®

Check for
updates

Interleaving vs True Concurrency: Some
Instructive Security Examples

Roberto Gorrieri(®)

Dipartimento di Informatica—Scienza e Ingegneria, Universita di Bologna,
Mura A. Zamboni, 7, 40127 Bologna, Italy
roberto.gorrieri@unibo.it

Abstract. Information flow security properties were defined some years
ago in terms of suitable equivalence checking problems. These defini-
tions were provided by using sequential models of computations (e.g.,
labeled transition systems [17,26]), and interleaving behavioral equiva-
lences (e.g., bisimulation equivalence [27]). More recently, the distributed
model of Petri nets has been used to study non-interference in [1,5,6],
but also in these papers an interleaving semantics was used. By exploit-
ing a simple process algebra, called CFM [18] and equipped with a Petri
net semantics, we provide some examples showing that team equivalence,
a truly-concurrent behavioral equivalence proposed in [19,20], is much
more suitable to define information flow security properties. The dis-
tributed non-interference property we propose, called DNI, is very easily
checkable on CFM processes, as it is compositional, so that it does not
suffer from the state-space explosion problem. Moreover, DNI is charac-
terized syntactically on CFM by means of a type system.

1 Introduction

The title of this paper reminds [8], where a strong argument is presented in
support of the use of truly concurrent semantics: some of them, differently from
interleaving semantics, can be a congruence for action refinement (see, e.g., the
tutorial [15]). The purpose of this note is similar: to present one further argu-
ment in support of true concurrency, by showing by means of examples that, by
adopting an interleaving semantics to describe distributed systems, some real
information flows cannot be detected.

Information flow security properties were defined some years ago (see, e.g.,
the surveys [10,32]) in terms of suitable equivalence checking problems. Usually,
a distributed system is described by means of a term of some process algebra
(typically CCS [17,27] or CSP [23]), whose operational semantics is often given in
terms of labeled transition systems (LTSs, for short) [26] and whose observational
semantics is usually defined by means of some interleaving behavioral equivalence
such as trace semantics or bisimulation semantics (see, e.g., the textbook [17] for
an overview of behavioral equivalences on LTSs). More recently, the distributed
model of Petri nets [18,31] was used to study non-interference in [1,5,6], but
© Springer Nature Switzerland AG 2020

R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 131-152, 2020.
https://doi.org/10.1007/978-3-030-51831-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51831-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-51831-8_7

132 R. Gorrieri

a) 4 D] b)A\h @D I ¢)C|B @D]
h n
B eIl B\h @2 | BB @D

Fig. 1. An example of a secure process with never-ending behavior

also in these papers the security properties are based on interleaving behavioral
semantics and the distributed model is used only to show that, under some
conditions, these (interleaving) information flows can be characterized by the
presence (or absence) of certain causal or conflict structures in the net.

The thesis of this paper is that, for security analysis, it is necessary to describe
the behavior of distributed systems by means of a distributed model of compu-
tation, such as Petri nets, but also to observe the distributed model by means
of some truly-concurrent behavioral semantics. There is a wide range of possible
truly-concurrent equivalences (see, e.g., [13,14] for a partial overview) and it
may be not obvious to understand which is more suitable. Our intuition is that,
in order to capture all the possible information flows, it is necessary that the
observational semantics is very concrete, observing not only the partial order
of events that have occurred, as in fully-concurrent bisimilarity [4], but also the
structure of the distributed state, as in team equivalence [19], state-sensitive
fully-concurrent bisimilarity [22] and structure-preserving bisimilarity [14].

Our aim is to analyze systems that can perform two kinds of actions: high-
level actions, representing the interaction of the system with high-level users,
and low-level actions, representing the interaction with low-level users. We want
to verify whether the interplay between the high user and the high part of the
system can affect the view of the system as observed by a low user. We assume
that the low user knows the structure of the system, and we check if, in spite of
this, (s)he is not able to infer the behavior of the high user by observing the low
view of the execution of the system. Hence, we assume that the set of actions
is partitioned into two subsets: the set H of high-level actions and the set L of
low-level actions.

To explain our point of view, we use the process algebra CFM [18,20], extend-
ing finite-state CCS [27] with a top-level operator of asynchronous (i.e., without
communication capabilities) parallelism. Hence, the systems we are going to
define, onto which high-level users and low-level users interact, are simply a col-
lection of non-interacting, independent, sequential processes. Consider the CFM
sequential process

A=I1A+hB B=I1B

where A and B are constants, each equipped with a defining equation, and where
[is a low action and h is a high one. The LTS semantics for A is in Fig. 1(a).
Intuitively, this system is secure because the execution of the high-level action h
does not add any information to a low-level observer: what such a low observer
can see is just a sequence of the low action [in any case. The most restrictive non-

Interleaving vs True Concurrency: Some Instructive Security Examples 133

C
" Q |
h B\
B
[/ [

Fig. 2. The Petri net for the process C'| B in (a), of (C'| B)\h in (b) and of (B| B)\h
in (c)

>
=
O
_—
=
a
-

S
=
=

interference property discussed in [6,10], called SBNDC, requires that whenever
the system performs a high-level action, the states of the system before and after
executing that high-level action are indistinguishable for a low-level observer. In
our example, this means that A is SBNDC if A\h is bisimilar to B\h, where
A\h denotes the process A where the transition h is pruned. By observing the
LTSs in Fig. 1(b), we conclude that A is SBNDC.

However, the LTS in Fig.1(a) is isomorphic to the LTS in 1(c), which is
the semantics of the parallel process C'| B, where C' = h.B. Therefore, we can
conclude that also C'| B enjoys the SBNDC non-interference property. Unfor-
tunately, this parallel system is not secure: if a low observer can realize that
two occurrences of actions [have been performed in parallel (which is a possible
behavior of B| B, but this behavior is not represented in the LTS semantics),

st \ A sa\h
b) c)
/ /
s3\h sqa\ h ss\ A s¢ \ h
a b a a b
s7\h

Fig. 3. An example of an insecure process

134 R. Gorrieri

L.h.C 1.h.0 hil0+1.C
a) b)
/ /
h.C h.0
h h

<O

Fig. 4. By observing the state, information flows can be detectable

then (s)he is sure that the high-level action h has been performed. This trivial
example show that SBNDC, based on interleaving bisimulation equivalence, is
unable to detect a real information flow from high to low.

However, if we use a Petri net semantics for the process algebra CFM,
as described in Sect.3, we have that the net semantics for C'| B, outlined in
Fig.2(a), is such that (C'| B)\h (whose net semantics is outlined in Fig.2(b))
is not “truly-concurrent” bisimilar to (B|B)\h (whose net semantics is in
Fig. 2(c)). In fact, it is now visible that the two tokens on place B\h in the
net in (c) can perform transition ! at the same time, and such a behavior is
impossible for the net in (b). This example calls for a truly-concurrent seman-
tics which is at least as discriminating as step bisimulation equivalence [18,28],
which is able to observe the parallel execution of actions.

