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Abstract. A CDCL SAT solver can backtrack a large distance when it
learns a new clause, e.g, when the new learnt clause is a unit clause the
solver has to backtrack to level zero. When the length of the backtrack is
large, the solver can end up reproducing many of the same decisions
and propagations when it redescends the search tree. Different tech-
niques have been proposed to reduce this potential redundancy, e.g.,
partial/chronological backtracking and trail saving on restarts. In this
paper we present a new trail saving technique that is not restricted to
restarts, unlike prior trail saving methods. Our technique makes a copy of
the part of the trail that is backtracked over. This saved copy can then
be used to improve the efficiency of the solver’s subsequent redescent.
Furthermore, the saved trail also provides the solver with the ability to
look ahead along the previous trail which can be exploited to improve
its efficiency. Our new trail saving technique offers different tradeoffs
in comparison with chronological backtracking and often yields superior
performance. We also show that our technique is able to improve the
performance of state-of-the-art solvers.

1 Introduction

The vast majority of modern SAT solvers that are used to solve real-world prob-
lems are based on the conflict-driven clause learning (CDCL) algorithm. In a
CDCL SAT solver, backtracking occurs after every conflict, where all literals
from one or more decision levels become unassigned before the solver resumes
making decisions and performing unit propagations. Traditionally, CDCL solvers
would backtrack to the conflict level, which is the second highest decision level
remaining in the conflict clause after conflict analysis has resolved away all but
one literal from the current decision level [9]. Recently, however, it has been
shown that partial backtracking [6] or chronological backtracking, C-bt, (i.e.,
backtracking only to the previous level after conflict analysis) [8,11] can be effec-
tive on many instances. Partial backtracking has been used in the solvers that
won the last two SAT competitions. Although chronological backtracking breaks
some of the conventional invariants of CDCL solvers, it has been formalized and
proven correct [8] (also see related formalizations [10,12]).

The motivation for using C-bt is the observation that when a solver back-
tracks across many levels, many of the literals that are unassigned during the
backtrack might be re-assigned again in roughly the same order when the solver
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redescends. This observation was first made in the context of restarts by van der
Tak et al. [14]. Their technique backtracks to the minimum change level, i.e.,
the first level at which the solver’s trail can change on redescent. However, their
technique cannot be used when backtracking from a conflict: the solver’s trail is
going to be changed at the backtrack level so the minimum change level is the
same as the backtrack level.

Chronological backtracking or partial backtracking instead allows a reduction
in the length of the backtrack by placing literals on the trail out of decision level
order. By reducing the length of the backtrack the solver can keep more of its
assignment trail intact. This can save it from the work involved in reconstructing
a lot of its trail. Using C-bt is not a panacea however. Its application must be
limited for peak effectiveness. This indicates that it is sometimes beneficial for
the solver to backtrack fully and redo its trail, even if this takes more work. We
will expand on why this might be the case below.

In this paper we present a new trail saving method whereby we save the
backtracked part of the solver’s trail and attempt to use that information to
make the solver’s redescent more efficient. Unlike C-bt, our trail saving method
preserves the traditional invariants of the SAT solver and its basic version is
very simple to implement. It allows the search to retain complete control over
the order of decisions, but helps make propagation faster. We develop some
enhancements to make the idea more effective, and demonstrate experimentally
that it performs as well as and often better than chronological backtracking. We
also show that with our enhancements we are able to improve the performance
of state-of-the-art solvers.

2 Background

SAT solvers determine the satisfiability of a propositional formula F expressed
in Conjunctive Normal Form (CNF). F contains a set of variables V . A literal
is a variable v ∈ V or its negation ¬v, and for a literal l we let var(l) denote its
underlying variable. A CNF consists of a conjunction of clauses, each of which
is a disjunction of literals. We often view a clause as being a set of literals and
employ set notation, e.g., � ∈ C and C ′ ⊂ C. We will assume that the reader is
familiar with the basic operations of CDCL SAT solvers. A good source for this
background is [13].

Trails. CDCL SAT solvers maintain a trail which is the sequence of literals
that have currently been assigned true by the solver. During its operation
a SAT solver will add newly assigned literals to the end of the trail, and on
backtrack remove literals from the end of the trail. For convenience, we will
regard literals as having been assigned true if and only if they are on the trail.
So removing/adding a literal to the trail is equivalent to unassigning/assigning
the literal true.

