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Abstract. Incremental techniques have been widely used in solving
problems reducible to SAT and MaxSAT instances. When an algorithm
requires making subsequent runs of a SAT-solver on a slightly chang-
ing input formula, it is usually beneficial to change the strategy, so that
the algorithm only operates on a single instance of a SAT-solver. One
way to do this is via a mechanism called assumptions, which allows to
accumulate and reuse knowledge from one iteration to the next and, in
consequence, the provided input formula need not to be rebuilt during
computation. In this paper we propose an encoding of a Pseudo-Boolean
goal function that is based on sorting networks and can be provided to
a SAT-solver only once. Then, during an optimization process, differ-
ent bounds on the value of the function can be given to the solver by
appropriate sets of assumptions. The experimental results show that the
proposed technique is sound, that is, it increases the number of solved
instances and reduces the average time and memory used by the solver
on solved instances.

Keywords: Incremental encoding - CNF encoding + Pseudo-Boolean
constraints - Comparator networks - SAT-solvers

1 Introduction

A Pseudo-Boolean constraint (a PB-constraint, in short) is of the form ajz; +
asxs + -+ + apx, # k, where n,k € N, {z1,...,z,} is a set of propositional
literals (that is, variables or their negations), {a1,...,a,} is a set of integer
coefficients, and # € {<,<,=,>,>}. PB-constraints are more expressive and
more compact than clauses when representing some Boolean formulas, especially
for optimization problems. PB-constraints are used in many real-life applica-
tions, for example, in cumulative scheduling [31], logic synthesis [3] or verification
[9]. There have been many approaches for handling PB-constraints in the past,
for example, extending existing SAT-solvers to support PB-constraints natively
[14,21]. One of the most successful ideas was introduced by Eén and Sérensson
[13], who show how PB-constraints can be handled through translation to SAT.
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The algorithm, implemented in a tool called MINISAT-+, incrementally strength-
ens the constraint on a goal function to find the optimum value, rebuilding par-
tially a formula on each iteration, and making a new call to the underlying
SAT-solver.

A typical SAT-solver accepts a problem instance as an input and outputs
a satisfying assignment or an Unsatisfiable statement as a result. This can
be inefficient if we want to minimize a value of a given goal function by solv-
ing many similar SAT instances (like in the aforementioned PB-solving algo-
rithm of MINISATH). Parsing almost the same constraint sets, and then apply-
ing the same inferences could be costly, therefore a more preservative approach is
recommended.

An incremental approach for solving a series of related SAT instances was
introduced, for example, in [12], as the means of checking safety properties on
finite state machines. Later, the same authors implemented this technique in
MINISAT [11] as a general tool, which they simply called assumptions. Assump-
tions are propositions that hold solely for one specific invocation of the solver.
The goal of this paper is to propose an incremental algorithm for solving PB-
constraint optimization problems by modifying an iterative SAT-based algorithm
of KP-MINISAT+ [17], such that the input instance is encoded only once, and
later, a set of assumptions is changed from one iteration to another, such that
the encoding of the new constraint (on the goal function) is preserved, without
the need to rebuild the CNF formula.

1.1 Related Work

One way to solve a PB-constraint is to transform it to a SAT instance (via
Binary Decision Diagrams (BDDs), adders or sorting networks [7,13]) and pro-
cess it using — increasingly improving — state-of-the-art SAT-solvers. Recent
research have favored the approach that uses BDDs, which is evidenced by
several new constructions and optimizations [2,30]. In our previous paper we
showed that encodings based on comparator networks can still be very competi-
tive [17]. Comparator networks have been successfully applied to construct very
efficient encodings of cardinality and Pseudo-Boolean constraints. Codish and
Zazon-Ivry [10] introduced pairwise selection networks. We have later improved
their construction [16]. In [1] the authors proposed a mixed parametric approach
to the encodings, where the direct encoding is chosen for small sub-problems and
the splitting point is optimized when large problems are divided into two smaller
ones. They proposed to minimize the function A - num_vars + num_clauses in
the encodings, where lambda is a constant chosen empirically. The constructed
encodings are small and efficient. Most encodings based on comparator networks
use variations of the Batcher’s Odd-Even Sorting Network [1,4,5,18].
Incremental usage of SAT-solvers has been studied extensively in the past
years, which allowed for the huge increase in the performance of SAT-based algo-
rithms [12,25,32,33]. Recently, incremental algorithms for MaxSAT instances
have appeared [24,27,34], and the experimental results show that the per-
formance of MaxSAT-solvers can be greatly improved by maintaining the
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learned information and the internal state of the SAT-solver between iterations.
Some incremental SAT algorithms also exist for solving PB-constraint instances.
For example, Manolios and Papavasileiou [22] proposed an algorithm for PB-
solving that uses a SAT-solver for the efficient exploration of the search space,
but at the same time exploits the high-level structure of the PB-constraints to
simplify the problem and direct the search. Some popular solvers also implement
incremental methods, for example, QMaxSAT [20] or Glucose [6].

1.2 Owur Contribution

Even though MaxSAT problems and Pseudo-Boolean constraint satisfaction
problems have a very close relation with each other (by a simple reduction),
the notion of incrementality for encoding PB-constraints has not yet been fully
exploited. In this paper we show how sorter-based algorithm of KP-MINISAT+
can be extended to solve, even more efficiently, optimization problems involving
PB-constraints.