However, it is not difficult to elaborate on the example above in order to
show that, actually, a more discriminating truly-concurrent semantics is neces-
sary. E.g., the net in Fig. 3(a) is such that the two low-observable subnets before
and after the execution of h (depicted in Fig. 3(b) and 3(c), resp.) are step bisim-
ilar, even if they generate different partial orders: if an observer realizes that b
is causally dependent on a, then (s)he infers that h has been performed. (To be
precise, this example is not expressible in our simple CFM process algebra, but it
can in the more generous process algebra FNM [18].) One of the most accurate
(and popular) truly-concurrent behavioral equivalences for Petri nets is fully-
concurrent bisimilarity [4] (fc-bisimilarity, for short), whose intuition originates
from history-preserving bisimilarity [13]. So, it seems that we can simply change
the SBNDC definition by replacing interleaving bisimilarity (on the LTS seman-
tics) with fc-bisimilarity (on the Petri net semantics). However, fc-bisimilarity
observes only the partial order of the performed events, while it abstracts from
the size of the distributed state, because it may relate markings composed of a
completely different number of tokens. The following example shows that also
the size of the marking is an important feature, that cannot be ignored, as fc-
bisimilarity does.

Interleaving vs True Concurrency: Some Instructive Security Examples 135

Consider the net in Fig.4(a), which is the semantics of the CFM process
[.h.C, with C' = 0. Since h is not causing any low action, we conclude that this
net is secure. However, the very similar net in (b), which is the semantics of
[.h.0, is not secure: if the low observer realizes that the token disappears in the
end, then (s)he can infer that h has been performed. This simple observation is
about the observability of the size of the distributed system: if the execution of
a high-level action modifies the current number of tokens (i.e., the number of
currently active sequential subprocesses), then its execution has an observable
effect that can be recognized by a low observer. Similarly, the net in (c), which
is the semantics of h.l.0 + [.C' with C' = 0, is such that, before and after h, the
same partial order of event can be performed, but if the token disappears in
the end, then the low observer knows that h has been performed. Therefore, it
is necessary to use a truly-concurrent behavioral equivalence slightly finer than
fully-concurrent bisimilarity, able to observe also the structure of the distributed
state, such as state-sensitive fc-bisimilarity [22] and structure-preserving bisimi-
larity [14], which can be characterized in a very simple and effective way on CFM
as team equivalence [19,20,22]. So, we are now ready to propose the property
DNI (acronym of Distributed Non-Interference) as follows: a CFM process p is

DNI if for each reachable p’, p”" and for each h € H such that p’ LN p", we have
p'\H ~® p"\H, where ~% denotes team equivalence.

The DNI check can be done in a simple way. Given a process p =
p1|p2| ... | pn, where each p; is sequential, then we prove that p is DNT if and
only if each p; is DNI. Hence, instead of inspecting the state-space of p, we can
simply inspect the state-spaces for py,po,...pn. If the state-space of each p; is
composed of 10 states, then the state-space of p is composed of 10™ states, so
that a direct check of DNI on the state space of p is impossible for large values of
n. However, the distributed analysis on each p; can be done in linear time w.r.t.
n, hence also for very large values of n. Moreover, a structural characterization
of DNT can be provided, as well as a typing system: we prove that a CFM process
p is DNT iff p (or a slight variant of it) is typed. The typing system is based on
a finite, sound and complete, axiomatization of team equivalence [20].

The paper is organized as follows. Section 2 introduces the simple Petri net
model we are using, namely finite-state machines, together with the definitions
of bisimulation on places and team equivalence. Section 3 defines the syntax of
the process algebra CFM, its net semantics and recalls the finite, sound and
complete, axiomatization of team equivalence from [20]. Section 4 introduces the
distributed non-interference property DNI on CFM processes, proving that it can
be really checked in a distributed manner, and also describes the typing system
for DNI. Finally, Sect. 5 comments on related work, outlines some possible future
research and lists some additional reasons to prefer truly-concurrent semantics
over interleaving semantics.

2 Finite-State Machines and Team Equivalence

By finite-state machine (FSM, for short) we mean a simple type of finite Petri net
[18,31] whose transitions have singleton pre-set and singleton, or empty, post-set.

136 R. Gorrieri

The name originates from the fact that an unmarked net of this kind is essentially
isomorphic to a nondeterministic finite automaton [24] (NFA, for short), usually
called a finite-state machine as well. However, semantically, our FSMs are richer
than NFAs because, as their initial marking may be not a singleton, these nets
can also exhibit concurrent behavior, while NFAs are strictly sequential.

Definition 1 (Multiset). Let N be the set of natural numbers. Given a finite
set S, a multiset over S is a function m : S — N. Its support set dom(m) is
{se s ‘ m(s) # 0}. The set of all multisets over S is .#(S), ranged over by m.
We write s € m if m(s) > 0. The multiplicity of s in m is the number m(s). The
size of m, denoted by |ml|, is the number) s m(s), i.e., the total number of its
elements. A multiset m such that dom(m) = () is called empty and is denoted by
0. We write m Cm/ if m(s) <m/(s) for all s € S.

Multiset union _ @ _ is defined as follows: (m @ m')(s) = m(s) + m/(s); it is
commutative, associative and has 0 as neutral element. Multiset difference & _
is defined as follows: (m1©mz2)(s) = max{m(s)—maz(s),0}. The scalar product
of a number j with m is the multiset j - m defined as (5 -m)(s) =7 - (m(s)). By
s; we also denote the multiset with s; as its only element. Hence, a multiset m
over S = {s1,...,8,} can be represented as ki -$1 D ko 2D ... D ky - Sn, where
ki =m(s;) >0 forj=1,...,n. O

Definition 2 (Finite-state machine). A labeled finite-state machine (FSM,
for short) is a tuple N = (S, A, T), where

e S is the finite set of places, ranged over by s (possibly indexed),
o A is the finite set of labels, ranged over by £ (possibly indexed), and
e T CSxAx(SU{B}) is the finite set of transitions, ranged over by t.

Given a transition t = (s,£,m), we use the notation *t to denote its pre-set
s (which is a single place) of tokens to be consumed; [(t) for its label £, and t*

to denote its post-set m (which is a place or the empty multiset) of tokens to
l
be produced. Hence, transition t can be also represented as *t LION te. a
Definition 3 (Marking, FSM net system). A multiset over S is called a
marking. Given a marking m and a place s, we say that the place s contains
m(s) tokens, graphically represented by m(s) bullets inside place s. An FSM
net system N(my) is a tuple (S, A, T, mg), where (S, A,T) is an FSM and myg
is a marking over S, called the initial marking. We also say that N(mg) is a
marked net. An FSM net system N(mg) = (S, A, T, mg) is sequential if mg is
a singleton, i.e., |mgo| = 1; while it is concurrent if mq is arbitrary. O

Definition 4 (Firing sequence, reachable markings). Given an FSM N =
(S, A, T), a transition t is enabled at marking m, denoted by m[t), if *t C m.
The execution (or firing) of t enabled at m produces the marking m' = (m S *t)®

!
t*. This is written usually as m[t)ym’, but also as m L firing sequence
starting at m is defined inductively as

Interleaving vs True Concurrency: Some Instructive Security Examples 137

83 S4

S1
a)
a C a b
852
b 5

Fig. 5. A sequential finite-state machine in (a), and a concurrent finite-state machine
in (b)

Fig. 6. Two bisimilar FSMs

e ml[e)m is a firing sequence (where e denotes an empty sequence of transitions)
and
o ifm[oym’ is a firing sequence and m/[tym”, then m[ot)ym” is a firing sequence.