A SAT solver’s trail satisfies a number of conditions. However, in this work
we will need some additional flexibility in our definitions, as we will sometimes
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be working with trails that would never be constructed by a SAT solver. Hence,
we define a trail to be a sequence of literals each of which is either a decision
literal or an implied literal, and each of which has a reason. These two types of
literals are distinguished by their reasons. Decision literals d have a null reason,
reason(d) = ∅. Implied literals l have as a reason a clause of the formula F ,
reason(l) = C ∈ F . (The clause reason(l) can be a learnt clause that has been
added to F).

If literal � is on the trail T let ιT (�) denote its index on the trail, i.e,
T [ιT (�)] = �. If x and y are both on the trail and ιT (x) < ιT (y) we say that x
appears before y on the trail. For convenience, when the trail being discussed is
clear from context we simply write ι instead of ιT .

Each literal � ∈ T has a decision level decLvl(�) which is equal to the num-
ber of decision literals appearing on the trail up to and including � ; hence,
decLvl(d) = 1 for the first decision literal d ∈ T . The set of literals on T that
have the same decision level forms a contiguous subsequence1 that starts with
a decision literal di and ends just before the next decision literal di+1. We will
often need to refer to different decision level subsequences of T . Hence, we let
T [[i]] denote the subsequence of literals at decision level i; and let T [[i . . . j]]
denote the subsequence of literals at decision levels k for i ≤ k ≤ j.

Definition 1. A clause C has been made unit by T implying l when l ∈
C ∧

(
∀x ∈ C.x �= l → ¬x ∈ T

)
. That is, all literals in C except l must have been

falsified by T

Now we define the following properties that a trail T can have.

non-contradictory: A variable cannot appear in both polarities in the trail:
l ∈ T → ¬l �∈ T .

non-redundant: A literal can only appear once on T .
reason-sound: For each implied literal l ∈ T we have that its reason clause

reason(l) = C has been made unit by T implying l, and for each x ∈ C with
x �= l we have that ¬x appears before l on T : ∀l ∈ T . reason(l) �= ∅ → l ∈
reason(l) ∧

(
∀x ∈ reason(l). x �= l → ¬x ∈ T ∧ ι(¬x) < ι(l)

)
.

propagation-complete: Unit propagation has been run to completion at
all decisions levels of T . This means that literals appear on T at the first
decision level they were unit implied. Formally, this can be captured by
the condition: ∀i ∈ {decLvl(l) | l ∈ T }.

(
∃C ∈ F .C is made unit by

T [[0 . . . i]] implying l
)

→ l ∈ T [[0 . . . i]]. Note that propagation complete-
ness implies that reason(l) �= ∅ must contain at least one other literal y �= l
with decLvl(y) = decLvl(l).

conflict-free: No clause of F is falsified by T . Clauses C ∈ F falsified by T are
typically called conflicts.

1 Our approach uses standard trails in which the decision levels are contiguous.
Chronological backtracking [6,8,11] generates trails with non-contiguous decision
levels.
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In CDCL solvers using standard conflict directed backtracking all properties
hold of the prefix of the solver’s trail consisting of all decisions levels but the
deepest. The full trail might, however, contain a conflict at its deepest level
so is not necessarily conflict-free. The full trail might also not be propagation-
complete, as unit propagation at the deepest level is typically terminated early
if a conflict is found. It can further be noted that the first four properties imply
that if a clause C is falsified at decision level k, then C must contain at least
two literals at level k (otherwise C would have become unit at a prior level and
then satisfied by making its last unfalsified literal true).

Standard Backtracking. In CDCL SAT solving the solver extends its trail by
adding new decision literals followed by finding and adding all unit implied
literals arising from that new decision. This continues until it reaches a decision
level Ldeep where a conflict C is found.

In standard backtracking, the solver then constructs a new 1-UIP clause by
resolving away all but one literal at level Ldeep from the conflict C using the
reason clauses of these literals. (As noted above C must contain at least two
literals at level Ldeep). Hence, the new clause C1-UIP will contain one literal
�deep at level Ldeep and have all of its other literals a levels less than Ldeep.
The solver then backtracks to Lback the second deepest level in C1-UIP. This
involves changing T to its prefix T [[0 . . . Lback]] (by our convention all literals
removed from T are now unassigned). The new clause C1-UIP is made unit
by T [[0 . . . Lback]] implying �deep, so the solver then adds �deep to the trail and
executes another round of unit propagation at level Lback, after which it continues
by once again growing the trail with new decisions and unit implied literals until
a new conflict or a satisfying assignment is found.

