characteristic, which is used within our system, is the so called
unconventional Multimaster SPI. Using this setting, we do not have a distinct
master of the SPI bus, like it is described in Sect. 3. Instead, the master of the
communication is exchangeable to be always the transmitter of a message. At
the same time, the receiver of data always has to be the SPI slave. This idea
is visualized in Fig. 4. The advantage of this principle is an equal transmission
right for both controllers, in contrast to the one-sided transmission right with
normal SPI.

Fig. 4. Distribution of the SPI master attribute for the transmission of data

Simultaneously, when data is always transmitted by the master, there is
no need for the Master In Slave Out line, as data will always be put on the
Master Out Slave In line. This means, the only two connections necessary of
the standard SPI communication are the CLK and MOSI lines, which are both
controlled by the SPI master and read by the SPI slave. Using this method, the
two controllers are always in SPI slave mode, as long as they do not want to
transmit data themselves. If they again want to transmit a message, they switch
to master mode and write to the lines. The downside of this concept is that
there is no longer a Full-Duplex communication possible, as we do only have
one line left for data transmission. Furthermore, it needs a kind of flow control
to negotiate the transfer right for the prevention of a concurrent writing on the
lines.
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4.5 Flow Control

While two of the four original SPI lines were removed, additional lines for query-
ing and confirming the transmission right have to be added. These lines get the
names Request To Send (RTS) and Clear To Send (CTS), which are both imple-
mented as active low. As the names suggest, the RTS signal of one controller is
used to query the right for a transmission to the other controller. The second
controller can then allow a transmission via its CTS line. To fully enable this
functionality for both controllers, four pins are required, two inputs and two out-
puts each. The connection principle and line directions (input/output) is shown
in Fig. 5. The result of these pins is a flow control of the data sent between the
two controllers.

Fig. 5. Connection between the two controllers with additional RTS and CTS input
and output lines

Starting a Communication. The procedure depicted in Fig. 6 is required to
start a communication. Whenever there is no communication ongoing on the bus,
a controller can request a transmission to its communication partner by pulling
down its RTS output line. The request can be accepted by the communication
partner by simply pulling its own CTS output, which is connected to the CTS
input of the requesting controller, to low. This simple principle guarantees that
both controllers are set correctly for the next transmission. After this sequence,
the SPI master can initiate the transmission by generating a clock signal and
putting the corresponding bit sequence onto the MOSI line. At the same time,
the SPI slave will read a new bit for every rising edge on the clock pin. Both
communication partners do have the information that there is a transmission
ongoing due to the flow control mechanism and therefore no data can get lost
because of an concurrent write on the lines.

If the requested controller does not acknowledge the transmission with a pull
down of its CTS line, an error handling of the message transmission must occur.
This can for example be realized by pulling up the RTS line of the requesting
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Fig. 6. Procedure for starting a communication

controller, with a following renewed pull down of the RTS line after a defined
timeout.

The amount of transmitted bytes in a single transmission has to be set
before the transfer itself. There are several ways to solve this task. We have
simply added a header with a fixed length, which is sent prior to every payload
data. With the constant amount of header bytes, both controllers can set their
transmitting/receiving hardware for the right amount of bytes. The header then
contains the amount of bytes which will be sent as data after the header block
itself. This technique allows both controllers to always have information about
the transmission size which is sent between them.

Fig. 7. Procedure for a finished communication

Finished Communication. A data transmission is finished or terminated with
the sequence shown in Fig. 7. As both communication partners know the amount
of sent bytes, the reading controller confirms the reception of the corresponding
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amount of bytes by pulling up its CTS line again. Following that, the send-
ing controller pulls up its RTS line to signal the finished transmission. On the
basis of this short sequence, both controllers are informed about the successful
transmission.

After this sequence, the transmission of a single data block is finished and
both controllers with all lines have reached their initial position. This means,
both are ready for a new transmission to be set up.

5 Validation

The first implementation of the introduced protocol of this paper is already
finished. We were able to connect two controllers using the multimaster SPI and
the additional pins described in Sect. 4. Since we currently do not have a single
PCB, to which the three controllers are attached, we are still working with patch
wires that connect several NUCLEO boards from STM8 with each other. This
is the reason for using a lower transmission speed of 1 MHz, to avoid damage to
the hardware by voltage overshoots on the lines.

Fig. 8. Extract of an exemplary communication. Communication Partner 1 pulls its
RTS line (orange) down to indicate a transmission request. Communication partner 2
replies to the request by pulling down its own CTS line (red) and with that accepting
the following transmission. Subsequently the data transmission of the header (6 bytes)
with the three 2-byte fields CRC, TYPE and LENGTH can be seen. The termination
of the transmission includes the pull up of the CTS line from communication partner
2 with a following pull up of the RTS line of communication partner 1. (Color figure
online)

Figure 8 shows the communication between our Point-To-Point connection
using a logic analyzer. The described sequence of the corresponding RTS and
CTS lines of the two controllers from Sect. 4 is well recognizable. In the figure

8 https://www.st.com/resource/en/data_brief/nucleo-h743zi.pdf.

https://www.st.com/resource/en/data_brief/nucleo-h743zi.pdf
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we do see a transmission of the mentioned header, which is 6 bytes long in our
current implementation. The Header can easily be adapted to any other use
case by just changing a few code lines in the software. Our message header is
structured as follows. The first two bytes do include a to be implemented Cyclic
Redundancy Check (CRC) for our communication. Bytes 3 and 4 include the
message type. Those are adapted to the research project and in this case it means
that payload data will be sent within the next block. The last two bytes include
the data length of the following payload block. The sent data between the two
controllers was the simple string testing. Every single character is sent as byte
(ASCII) which results in the seven payload bytes depicted. The transmission of
the data block would include another flow-control scheme described in Sect. 4,
but this is not shown in the figure.

As we have not tested the higher transmission speed, this is just a proof-
of-concept. We plan on making several tests when the PCB with all controllers
is finished and ready to use. We will test especially, if we can actually reach
the aspired data throughput of 100 MBit/s. However, this will take even more
time for investigation and planning on testing and measuring methods and is
therefore postponed to a future publication.

6 Conclusion

This paper presents an extended SPI communication interface using multimaster
SPI, which was developed during a research project at the Technical University
of Applied Sciences in Regensburg. It establishes a Point-To-Point connection
of two MCUs, where both communication partners have a fully equal right to
write on the bus. To prevent the loss of data because of a concurrent write on the
lines, a flow control mechanism was implemented which allows the negotiation of
the write permission. A prototype of the concept was successfully implemented,
which constitutes the proof of concept. We believe that our prototype can be
adopted to many other fields in the embedded world. Detailed load and perfor-
mance tests are still missing, but will be presented and evaluated in a future
publication.
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