If o = t1...ty (for n > 0) and m[o)m' is a firing sequence, then there
exist my,...,Mpy1 such that m = mqlt)malta) ... muyltn)mer1 = m/, and
o = t1...t, is called a transition sequence starting at m and ending at m'.
The set of reachable markings from m is reach(m) = {m’ | 3o.m[o)m'}. O

Definition 5. An FSM system N(mg) = (S, A, T,mg) is dynamically reduced
if Vs € S Im € reach(mg).m(s) > 1 and ¥t € T Im,m’ € reach(myg) such that
mltym/. O

Ezxample 1. By using the usual drawing convention for Petri nets, Fig.5 shows
in (a) a sequential FSM, which performs a, possibly empty, sequence of a’s and
b’s, until it performs one ¢ and then stops successfully (the token disappears in
the end). Note that a sequential FSM is such that any reachable marking is a
singleton or empty. Hence, a sequential FSM is a safe (or 1-bounded) net: each
place in any reachable marking can hold one token at most. In (b), a concurrent

138 R. Gorrieri

a) Q b) ¢) %}ag;)a

2 S4 S5

Fig. 7. Some (non-)-bisimilar FSMs

FSM is depicted: it can perform a forever, interleaved with two occurrences of b,
only: the two tokens in s4 will eventually reach s5, which is a place representing
unsuccessful termination (deadlock). Note that a concurrent FSM is a k-bounded
net, where k is the size of the initial marking: each place in any reachable marking
can hold k tokens at most. Hence, the set reach(m) is finite for any m. As a final
comment, we mention that for each FSM N = (S, A,T) and each place s € S,
the set reach(s) is a subset of S U {0}. O

2.1 Bisimulation on Places

We provide the definition of (strong) bisimulation on places for unmarked FSMs,
originally introduced in [19]. Because of the shape of FSMs transitions, in the
definition below the post-sets m; and mso can be either the empty marking 6 or
a single place.

Definition 6 (Bisimulation on places). Let N = (S, A,T) be an FSM. A
bisimulation is a relation R C S x S such that if (s1,s2) € R then for all{ € A

e VYmy such that s, LN my, dmeg such that so LN mo and either m; = 0 = mo
or (my,mg) € R,

e Vmoy such that s LN me, Imy such that sq LN m1 and either m; = 0 = my
or (m1,ma) € R.

Two places s and s’ are bisimilar (or bisimulation equivalent), denoted s ~ s,
if there exists a bisimulation R such that (s,s’) € R. O

Example 2. Consider the nets in Fig. 6. It is not difficult to realize that relation
R ={(s1,85), (s2,56), (52, 57), (3, 88), (84, sg)} is a bisimulation on places. O

Example 3. Consider the nets in Fig. 7. It is not difficult to realize that s; = s3.
In fact, s; may reach s, by performing a; s3 can reply to this move in two
different ways by reaching either s4 or s5; however, while s, offers both b and
¢, s4 may perform only b and s5 only c; hence, s;, and s5 are not bisimilar to
$o and so also sy is not bisimilar to s3. This example shows that bisimulation

Interleaving vs True Concurrency: Some Instructive Security Examples 139

a.b.0+b.a.0 aC b.0

a0 b.0
a) b) c)
“ b a b a b
b0 Q @ a0 O
C

o[e

Fig. 8. Three net systems: a.b.0 + b.4.0, a¢.0]5.0 and a.C'|b.0 (with C = 0)

equivalence is sensitive to the timing of choice. Furthermore, also s¢ and sg are
not bisimilar. In fact, sg can reach s; by performing a, while sg can reply by
reaching the empty marking, but 6 ~ s;. This example shows that bisimulation
equivalence is sensitive to the kind of termination of a process: even if s; is
stuck, it is not equivalent to 6 because the latter is the marking of a properly
terminated process, while s7 denotes a deadlock situation. O

Remark 1 (Complexity). If m is the number of net transitions and n of places,
checking whether two places of an FSM are bisimilar can be done in O(m log (n+
1)) time, by adapting the algorithm in [30] for ordinary bisimulation on LTSs.
Indeed, this very same algorithm can compute ~ by starting from an initial
partition of SU {6} composed of two subsets: S and {#}. Bisimulation on places
enjoys the same properties of bisimulation on LTSs, i.e., it is coinductive and
with a fixed-point characterization. The largest bisimulation is an equivalence
and can be used to minimize the net [19]. O

2.2 Team Equivalence

Definition 7 (Additive closure). Given an FSM net N = (S,A,T) and a
place relation R C S x S, we define a marking relation R® C .#(S) x .#(S),
called the additive closure of R, as the least relation induced by the following
axiom and rule.

(m1,mq) € R (m},mh) € R?

(0,0) € R® (m1 & mfi, ms ®mb) € R®
O

Note that, by definition, two markings are related by R® only if they have
the same size; in fact, the axiom states that the empty marking is related to
itself, while the rule, assuming by induction that m; and ms have the same size,
ensures that s; & m; and sy @ ms have the same size. An alternative way to
define that two markings m and m, are related by R® is to state that m; can
be represented as s1 @ s2 ... P sg, ma can be represented as s P sHH ... B s},

140 R. Gorrieri

and (s;,s;) € Rfor i =1,...,k. Note also that if R is an equivalence relation,
then R® is also an equivalence relation.