In standard backtracking, the difference between the backtrack level, Lback

and the current deepest level Ldeep can be very large. During its new descent
from Lback the solver can reproduce a large number of the same decisions and
unit propagations, essentially wasting work. This potential inefficiency has been
noted in prior work [6,8,11,14].

In [14] a technique for reducing the length of the backtrack during restarts
was presented. In restarts, the solver backtracks to level 0, and this technique
involves computing a new deeper backtrack level M > 0 for which it is known
that on redescent the first M + 1 levels of the trail will be unchanged (except
perhaps for the ordering of the literals). This technique removes the redundant
work of reproducing the first M trail levels. When backtracking from a conflict,
however, the trail will be changed at level Lback (�deep will be newly inserted
at this level). Hence this technique cannot reduce the length of the backtrack.
In this paper we will show that although we have to backtrack to Lback we can
make the subsequent redescent much more efficient.

Chronological Backtracking. Chronological backtracking (C-bt) and partial back-
tracking in the context of clause learning solvers are alternatives to standard
backtracking which allow the solver to execute a shorter backtrack. That is,
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with these techniques the solver can avoid having to go all the way back to the
second deepest level in the learnt clause, as in standard backtracking.

Formalisms for partial backtracking in clause learning solvers have been
presented in [10,12]. In [6] practical issues of implementation were addressed,
and experiments shown with a CDCL solver using partial backtracking. In [11]
improved and more efficient implementation techniques were developed which
allowed C-bt to make improvements to state-of-the-art SAT solvers, and [8] pre-
sented additional implementation ideas and details along with correctness results
for these methods.

The aim of partial backtracking is to reduce the redundant work that might
be done by the SAT solver on its redescent from the backtrack level Lback. The
technique allows the solver to backtrack to any level j in the range Lback ≤ j ≤
Ldeep−1 (where Ldeep is the level the conflict was discovered). Nadel and Ryvchin
[11] proposed to always backtrack chronologically to Ldeep−1 while Möhle and
Biere [8] returned to the proposal of [6] of flexibly backtracking to any level in
the allowed range. Note that the new learnt 1-UIP clause C1-UIP is made unit
at every level in this range. So after backtracking to level j the newly implied
literal �deep is added to the trail with reason(�deep) = C1-UIP, and decLvl(�deep)
is set to Lback (the second deepest level in C1-UIP).

This means that the decision levels on the trail are no longer contiguous,
as �deep has a different level than the other literals at level j (if j �= Lback).
This change has a number of consequences for the SAT solver’s operation, all
of which were described in [6]. Möhle and Biere [8] showed that despite these
consequences partial backtracking can be made to preserve the soundness of a
CDCL solver.

3 Chronological Backtracking Effects on Search

In this paper we present a new technique that allows the SAT solver to use stan-
dard backtracking, but also allows saving some redundant work on its redescent.
Our method has more overhead than C-bt so the first question that must be
addressed is why not just use chronological backtracking.

Although C-bt is able to avoid a lot of redundant work it also has other effects
on the SAT solver search. These effects are sometimes detrimental to the solver’s
performance and so it is not always beneficial to use C-bt. In fact, in both [11]
and [8] it was found that fairly limited application of C-bt performed best. In [11]
C-bt was applied only when the length of the standard backtrack, Lback − Ldeep

was greater than a given threshold T . In their experiments they found that
T = 100 was the best value, i.e., C-bt is done only on longer backtracks. In
practice, this meant that C-bt was relatively infrequent; in our measurements
with their solver only about 3% of the solver backtracks were C-bt backtracks. In
[8] the value T = 100 was also applied. However, they introduced an additional
technique to add some applications of C-bt when the length of the backtrack is
less than T . This allowed [8] to utilize C-bt in about 15% of the backtracks.

Although it is difficult to know precisely why C-bt is not always beneficial,
we can identify some different ways in which C-bt can affect the SAT solver’s
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search. With standard backtracking the literal �deep is placed on the trail at
the end of Lback and then unit propagated. This could impact the trail in at
least the following ways. First, some literals might become unit at earlier levels.
This could include decision literals becoming forced which might compress some
decision levels together. Second, different decisions might be made due to changes
in the variable scores arising from the newly learnt clause. And third, literals
might be unit implied with different reasons. C-bt can change all of these things,
each of which could have an impact on the future learnt clauses, and thus on the
solver’s overall efficiency.

The second impact, changing variable scores, is partially addressed in [8]
who utilize the ideas of [14] to backtrack to a level where the decisions would
be unchanged. However, if the length of the backtrack is greater than 100 there
could still be a divergence between the variable decisions generated in standard
backtracking and C-bt. An argument is also given in [14] that the third impact,
changing literal reasons, is not significant. However, the experiments in [14] were
run before good notions of clause quality were known [1]. Our empirical results
indicate that once clause quality is accounted for, changing the literal reasons
can have a significant impact.

The first impact is worth discussing since it was mentioned in [6] but not in
the subsequent works. This is the issue of changing the decision levels of literals
on the trail. C-bt computes the decision level of each implied literal based on
the decision levels of the literals in its reason, but it does not go backwards to
change the decisions levels of literals earlier on the trail.

Example 1. For example, suppose that (x,¬y) ∈ F , the literal x is a decision
literal on the trail with decLvl(x) = 2, and that the solver is currently at level
150 where it encounters a conflict. If this conflict yields the unit clause (y),
standard backtracking would backtrack to level 0, where x would be implied.
On redescent, x would no longer form a new decision level and it would not
appear in any new clauses (as it is entailed by F). C-bt, on the other hand,
would backtrack to level 149. On its trail x would still be at level 2. Until a
backtrack past level 2 occurs, learnt clauses might contain ¬x, and thus have
level 2 added to their set of levels (potentially changing their LBD score). Only
when backtrack past level 2 occurs would x be restored to its correct level 0, and
it would require inprocessing simplifications to remove x from the learnt clauses.

In sum, although these impacts of C-bt on the SAT solver’s search might
or might not be harmful to the SAT solver, they do exist. In fact, there are
two pieces of evidence that these impacts can sometimes be harmful. First, as
mentioned above, previous work found that it is best to only apply C-bt on large
backtracks where it has the potential to save the most work. If there were no
harmful effects it would always be effective to apply C-bt. And second, in our
empirical results below we show that our new trail saving technique, which always
uses standard backtracking, can often outperform C-bt. Although our technique
reduces the solver’s work on redescent it does not completely eliminate it like
C-bt does. Hence its superior performance can only occur if C-bt is sometimes
harmful.
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It is possible to combine C-bt with our trail saving technique to reduce
the amount of work required whenever the solver performs non-chronological
backtracking. However, C-bt greatly reduces the potential savings that could be
achieved by our method since most of its non-chronological backtracks are rela-
tively short (less than threshold T levels). In our preliminary experiments this
combination did not seem promising.

Nevertheless, there is good evidence that C-bt can improve SAT solver per-
formance.2 Hence, it should be that it is better to perform C-bt in some branches.
Hence, an interesting direction for future work would be to develop better heuris-
tics about when to use C-bt in a branch and when to use standard backtracking
augmented by our trail saving method.

4 Trail Saving

Our approach is to save the trail T on backtrack, and to use the saved trail
Tsave when the solver redescends to improve the efficiency of propagations with-
out affecting the decisions the solver wants to make. The saved trail Tsave also
provides a secondary “lookahead mechanism” that the SAT solver can exploit
as it redescends.

Suppose that the solver is at Ldeep where it has encountered a conflict. From
the 1-UIP clause it learns, C1-UIP, it now has to backtrack to Lback. This is
accomplished by calling backtrack(Lback), shown in Fig. 1, which saves the
backtracked portion of the trail.

Note that backtrack does not save the deepest level of T . The full T
contains a conflict (at its deepest level). Hence the solver will never reproduce
all the same levels, and it would be useless to save all of them. Note also that
in addition to saving the literals in Tsave we also save the clause reason of the
unit implied literals in a separate reasonsave vector. Finally, we see that after
backtrack the first literal on Tsave is a decision literal: it is the first literal of T
at decision level Lback+1. Literals will be removed from Tsave during its use, but
always in units of complete decision levels. So Tsave [0] will always be a (previous)
decision literal.