Definition 8 (Team equivalence). Given a finite-state machine N =
(S,A,T) and the bisimulation equivalence ~ C S x S, we define team equiv-
alence ~® C #(S) x A (S), as the additive closure of ~. O

Ezample 4. Continuing Example 2 about Fig. 6, we have, e.g., that the marking
$1 @2 526 s3P sy is team equivalent to any marking with one token in s5, two
tokens distributed over sg and s7, and two tokens in sg; e.g., s5PsgPD S7PH2-sg or
S$5®2-57®2-sg. Note that my = s1 P2 so has the same size of my = 2+ 55 P sg,
but the two are not team equivalent; in fact, we can first match s; with one
instance of s5; then, one instance of s, with sg; but, now, we are unable to find
a match for the second instance of so, because the only element left in my is s,
and s9 is not bisimilar to ss. O

Example 5. Team equivalence is a truly concurrent equivalence. The FSM in
Fig.8(a) denotes the net for the sequential CFM process term a.b.0 + b.a.0,
which can perform the two actions a and b in either order. On the contrary, the
concurrent FSM in (b) denotes the net for the parallel CEM process term a.0|b.0.
Note that place a.b.0 4+ b.a.0 is not team equivalent to the marking a.0 & 0.0,
because the two markings have different size. Nonetheless, a.b.0 + b.a.0 and
a.0 @ b.0 are interleaving bisimilar. O

Ezxample 6. If two markings m; and msy are interleaving bisimilar and have the
same size, then they may be not team equivalent. For instance, consider Fig. 8(c),
which denotes the net for the CFM process term a.C' | b.0, where C' is a constant
with empty body, i.e., C = 0. Markings a.0 & 5.0 and a.C & b.0 have the
same size, they are interleaving bisimilar (actually, they are even fully concurrent
bisimilar [4]), but they are not team equivalent. In fact, if a.C' .0 =~ C @©b.0,
then a.0 @ .0 may try to respond with .0 @ 5.0 = 4.0, but C' @ b.0 and b.0
are not team bisimilar markings, as they have different size. a

Remark 2 (Complexity). Once the place relation ~ has been computed once
and for all for the given net in O(m - log (n + 1)) time, the algorithm in [19]
checks whether two markings m; and msy are team equivalent in O(k?) time,
where k is the size of the markings. In fact, if ~ is implemented as an adjacency
matrix, then the complexity of checking if two markings m; and mgy (represented
as a list of places with multiplicities) are related by ~® is O(k?), because the
problem is essentially that of finding for each element s; of m; a matching,
~-related element so of mao. O

3 CFM: Syntax, Semantics, Axiomatization

3.1 Syntax

Let Act be a finite set of actions, ranged over by u, partitioned into two subsets
L and H of low-level actions and high-level ones, respectively. Let 4 be a finite

Interleaving vs True Concurrency: Some Instructive Security Examples 141

Table 1. Structural operational LTS semantics for CFM

L} /
(Pref) e (Cons) % C=p
wp—p C—p
p—=1 g4
(Sum;y) — (Sumsz) B —
p+q—7p p+qg—¢
' g 4q
(Par;) ——+—— (Pary) ————
pla—"7'lq pla—"=pld

set of constants, disjoint from Act, ranged over by A, B,C,.... The CFM terms
(where CFM is the acronym of Concurrent Finite-state Machines) are generated
from actions and constants by the following abstract syntax (with three syntactic
categories):

su:=0| pq|s+s guarded processes
g:=s| C sequential processes
pu=gq|plp parallel processes

where 0 is the empty process, p.q is a process where action p prefixes the residual
q (p.— is the action prefizing operator), s; + so denotes the alternative composi-
tion of s; and sg (—+ — is the choice operator), p; | p2 denotes the asynchronous
parallel composition of p; and ps and C is a constant. A constant C' may be
equipped with a definition, but this must be a guarded process, i.e., C = s. A
term p is a CFM process if each constant in Const(p) (the set of constants used
by p; see [18] for details) is equipped with a defining equation (in category s).
The set of CFM processes is denoted by Pcpas, the set of its sequential pro-
cesses, 1.e., those in syntactic category ¢, by 2252, and the set of its guarded
processes, i.e., those in syntactic category s, by ,@(gflﬁlM. By sort(p) C Act we
denote the set of all the actions occurring in p.

3.2 Semantics

The interleaving LTS semantics for CFM is given by the structural operational
rules in Table1. Note that each state of the LTS is a CFM process. As an
example, the LTS for C'| B, with C' = h.B and B = [.B, is described in Fig. 1(c).
It is possible to prove that, for any p, the set of states reachable from p is finite
[18].

The Petri net semantics for CFM, originally in [18], is such that the set
Scrm of pla-ces is the set of the sequential CFM processes, without 0, i.e.,
Scrm = PAE \{0}. The decomposition function dec : Popy — A (Scrm),
mapping process terms to markings, is defined in Table2. An easy induction
proves that for any p € Pcopar, dec(p) is a finite multiset of sequential processes.
Note that, if C' = 0, then § = dec(0) # dec(C) = {C}. Note also that § =
dec(0) # dec(0 4+ 0) = {0 + 0}, which is a deadlock place.

142 R. Gorrieri

Table 2. Decomposition function

dec(0) = 6 dec(p.p) = {p.p}
dec(p+p') ={p+p'} dec(C) = {C}
dec(p|p’) = dec(p) © dec(p’)

Table 3. Denotational net semantics

[olr = (0,0,0,6)
[e-plr = (S, A, T, {n.p}) given [p]; = (8, A", T’, dec(p)) and where
S={pprus’, A={p}u A, T ={({p.p} n dec(p))} UT’
Iy + p2lr = (S, A, T, {p1 + p2}) GiVen [p;lr = (Si, As, Ti, dec(p;)) for i =1,2, and where
S ={p1 +p2} US;uUS,, with, for i = 1,2,
e {Si 3t € T; such that ¢*(p;) >0
S; \ {p;} otherwise
A=A UAy, T=T uT,uT), with, for i =1,2,
T,-’_{Ti JteT; . t%(p;) >0
' T; \ {t € T; | *t(p;) > 0} otherwise
T = {({p1 + P2}, m) | ({pi}, p,m) € Ty, i = 1,2}
[Cl; = ({C},0,0,{C}) ifcer
ICl: = (S, A, T,{C}) if c g1, given ¢ =p and [p];u(cy = (87, A", T', dec(p))
A=4A",8={cyus”, where
S”{s’ 3teT .t*(p) >0
s/ \ {p} otherwise
T = {({C},u,m) | ({p}, u,m) € T’} U T" Where
T”_{T’ 3teT . t*(p) >0
T\ {t € T' | *t(p) > 0} otherwise
[p1 | p2lr = (S, A, T, mo) given [p;]; = (S;, A;, Ty, m;) for i = 1,2, and where

S=8S1US3, A=A UAy, T=T1UT2, mg=m1 D my

Now we provide a construction of the net system [p]y associated with process
p, which is compositional and denotational in style. The details of the construc-
tion are outlined in Table 3. The mapping is parametrized by a set of constants
that have already been found while scanning p; such a set is initially empty and
it is used to avoid looping on recursive constants. The definition is syntax driven
and also the places of the constructed net are syntactic objects, i.e., CFM sequen-
tial process terms. For instance, the net system [a.0]g is a net composed of one
single marked place, namely process a.0, and one single transition ({a.0},a,8).
A bit of care is needed in the rule for choice: in order to include only strictly
necessary places and transitions, the initial place p; (or p3) of the subnet [p1];
(or [p2]r) is to be kept in the net for p; + po only if there exists a transition
reaching place p; (or pa) in [p1]r (or [p2]r), otherwise py (or ps) can be safely
removed in the new net. Similarly, for the rule for constants.

Interleaving vs True Concurrency: Some Instructive Security Examples 143

We now list some properties of the semantics, whose proofs are in [18], which
state that CFM really represents the class of FSMs.

Theorem 1 (Only Concurrent FSMs). For each CFM process p, [ply is a
concurrent finite-state machine. a

Definition 9 (Translating Concurrent FSMs into CFM Process
Terms). Let N(mg) = (S, A,T,mo)—with S = {s1,...,sn}, A C Act, T =
{ti,...,tx}, and I(t;) = p;—be a concurrent finite-state machine. Function
Term (=), from concurrent finite-state machines to CFM processes, is defined
as

Torm(N(mo)) = Cif -+ [Cy|--+ | Cul -+ [Cy
mo(s1) mo(sn)
where each C; is equipped with a deﬁm’ng equation C; = ¢t +---+ck (with

C; =0 if k=0), and each summand c!, for j =1,...,k, is equal to

i 07 Zszg.t],

o 1.0, if *t; = {s;} and t§ = 0;

o 11;.Ch, if *t; = {si} and t§ = {sn}. O
Theorem 2 (All Concurrent FSMs). Let N(mg) = (S,A,T,mg) be a
dynamically reduced, concurrent finite-state machine such that A C Act, and
let p= Torrm(N(mg)). Then, [plg is isomorphic to N(myg). O

Therefore, thanks to these results (proved in [18]), we can conclude that the
CFM process algebra truly represents the class of FSMs. Hence, we can transfer
the definition of team equivalence from FSMs to CFM process terms in a simple
way.

Definition 10. Two CFM processes p and q are team equivalent, denoted p ~®
q, if, by taking the (union of the) nets [plg and [q]p, we have that dec(p) ~®
dec(q). O

Of course, for sequential CFM processes, team equivalence ~% coincides with
bisimilarity on places ~.

Finally, as we are going to use an auxiliary restriction operator over CFM
terms of the form p\H, we define its net semantics as follows.

Definition 11 (Semantics of the auxiliary restriction operator). Given
a CFM process p, whose net semantics is [p]p = (S, A, T, dec(p)), we define the
net associated to p\H as the net [p\H]y = (S’, A", T", m) where

S’ ={s\H ‘ s € S}, i.e., each place is decorated by the restriction operator;
A'=A\H, ie., {n|pecApngH};

T' = {(*t\H,l(t),t*\H) | t € T,1(t) & H};

m = dec(p)\H, where the restriction operator is applied element-wise to the
places, if any, of the marking dec(p). O

As an example, the net for C'| B, with C' = h.B and B = [.B, is outlined in
Fig. 2(a), while, assuming that H is composed of a single action h, the net for
(C'| B)\h is in Fig. 2(b).

144 R. Gorrieri

3.3 Axiomatization

In this section we recall the sound and complete, finite axiomatization of team
equivalence over CFM outlined in [20]. For simplicity’s sake, the syntactic defi-
nition of open CFM (i.e., CFM with variables) is given with only one syntactic
category, but each ground instantiation of an axiom must respect the syntactic
definition of CFM given (by means of three syntactic categories) in Sect. 3.1; this
means that we can write the axiom = + (y + z) = (z + y) + z, but it is invalid
to instantiate it to C' + (a.0 + b.0) = (C' + a.0) + b.0 because these are not legal
CFM processes (the constant C' cannot be used as a summand).

The set of axioms are outlined in Table 4. We call E the set of axioms {A1,
A2, A3, A4, R1, R2, R3, P1, P2, P3}. By the notation £ F p = ¢ we
mean that there exists an equational deduction proof of the equality p = ¢, by
using the axioms in F. Besides the usual equational deduction rules of reflexivity,
symmetry, transitivity, substitutivity and instantiation (see, e.g., [17]), in order
to deal with constants we need also the following recursion congruence rule:

p=qg N A=p{A/z} N B=q{B/z}
A=B

where p{A/z} denotes the open term p where all occurrences of the variable
are replaced by A. The axioms A1-A4 are the usual axioms for choice where,
however, A3—A4 have the side condition x # 0; hence, it is not possible to prove
EF 040 =0, as expected, because these two terms have a completely different
semantics. The conditional axioms R1-R3 are about process constants. Note
that R2 requires that p is not (equal to) 0 (condition p # 0). Note also that these
conditional axioms are actually a finite collection of axioms, one for each constant
definition: since the set € of process constants is finite, the instances of R1-R3
are finitely many. Finally, we have axioms P1-P3 for parallel composition.

Theorem 3 [20] (Sound and Complete). For everyp,q € Perym, EFp=gq
if and only if p ~% q. 0

Table 4. Axioms for team equivalence

Al Associativity x4+ (y+z2)=(x+y)+z

A2 Commutativity r+y=y+zx

A3 Identity r+0==z ifzx#0

A4 Idempotence r+r== ifx£0
R1 Stuck ifC=0,thenC=0+0
R2 Unfolding ifC=p A p#0,thenC =p

R3 Folding if C =p{C/x} N q=p{q/z}, then C =g¢q
P1 Associativity z|(y|z) = (z|y)]|z

P2 Commutativity zly=ylz
P3 Identity z|0=z

Interleaving vs True Concurrency: Some Instructive Security Examples 145

4 DNI: Distributed Non-interference

4.1 Definition and Compositional Verification

Definition 12 (Distributed Non-Interference (DNI)). A CFM process p
enjoys the distributed non-interference property (DNI, for short) if for each

p',p", reachable from p, and for each h € H, such that p’ Lp”, we have that
p'\H ~® p"\H holds. 0

This intuitive and simple definition is somehow hybrid, because, on the one
hand, it refers to reachable states p’ and p” in the LTS semantics, while, on the
other hand, it requires that p’\H ~® p”\ H, a condition that can be checked on
the Petri net semantics. We can reformulate this definition in such a way that
it refers only to the Petri net semantics, a reformulation that will be very useful
in proving the following theorem.

Definition 13 (DNI on Petri nets). Given a CFM process p and the FSMs
[plo and [p\H]y, we say that p satisfies DNI if for each m’,m”, reachable from

dec(p) in [plg, and for each h € H, such that m’ L, we have that the two
markings m'\H and m""\H of [p\H]g are team equivalent. O

Theorem 4. A process p is not DNI iff there exists p; € dec(p) such that p; is
not DNI.

Proof. If p is not DNI, then there exist m, m' reachable from dec(p), and h € H,
such that m' - m”, but the two markings m'\H and m"\H of [p\H]p are not
team equivalent. Because of the shape of FSM transitions, m’ I is @ move

that must be due to a transition s —— m, so thatm' = s®m and m”" = m o m.
Therefore, m'\H = s\H @ m\H and m"\H = m\H @ m\H. If m'\H is not
team equivalent to m"\H, then necessarily s\H » m\H. Since m is reachable
from dec(p), because of the shape of net transitions, there exists p; € dec(p)
such that s is reachable from p;. Summing up, if p is not DNI, we have found

a p; € dec(p) which is not DNI, because p; can reach s, transition s m s
firable and s\H » m\H. The reverse implication is obvious. O

Corollary 1. A CFM process p is DNI if and only if each p; € dom(dec(p)) is
DNI.