After backtrack the solver will add �deep to the end of the updated T with
reason(�deep) = C1-UIP and then invoke unit propagation. Tsave is exploited
during propagation by the version of propagate shown in Fig. 1, which will
initially be invoked with the argument ι(�deep) (i.e., the trail index of the newly
added implicant). The saved trail will be continually consulted during the solver’s
descent whenever unit propagation is performed. When backtrack occurs Tsave

will be overwritten to store the new backtracked portion of T .
Tsave is consulted in the procedure useSavedTrail (Fig. 1). This procedure

tries to add saved implied literals and their reasons to the solver’s trail, when
2 C-bt can also be extremely useful in contexts where each descent can be very expen-

sive, e.g., when doing theory propagation in SMT solving, or component analysis
in #SAT solving. In these cases, C-bt, by avoiding backtracking and subsequent
redescent, has considerable potential for improving solver performance.
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Fig. 1. Using Tsave in unit propagation and conflict detection

these implications are valid. We will show below that those implications that are
added are in fact valid. We do not interfere with the solver’s variable decisions.
Instead we opportunistically test to see if literals implied on Tsave are valid
implications for the solver given the solver’s current decisions.

Tsave [0] is always a (previous) decision literal d with reasonsave(d) = ∅. Note
that, since new literals (e.g., �deep) have been added to T , d might now be an
implied literal on T (i.e., reason(d) �= ∅) even though before the backtrack it
was previously a decision (i.e., reasonsave(d) = ∅). If d has not been assigned
true by the solver (i.e., ¬d ∈ T ), we cannot add any implied literals below it
on Tsave to T as these implied literals depend on d being assigned true. In this
case we stop looking for more literals to add to T (line 18).
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Fig. 2. Use of Tsave from Example 2. The literal’s decision level is indicated in its
superscript, and a ∗ superscript indicates that the literal is a decision.

On the other hand if d has been made true by the solver we can continue to
add all of the implied literals below it (up to but not including the next decision
literal on Tsave) to T (line 24), reusing their saved reasons. Any literals that
have already been made true by the solver can be skipped (line 20). Finally, if
we encounter a literal that has already been falsified by the solver, then its saved
reason clause must be falsified by the solver and we can return it as a conflict
(line 21). If a conflict is encountered we leave Tsave unchanged by resetting idx
to zero. Otherwise, idx will be the number of literals at the front of Tsave that
have been moved to T (or skipped over since they are already on T ). We then
remove the first idx literals from Tsave (line 27), and return the conflict (equal
to ∅ if no conflict was found).

Example 2. Figure 2 provides an example of how Tsave is used. Initially the lit-
erals l1 to l14 are on the solver’s T , and Tsave is empty. This is shown in the
first two lines of the figure. In the figure the superscript on the literals indicates
their decision level, and a superscripted ∗ indicates that the literal is a decision.
Hence l1∗

1 indicates that decLvl(l1) = 1 and that l1 is a decision.
Then a conflict is found at level 6 and the 1-UIP clause (¬l1,¬l3,¬l12) is

learnt. Thus the solver will backtrack to level 2, where it will add ¬l12 as a unit
implicant. The next two lines show T and Tsave right after the backtrack to level
2: the backtracked levels have been copied into Tsave omitting the conflict level 6.

The new unit ¬l12 is now added to T and unit propagation performed adding
l7 and l9 to level 2. Since the first literal on Tsave , l5, has reasonsave(l5 ) = ∅ (l5
was a decision on T at the time backtrack occurred) and is not yet true, Tsave

is not helpful at this stage. The status of T and Tsave at this point is shown in
the figure.

After unit propagation is finished the solver makes a new decision, which
happens to be (but is not forced to be) l5. Now Tsave can be used: l5 is true so
it is removed, l6 is unassigned so it is added to T , l7 is true and so removed,
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l8 is unassigned so it is added to T , l9 is true and removed, and finally l10 and
l11 are unassigned and so are added to T . In this example, Tsave is emptied, and
cannot contribute more to T .