Proof. The thesis is just the contranominal of Theorem 4. a

Hence, in order to check whether p is DNI, we first compute dec(p) to
single out its sequential components; then, we consider only the elements of
dom(dec(p)), because it is necessary to check each sequential component only
once. For instance, if p = (¢1|¢2) | (q1 | g2), then, assuming ¢; and ¢o sequential,
dec(p) =2-q1 ®2- go, so that dom(dec(p)) = {q1, g2}, and so we have simply to
check whether ¢; and ¢o are DNI.

146 R. Gorrieri

Corollary 2. If p ~® g and p is DNI, then also q is DNL.

Proof. By Corollary 1, p is DNI if and only if each p; € dom(dec(p)) is DNL
Since p ~® q, there exists a ~-relating bijection between dec(p) and dec(q).
Therefore, the thesis is implied by the following obvious fact: given two sequential
CFM processes p;, q; such that p; ~ q;, if p; is DNI, then q; is DNI. a

4.2 Efficient Verification Based on a Structural Characterization

A very efficient DNI verification can be done with the following algorithm. Given
the CFM process p, first compute the nets [p]g = (S, A, T, dec(p)) and [p\H]g.
Then, compute bisimilarity ~ on the places of the net [p\H]y. Finally, for each
t € T such that I(t) € H, check whether *t\H and ¢*\ H are bisimilar: if this is
the case for all the high-transitions of [p]g, then p is DNI; on the contrary, if for
some t the check fails (e.g., because t* =), then p is not DNI. The correctness
of this polynomial algorithm follows by the fact that the net [p]g is dynamically
reduced. Its complexity is essentially related to the problem of computing ~ (cf.
Remark 1) for [p\H]y and to give it a suitable adjacency matrix representation
in order to check easily, for each high-transition ¢ € T', whether the two relevant
places *t\ H and t*\ H are related by ~.

4.3 Typing System

In this section we provide a syntactic characterization of DNI by means of a
typing proof system, which exploits the axiomatization of team equivalence. Let
us first define an auxiliary operator r(—), which takes in input a CFM process p
and returns a CFM process p’ obtained from p by pruning its high-level actions,
so that sort(p’) C L. Its definition is outlined in Table5, where r(h.p) = 0+ 0
because the pruning of h.p is to be considered as a deadlock place. For instance,
consider C' = h.[.C + [.C; then r(C) = C’, where C/ = 0+ 0 + [.C". Similarly,
if D = 1.h.D, then r(D) = D’ where D’ = 1.(0 4+ 0). It is a trivial observation
that the net semantics of r(p) is isomorphic to the (reachable part of the) net
semantics of p\H for any CFM process p. Moreover, we also define the set of
initial actions of p, denoted by In(p), whose definition is outlined in Table 6.

Table 5. Restriction function

r(0) =0 r(l.p) = l.r(p) r(h.p) =040

rp+p) =r(p) +r@) r@lp) =r@ |r@’) () =c where ¢’ =r@p) if c=p

Then we define a typing system on CFM processes such that, if a process
p is typed, then p satisfies DNI and, moreover, if p is DNI, then there exists a
process p’, obtained by possibly reordering its summands via axioms A; — Ay,
which is typed. The typing system is outlined in Table 7, where we are using a
set I of already scanned constants. A process p is typed if (p,) : dni is derivable

Interleaving vs True Concurrency: Some Instructive Security Examples 147

Table 6. Initial function

In(0) = 0 In(p.p) = {n} In(p+p') = In(p) U In(p’)

In(p|p') = In(p) UIn(p') In(C) = In(p) if c=p

Table 7. Typing proof system

(p,1) : dni,(q,1) : dni (p,1) : dni,(q,1) : dni,In(p+q) C L
(0,1) : dni (plq,1): dni (p+4q,1):dni
(p,1) : dni EFp=0+0 C&I,C=p,(p,IU{C}):dni
(I.p,I) : dni (h.p,I) : dni (C,I) : dni
Cel 0 # sort(p) CH,(p,I):dni (p,I):dni,p#0,(q,1):dni,E*r(p)=r(q)
(C,I) :dni (h.p,I) : dni (h.p+q,I):dni

by the rules; this is often simply denoted by p : dni. The need for the argument
I is clear in the two rules for the constant C': if C' has been already scanned (i.e.
C € I), then C is typed; otherwise it is necessary to check that its body p is
typed, using a set enriched by C (condition (p, I U{C}) : dni).

We are implicitly assuming that the formation rules in this table respect the
syntax of CFM; this means that, for instance, the third rule requires also that
p and ¢ are actually guarded processes because this is the case in p + g. Note
that in this rule we are requiring that In(p + q) is a subset of L, so that, as no
high-level action is executable by p and ¢ as their first action, no DNI check is
required at this level of the syntax.

The interesting cases are the three rules about action prefixing and the rule
about the choice operator when a summand starts with a high-level action. The
first rule states that if p is typed, then also [.p is typed, for each [€ L. The second
rule states that if p is a deadlock place (condition F + p = 0 4 0), then h.p is
typed, for each h € H; note that p cannot be 0, because h.0 is not secure. The
third rule states that if p is a typed term that can perform at least one action,
but only high-level actions (condition @ # sort(p) C H), then h.p is typed. The
rule about the choice operator states that if we prefix a generic typed process p
with a high-level action h, then it is necessary that an additional typed summand
q is present such that p\ H and ¢\ H are team equivalent; this semantic condition
is expressed syntactically by requiring that E + r(p) = r(gq), thanks to Theorem
3; note that p # 0, because h.0 4+ 0 is not secure. It is interesting to observe
that this rule covers also the case when many summands start with high-level
actions. For instance, h.l.1.0 + (h.l.(h.l.0+1.0) +1.1.0) is typed because [.l.0 and
h..(h.l.0 +1.0) + 1.1.0 are typed and F F 7(1.1.0) = r(h.l.(h.l.0 + 1.0) + [.1.0).
This strategy is intuitively correct (i.e., it respects DNI) because, by checking

148 R. Gorrieri

that the subterm h.l.(h.l.0 +1.0) 4 1.1.0 is typed/DNI, we can safely ignore the
other summand h.1.1.0, as it does not contribute any initial low-visible behavior.

Now we want to prove that the typing system characterizes DNI correctly.
To get convinced of this result, consider again C = h.[.C' + [.C. This process is

DNI because, if C' — 1.C, then C\H ~ (I.C)\H, which is equivalent to say that
r(C) ~ r(I.C). As a matter of fact, (C,0) : dni holds, because (h.l.C+1.C,{C}) :
dni holds, because, in turn, (I.C,{C}) : dni and E F r(I.C) = r(I.C'). On the

contrary, D = [.h.D is not DNI because if h.D LD, then h.D\H » D\H
as h.D\H is stuck, while D\ H can perform l. As a matter of fact, D is not
typed: to get (D,0) : dni, we need (I.h.D,{D}) : dni, which would require
(h.D,{D}) : dni, which is false, as no rule for high-level prefixing is applicable.

Proposition 1. For each CFM process p, if p : dni, then p satisfies DNI.
Proof. By induction on the proof of (p,0) : dni. O

Note that the reverse implication is not alway true, because of the ordering of
summands. For instance, [.0+ h.[.0, which is clearly DNI, is not typed. However,
{A1 — A4} F 1.0+ h.l.0 = h.l.0 + 1.0, where the process h.l.0 4.0 is typed.

Proposition 2. For each CEM process p, if p is DNI, then there exists p' such
that {A1 — Ag} Fp=p' and p': dni.

Proof. By induction on the structure of p. By considering an additional param-
eter I of already scanned constants, the base cases are (0,1) and (C,I) with
C € 1. Both cases are trivial as these two terms cannot do anything. The only
non-trivial inductive case is about summation. Assume that p1 + ps is DNI. If
In(p1 + p2) C L, then both p1 and pa are DNI; by induction, there exist pj : dni
such that {Ay — Aq} b p; = p} fori=1,2; hence, {A1 — Aq} b p1+p2 = pi+ph
and also py+ph : dni, as required. On the contrary, if there exists h € In(p1+p2),
then there exist g1 and go such that {A1 — Aa} F p1+p2 = h.g1 + g2. Since also
h.q1 + g2 is DNI by Corollary 2, it is necessary that t\H ~ q2\H, which is
equivalent to r(q1) ~ r(q2), in turn equivalent to stating that E & r(q1) = r(qa).
Moreover, the DNI property has to be satisfied by q1 and qo. Hence, by induc-
tion, there exist ¢y, qy such that {A1 — A4} b g = ¢} and ¢} : dni, fori=1,2.
By transitivity and substitutivity, we have {A1 — A4q} F p1 + p2 = h.¢f + ¢5.
Moreover, since E & r(q1) = r(q2), we also have that E - r(q}) = r(q}), and so,
by the proof system, h.q| + ¢4 : dni, as required. O

5 Conclusion

Related Literature. The non-interference problem in a distributed model of
computation was first addressed in [5,6]. There, the Petri net class of unla-
beled elementary net systems (i.e., 1-safe, contact-free nets) was used to describe
some information flow security properties, notably BNDC' (Bisimulation Non-
Deducibility on Composition) and SBNDC (Strong BNDC), based on interleav-
ing bisimilarity. These two properties do coincide on unlabeled elementary net

Interleaving vs True Concurrency: Some Instructive Security Examples 149

systems, but actually SBNDC is stronger on labeled FSMs; for instance, the CFM
process [.h.[.0 + 1.0 + 1.1.0 is BNDC [10], while it is not SBNDC; this explains
why we have chosen SBNDC as our starting point towards the formulation of
DNI.

In [6] it is shown that BNDC can be characterized as a structural property
of the net concerning two special classes of places: causal places, i.e., places for
which there are an incoming high transition and an outgoing low transition;
and conflict places, i.e. places for which there are both low and high outgoing
transitions. The main theorem in [6] states that if places of these types are not
present or cannot be reached from the initial marking, then the net is BNDC.
An algorithm following this definition was implemented in [11], but it suffers
from the high complexity of the reachability problem.

Starting from [6], Baldan and Carraro in [1] provide a causal characterization
of BNDC on safe Petri nets (with injective labeling), in terms of the unfolding
semantics, resulting in an algorithm much better than [11]. Nonetheless, the
BNDC property is based on an interleaving semantics and the true-concurrency
semantics is used only to provide efficient algorithms to check the possible pres-
ence of interferences.

Another paper studying non-interference over a distributed model is [7].
Bérard et al. study a form of non-interference similar to SNNI [10] for High-
level Message Sequence Charts (HMSC), a scenario language for the description
of distributed systems, based on composition of partial orders. The model allows
for unbounded parallelism and the observable semantics they use is interleaving
and linear-time (i.e., language-based). They prove that non-interference is unde-
cidable in general, while it becomes decidable for regular behaviors, or for weaker
variants based on observing local behavior only. Also in this case, however, the
truly-concurrent semantics based on partial orders is used mainly for algorithmic
purpose; in fact, the authors shows that their decidable properties are PSPACE-
complete, with procedures that never compute the interleaving semantics of the
original HMSC.

The use of causal semantics in security analysis was advocated also in [12],
where Froschle suggests that for modeling, verification, decidability and complex-
ity reasons (i.e., mainly for algorithmic convenience), this kind of equivalences
should be used.

On the contrary, Baldan et al. in [2] define security policies, similar to non-
interference, where causality is used as a first-class concept. So, their notion of
non-interference is more restrictive than those based on interleaving semantics.
However, their approach is linear-time, while non-interference is usually defined
on a branching-time semantics, i.e., on bisimulation. Moreover, it seems overly
restrictive; for instance, the CFM process h.l.0 4 (.0, which is DNI, would be
considered insecure in their approach.

Future Research. Our proposal of DNI is customized for CFM and for the
simple subclass of Petri nets called finite-state machines. However, we think that
for finite Place/Transition Petri nets [31] (and its corresponding process algebra
FNM [18]), the non-interference property DNI can be formulated as follows:

150 R. Gorrieri

Given a finite P/T Petri net N, a marking m is DNI if, for each m’, m”

reachable from m, and Vh € H such that m' L , we have that
m/\H ~gp. m"\H, where ~ . denotes state-sensitive fc-bisimulation
equivalence [22].

We may wonder if such a property is decidable. We conjecture that for 1-safe
nets, DNT is decidable because history-preserving bisimilarity is decidable [33] on
this class of nets and ~ . is very similar to it. About unbounded P/T nets, we
conjecture that DNT is decidable for BPP nets (i.e., nets with singleton preset
transitions) because ~,¢. is characterizable as a decidable team-like equivalence
[22]. However, for general P/T nets, the problem is less clear. On the one hand,
~sfe (as any other bisimulation-based behavioral equivalence) is undecidable
for labeled finite P/T nets with at least two unbounded places [9,25]; so, we
would expect that DNI is undecidable on this class of nets. On the other hand,
for unbounded partially observed finite P/T nets (i.e., net with unobservable
high transitions and injective labeling on low transitions), Best et al. proved in
[3] that SBNDC is decidable; so, this positive result gives some hope that it
might be possible to prove decidability of DNI, at least on this restricted class
of unbounded finite nets.

We plan to extend this approach to a setting with silent transitions as well
as to intransitive non-interference [2,3,7,16].