All of these units are added to T before the solver starts to unit propagate
l5. Since, new literals have been added to T before l5 the solver must propagate
l5 and all of the literals that follow it before making its next decision.

As noted in the previous example unit propagation has to be rerun on all
saved literals added to T from Tsave . Thus our technique, unlike C-bt, does not
completely remove the overhead of reproducing the trail on the solver’s redes-
cent. Nevertheless, trail saving improves the efficiency of this redescent in three
different ways. First, by adding more forced literals to the trail before contin-
uing propagating the next literal, propagation can potentially gain a quadratic
speedup [2,5]. Second, propagation does not need to examine the reason clause
of the added literals. If these literals were not added by useSavedTrail, propa-
gation would have to traverse each of these reason clauses to determine that they
have in fact become unit. Third, when a conflict is returned by useSavedTrail

all further propagations can be halted. The added literals and their reasons will
be sufficient to perform clause learning from the conflict returned by useSaved-

Trail. Since trail saving can sometimes save hundreds or thousands of literals
at a time these savings can in sum be significant.

4.1 Correctness

Now we will prove that our use of Tsave preserves the SAT solver’s soundness.
In particular, Tsave is only used in the procedure useSavedTrail, in which it
either adds new literals to the solver’s trail, or returns conflict clauses to the
solver. Hence, we only need to show that these new literals are in fact unit
implied and the conflicts are in fact falsified by the solver’s trail. Since both
T and Tsave are sequences of literals (with associated reasons) we can consider
their concatenation denoted as T + Tsave .

Theorem 1. If T + Tsave is reason sound (Sect. 2) then the following holds.
If the first i literals on Tsave are all in T (∀j.0 ≤ j < i.Tsave [j] ∈ T ) and
Tsave [i] = l is an implied literal with reasonsave(l) = C, then C has been made
unit by T implying l.

Proof: Since T + Tsave is reason sound, every literal in C other than l appears
negated before l in the sequence T + Tsave . Thus for x ∈ C we have ¬x ∈ T or
¬x ∈ Tsave [0] . . . Tsave [i − 1]. But in the later case we also have ¬x ∈ T . ��

This theorem shows that useSavedTrail’s processing is sound. In this pro-
cedure, an implied literal from Tsave is added to T (line 24) only when all prior
literals on Tsave are already on T (i.e., previously on T or already added to T ).
Thus each new addition is sound given the inductive soundness of the previous
additions, with the base case covered by Theorem 1. If l is to be added, the
theorem shows that every other literal in reasonsave(l) has been falsified by T .
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Hence if l is also falsified by T then reasonsave(l) is a clause that is falsified by
T , thus it is a sound conflict for the solver.

Now we only have to show that T + Tsave is always reason sound during
the operation of the solver.

Proposition 1. If T +Tsave is reason sound then T ′ +T ′
save is reason sound in

all of the following cases.

1. Tsave [0] ∈ T , T ′ = T , and T ′
save = Tsave .removeFront().

2. T ′ = T + Tsave [0] and T ′
save = Tsave .removeFront().

3. T ′ = T + Tnew and T ′
save = T ′

save and T ′ is reason sound.
4. We also have that T is reason sound if T was generated by the solver.

Proof: (1) Tsave [0] already appears earlier in the T so it can be removed without
affecting the soundness of any reason following it. (2) is obvious as the sequence
is unchanged. (3) the reasons in T + Tnew are sound by assumption. Those in
Tsave remain sound as they depend only on the literals in T and prior literals
on Tsave , both of which are unchanged. (4) is obvious from the operation of unit
propagation in the solver. ��

Theorem 2. T +Tsave is always reason sound during the operation of the solver.

Proof: Tsave starts off being empty, so T + Tsave = T is reason sound as it was
generated by the solver (4). In procedure backtrack T + Tsave is set to a trail
that was previously generated by the solver (4). The solver can add to T by
decisions and propagations without using Tsave . In this case T ′ = T + Tnew ,
and T ′ is reason sound by (4), thus the new T ′ + Tsave is reason sound by (3).
Finally, in procedure useSavedTrail either (a) literals at the front of Tsave are
discarded since they already appear on T , or (b) literals are moved from Tsave

to T . Under both of these changes T + Tsave remains reason sound by (1) and
(2). ��

4.2 Enhancements

We developed three enhancements of the base trail saving method described
above. In this section we present these enhancements.