Why True Concurrency? To conclude this paper, we want to recapitulate
some further reasons for preferring truly-concurrent semantics over interleaving
semantics. A first observation was that interleaving semantics are not a con-
gruence for the action refinement operator [8,13,15], nor for (some forms of)
multi-party synchronization (see Chapter6 of [17]), while this property holds
for some truly concurrent semantics. One further (and stronger) observation is
about expressiveness. In [18] six process algebras are compared w.r.t. an inter-
leaving semantics and w.r.t. a concrete truly-concurrent semantics based on Petri
nets. The resulting two hierachies are quite different; in particular, the hierar-
chy based on interleaving semantics equates process algebras that have very
different expressive power in terms of classes of solvable problems in distributed
computing. As it may happen that two Turing-complete process algebras can
solve different classes of problems, classic Turing (or sequential) computability,
based on computable functions on natural numbers, needs to be extended to
deal with computable objects in a distributed model such as Petri nets. This
observation calls for the study of a generalization of Turing computability, we
call distributed computability [21].

Acknowledgments. The anonymous referees are thanked for their comments.

Interleaving vs True Concurrency: Some Instructive Security Examples 151

References

10.

11.

12.

13.

14.

15.

16.

17.

Baldan, P., Carraro, A.: A causal view on non-intereference. Fundam. Infor. 140(1),
1-38 (2015)

Baldan, P., Beggiato, A., Lluch Lafuente, A.: Many-to-many information flow poli-
cies. In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol.
10319, pp. 159-177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59746-1_9

Best, E., Darondeau, Ph., Gorrieri, R.: On the decidability of non-interference
over unbounded Petri nets. In: Proceedings of the 8th International Workshop on
Security Issues in Concurrency (SecCo 2010), EPTCS, vol. 51, pp. 16-33 (2010)
Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulations in
Petri nets. Acta Informatica 28(3), 231-264 (1991). https://doi.org/10.1007/
BF01178506

Busi, N., Gorrieri, R.: A survey on non-interference with Petri nets. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 328-344.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_8

Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets.
Math. Struct. Comput. Sci. 19(6), 1065-1090 (2009)

Bérard, B., Hélouét, L., Mullins, J.: Non-interference in partial order models. In:
Proceedings of the ACSD 2015, pp. 80-89. IEEE Computer Society (2015)
Castellano, L., De Michelis, G., Pomello, L.: Concurrency versus interleaving: an
instructive example. Bull. EATCS 31, 12-14 (1987)

Esparza, J.: Decidability and complexity of petri net problems—an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374-428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6-20

Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gor-
rieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331-396. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45608-2_6

Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: structural non-
interference at work. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008.
LNCS, vol. 5491, pp. 210-225. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01465-9_14

Froschle, S.: Causality, behavioural equivalences, and the security of cyberphysical
systems. In: [30], pp. 83-98 (2015)

van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and
refinement of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS,
vol. 379, pp. 237-248. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-
51486-4_71

van Glabbeek, R.J.: Structure preserving bisimilarity: supporting an operational
Petri net semantics of CCSP. In: [30], pp. 99-130. Springer (2015)

Gorrieri, R., Rensink, A.: Action Refinement. In: Handbook of Process Algebra,
pp. 1047-1147. North-Holland (2001)

Gorrieri, R., Vernali, M.: On intransitive non-interference in some models of con-
currency. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp.
125-151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23082-
0-5

Gorrieri, R., Versari, C.: Introduction to Concurrency Theory: Transition Systems
and CCS. EATCS Texts in Theoretical Computer Science. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21491-7

https://doi.org/10.1007/978-3-319-59746-1_9
https://doi.org/10.1007/978-3-319-59746-1_9
https://doi.org/10.1007/BF01178506
https://doi.org/10.1007/BF01178506
https://doi.org/10.1007/978-3-540-27755-2_8
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/978-3-642-01465-9_14
https://doi.org/10.1007/978-3-642-01465-9_14
https://doi.org/10.1007/3-540-51486-4_71
https://doi.org/10.1007/3-540-51486-4_71
https://doi.org/10.1007/978-3-642-23082-0_5
https://doi.org/10.1007/978-3-642-23082-0_5
https://doi.org/10.1007/978-3-319-21491-7

152

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

R. Gorrieri

Gorrieri, R.: Process Algebras for Petri Nets: The Alphabetization of Distributed
Systems. EATCS Monographs in Theoretical Computer Science. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-55559-1

Gorrieri, R.: Verification of finite-state machines: a distributed approach. J. Log.
Algebraic Methods Program. 96, 65-80 (2018)

Gorrieri, R.: Axiomatizing team equivalence for finite-state machines. In: Alvim,
M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and
Privacy. LNCS, vol. 11760, pp. 14-32. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31175-9_2

Gorrieri, R.: Toward distributed computability theory. In: Reisig, W., Rozenberg,
G. (eds.) Carl Adam Petri: Ideas, Personality, Impact, pp. 141-146. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-96154-5_18

Gorrieri, R.: A study on team bisimulations for BPP nets (extended abstract). In:
Janicki, R., et al. (eds.) Petri Nets 2020. LNCS, vol. 12152, pp. xx—yy. Springer,
Cham (2020)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science (1985)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computation, 2nd edn. Addison-Wesley, Boston (2001)

Jancar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
Theor. Comput. Sci. 148(2), 281-301 (1995)

Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7), 561-572
(1976)

Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

Nielsen, M., Thiagarajan, P.S.: Degrees of non-determinism and concurrency: a
Petri net view. In: Joseph, M., Shyamasundar, R. (eds.) FSTTCS 1984. LNCS,
vol. 181, pp. 89-117. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
13883-8_66

Meyer, R., Platzer, A., Wehrheim, H. (eds.): Correct System Design-Symposium
in Honor of Ernst-Riidiger Olderog on the Occasion of His 60th Birthday. LNCS,
vol. 9360. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. STAM J. Comput.
16(6), 973-989 (1987)

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Upper Saddle River (1981)

Ryan, P.Y.A.: Mathematical models of computer security. In: Focardi, R., Gorrieri,
R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 1-62. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45608-2_1

Vogler, W.: Deciding history preserving bisimilarity. In: Albert, J.L., Monien, B.,
Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 495-505. Springer, Heidel-
berg (1991). https://doi.org/10.1007/3-540-54233-7_158

https://doi.org/10.1007/978-3-319-55559-1
https://doi.org/10.1007/978-3-030-31175-9_2
https://doi.org/10.1007/978-3-030-31175-9_2
https://doi.org/10.1007/978-3-319-96154-5_18
https://doi.org/10.1007/3-540-13883-8_66
https://doi.org/10.1007/3-540-13883-8_66
https://doi.org/10.1007/978-3-319-23506-6
https://doi.org/10.1007/3-540-45608-2_1
https://doi.org/10.1007/3-540-54233-7_158

	Interleaving vs True Concurrency: Some Instructive Security Examples
	1 Introduction
	2 Finite-State Machines and Team Equivalence
	2.1 Bisimulation on Places
	2.2 Team Equivalence

	3 CFM: Syntax, Semantics, Axiomatization
	3.1 Syntax
	3.2 Semantics
	3.3 Axiomatization

	4 DNI: Distributed Non-interference
	4.1 Definition and Compositional Verification
	4.2 Efficient Verification Based on a Structural Characterization
	4.3 Typing System

	5 Conclusion
	References