Saving the Trail over Multiple Backtracks. It can often be the case that when the
solver finds a conflict and backtracks to Lback it might immediately find a another
conflict at Lback causing a further backtrack. In the procedure backtrack every
backtrack causes Tsave to be overwritten. Hence, in these cases most of the trail
will not be saved—only the portion from the last backtrack. Our first extension
addresses this potential issue and also provides more general trail saving in other
contexts as well.

This extension is simply to add the latest backtrack to the front of Tsave

leaving all of the previous contents of Tsave intact. Specifically, we replace line 3
of backtrack by the new line:
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3. Tsave = T [[Lback+1 . . . Ldeep−1]] + Tsave

It is not difficult to show that this change preserves soundness. Only Theorem 2
is potentially affected. However, we know that Tsave is unchanged at the level at
which a conflict occurs: either the conflict is detected without consulting Tsave

or if the conflict comes from Tsave then useSavedTrail leaves Tsave unchanged
(line 21). Hence, at the level before the conflict occurred we have inductively
that T [[0 . . . Ldeep−1]]+Tsave was reason sound, and hence so is T ′ +T ′

save with
T ′ = T [[0 . . . Lback]] and T ′

save = T [[Lback+1 . . . Ldeep−1]] + Tsave .
When adding to the front of Tsave in this manner Tsave can grow indefinitely.

So we prune Tsave when it gets too large by (a) removing Tsave [i] if Tsave [i] =
Tsave [j] for some j < i (Tsave [i] is redundant), and (b) removing the suffix of
Tsave starting at Tsave [i] when Tsave [j] = ¬Tsave [i] for some j < i (Tsave [i] will
never be useful as its negation, Tsave [j], would have to be added to T first). In
this way Tsave need never become larger than the number of variables in F .

Lookahead for Conflicts. In useSavedTrail we stop adding literals from Tsave

to T once we reach a decision literal d on Tsave that is not yet on T (line 18 of
useSavedTrail). This is done so that the solver has full control over variable
decisions without interference from the trail saving mechanism (unlike the case
with C-bt). However, another option would be to force the solver to use d as its
next decision literal, which would then allow us to further add all of d’s implied
literals on Tsave onto T . This can be done for the first k decisions on Tsave for any
k. But in general, we do not want to remove the solver’s autonomy by forcing it
to make potentially different decisions than it might have wanted to.

However, if there is a literal l ∈ Tsave for which ¬l ∈ T , we can observe
that forcing the solver to make all of the decisions of Tsave that lie above l will
immediately generate a conflict in the solver: reasonsave(l) will be falsified. In
fact, in this situation we would not even need to perform unit propagation over
the literals added from Tsave ; the literals and their reasons obtained from Tsave

would be sufficient to perform 1-UIP learning from reasonsave(l).
We experimented with this “lookahead for conflicts” idea using various values

of k. We found that k = 2, i.e., forcing up to two decisions from Tsave to be made
by the solver if this yields a conflict, often enhanced the solver’s performance.
Limiting the lookahead to only one decision level of Tsave was not as good, and
looking ahead more than 2 decisions of Tsave also degraded performance. This
provides some evidence that taking too much control away from the solver and
forcing it to make too many decisions from Tsave can lead to conflicts that are
not as useful to the solver.

Reason Quality. The saved trail can be thought of as remembering the solver’s
recent trajectory. Sometimes we want to follow the past trajectory, but perhaps
sometimes we do not. In particular, when adding literals from Tsave to T we can
examine the quality of the saved reasons to see if they are worth using. Once we
encounter a literal with a low quality saved reason we stop adding literals from
Tsave to the solver’s trail. In particular, we can change lines 24–25 of useSaved-
Trail to the following:
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23.5 if (lowQuality(reasonsave(lsave))) break
24. T .addToEnd(lsave)
25. reason(lsave) ← reasonsave(lsave)

Note that the solver will still set the un-added literals as they are unit implied
by T , but it might be able to find better reasons for these implicants. There
is of course no guarantee that better reasons will be found, but our empirical
results show that sometimes this does happen. We experimented with two quality
metrics, clause size and clause LBD, obtaining positive results with both. These
results also provides evidence against the argument given in [14] that changing
literal reasons is not impactful. With an appropriate clause quality metric the
changing of literal reasons can have an impact.

5 Experiments and Results

We implemented our techniques in two different SAT solvers, MapleSAT and
Cadical,3 both of which have finished at or near the top of SAT competitions for
the past several years [3,4]. We then ran each solver on the 800 total benchmark
instances used in the main tracks of the 2018 SAT Competition and 2019 SAT
Race. The experiments were executed on a cluster of 2.7 GHz Intel cores with
5000 s CPU time and 7 GB memory limits for each instance. We chose not to
output or verify the proofs generated by any of the solvers. The Par-2 scores
obtained and total instances solved by each solver are reported in Figs. 3, 5, and
6. We also show the cactus plot of the new version of cadical in Fig. 4.

In Fig. 3 we used the newest version of cadical (downloaded as of January 1,
2020) as the baseline solver, in Fig. 5 we used the version of cadical published in
[8] as the baseline, and in Fig. 6 we used MapleLCMDist [7,15] as the baseline.
Each of the baselines were run with standard non-chronological backtracking. We
then refer to versions of each solver with additional features implemented on top
by adding suffixes. “-chrono” refers to the solver with C-bt enabled (using the
solver’s default settings), “-trail” refers to the baseline with plain trail saving
added (as described in Fig. 1), “-trail-multipleBT” refers to the baseline with
trail saving plus the first enhancement of saving over multiple backtracks, “-trail-
multipleBT-lookahead” also adds the enhancement of lookahead for conflicts by
2 decision levels, and “-trail-multipleBT-lookahead-reason” also adds the final
enhancement to cease trail saving once a reason of “low quality” is reached. For
more details on the enhancements, please see Sect. 4.2.

Interestingly, C-bt made the newest version of cadical perform worse than
the baseline (Fig. 3). This demonstrates that C-bt is not always beneficial. Trail
saving alone did not impact the performance of this solver significantly, but
adding all of the enhancements on top of trail saving resulted in solving six
more instances and yielding a better Par-2 score than the baseline. The key
enhancement for this solver seemed to be the last one where we stop using the
saved trail once we detect a reason of “low quality”. We tried both clause size
3 Our implementation is available at https://github.com/rgh000/cadical-trail.

https://github.com/rgh000/cadical-trail
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and lbd as the clause quality metric, and both yielded a positive gain, with clause
size being slightly more effective.

Fig. 3. Table of results for cadical, version pulled from github as of January 1, 2020.

Fig. 4. Cactus plot for the newest version of cadical comparing standard non-
chronological backtracking to C-bt and various configurations of trail saving. The first
400 problems were solved in less than 1200 s, so that part of the plot is truncated.

The version of cadical used in Fig. 5 did show benefits from C-bt in agreement
with previously published results [8]. Trail saving alone did not significantly
impact this solver, but adding all of the enhancements on top of trail saving
resulted in solving the same number of instances as the solver with C-bt did,
albeit with a slight increase in the Par-2 score.

MapleLCMDist (in Fig. 6) is another solver that benefited from C-bt. In this
solver trail saving alone solved two more instances than the solver with C-bt
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Fig. 5. Table of results for cadical or “chrono”, version published in [8].

did. Adding the first two enhancements on top of trail saving resulted in solving
only one more instance but yielded a better Par-2 score than the solver with
C-bt. Adding the last enhancement of ceasing trail saving on a “low quality”
reason made the performance worse, whether clause size or lbd was used as the
clause quality metric. This suggests that the enhancements to trail saving have
different impacts on different solvers.

Fig. 6. Table of results for MapleLCMDist.

6 Conclusion

We have shown that our trail saving technique can speed up two state-of-the-art
SAT solvers, cadical and MapleSAT, as or more effectively than chronological
backtracking can. We also introduced three enhancements one can implement
when using a saved trail and demonstrated experimentally that these enhance-
ments can sometimes improve a solver’s performance by a significant amount.
We have shown that trail saving and all enhancements we proposed are sound.

There are many avenues that can be pursued in future work, such as using
the saved trail to help make inprocessing techniques faster or using the saved
trail to learn multiple clauses from a single conflict. It is also possible to combine
trail saving with chronological backtracking, but it would require further work
to determine whether or not this would be useful and how to best approach it.
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