MINISATH has served as a base for many new solvers and has been extended
to test new constructions and optimizations in the field of PB-solving. Similarly,
we have developed a system based on it which encodes PB-constraints using a
new sorter-based algorithm [17], efficiently finds good mixed-radix bases for the
encoding (see Subsect. 2.2 for a definition) and incorporates a few other opti-
mizations. The underlying comparator network is called a 4-Way Merge Selec-
tion Network [18], and experiments showed that on many instances of popular
benchmarks our technique outperformed other state-of-the-art PB-solvers. Fur-
thermore, our solver has been recently extended to MaxSAT problems and can
successfully compete with state-of-the-art MaxSAT-solvers, which is evidenced
by achieving high places in MaxSAT Evaluation 2019. The new MaxSAT-solver,
called UWrMaxSat [29], took second place in both Weighted Complete Track
and Unweighted Complete Track of the competition.

In this paper we show how the encoding algorithm of the PB-solver can
be further improved by extending the usage of assumptions in the comparator
network encoding scheme. The new technique is a modification of the idea found
in NAPS [30] for simplifying inequality assertions in a constraint. It is applied
when a mixed-radix base is used to encode a constraint as an interconnected
sequence of sorting networks. The idea is to add a certain integer constant to
both sides of the constraint, such that the representation of right side constant
(in the base) contains only one non-zero digit. Now, in order to enforce the
inequality, one only needs to assert a single output variable of the encoding of
the last network. This simplification allows for a reduction of the number of
clauses in the resulting CNF encoding, as well as allows better propagation. We
have successfully implemented the technique in KP-MINISAT+. In the process
of minimizing the value of a goal function, the solver has to try a series of bounds
on it. The main purpose of our new construction is to avoid adding new variables
and clauses to the encoding after each bound change. In this paper we show how
to remedy this situation by adding a certain number of fresh variables to the
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encoded networks and then using them as assumptions to set a value of the
changing constant.

We experimentally compare our solver with other state-of-the-art general
constraints solvers like PBLIB [28] and NAPS [30] to prove that our techniques
are good in practice. We use COMINISATPS [26] by Chanseok Oh as the under-
lying SAT-solver, as it has been observed to perform better than the original
MINISAT [11] for many instances.

Since more than a decade there have been organized a series of Pseudo-
Boolean Evaluations [23] which aim to assess the state-of-the-art in the field of
PB-solvers. We use the competition problems from the PB 2016 Competition as
benchmarks for the solver proposed in this paper.

1.3 Structure of the Paper

In Sect. 2 we briefly describe our comparator network algorithm, then we explain
the Mixed Radix Base technique used in MINISAT+ and we show how it is
applied to encode a PB-constraint by constructing a series of comparator net-
works. In Sect. 3 we show how to leverage assumptions in order to build an incre-
mental algorithm on top of KP-MINISAT+’s PB-solving algorithm. We present
results of our experiments in Sect. 4, and we give concluding remarks in Sect. 5.

2 Background

The main tool in our encoding algorithms is a comparator network. Traditionally
comparator networks are presented as circuits that receive n inputs and permute
them using comparators (2-sorters) connected by “wires”. Each comparator has
two inputs and two outputs. The “lower” output is the maximum of inputs, and
“upper” one is the minimum. Their standard definitions and properties can be
found, for example, in [19].

2.1 4-Way Merge Selection Network

MINISAT+ uses Batcher’s original construction [8] — the 2-Odd-Even Sorting
Network. Later, it has been proposed to replace it with a selection network. A
selection network of order (n, k) is a comparator network such that for any 0-1
input of length n it outputs its k largest elements, where k is the RHS of a
constraint. Those k elements must also be sorted in order to easily assert the
given constraint, by asserting only the k-th output. In this paper we use sorting
networks as black-boxes, therefore we describe the algorithm in a brief manner.

The main building block of our encoding is a direct selection network, which
is a certain generalization of a comparator. Encoding of the direct selection
network of order (n, k) with inputs (z1,...,z,) and outputs (yi,...,yx) is the
set of clauses {w;, A---ANx;, = yp : 1 <p <k 1<id <--- <i, <n}. The
direct n-sorter is a direct selector of order (n,n), therefore we need n auxiliary
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variables and 2™ — 1 clauses to encode it. This shows that n should be small in
order to avoid an exponential blowup in the number of clauses.

It has already been observed that using selection networks instead of sorting
networks is more efficient for the encoding of constraints [10], as the resulting
encodings are smaller and can achieve faster SAT-solver run-time. This fact has
been successfully used to encode cardinality constraints, and we have applied this
technique to PB-constraints using a construction called a 4-Way Merge Selection
Network. A detailed description of the algorithm, a proof of its correctness and
the corresponding analysis can be found in our previous paper [18]. We extended
our construction by mixing our network with the direct encoding for small values
of parameters n and k — the technique which was first described by Abio et al. [1].

2.2 Mixed Radix Base Technique

The authors of MINISAT+ devised a method to decompose a PB-constraint
into a number of interconnected sorting networks, where sorters play the role of
adders on unary numbers in a mized radix representation.

In the classic base r radix system, positive integers are represented as finite
sequences of digits d = (dp,...,d,—1) where for each digit 0 < d; < r, and
for the most significant digit, d,,—1 > 0. The integer value associated with d is
v=dy+dir+dor?+---4+dy,_17™ . A mixed radix system is a generalization
where a base B is a sequence of positive integers (rg, ..., 7m—1). The integer value
associated with d is v = dowg + diwy + daws + - - - + d,w,, Where wg = 1 and
for i > 0, w; 1 = w;r;. For example, the number (2,4, 10)p in base B = (3,5) is
interpreted as 2 x 1 +4 x 3+ 10 x 15 = 164 (values of w;’s in boldface).

The decomposition of a PB-constraint into sorting net-

works is roughly as follows: first, find a “suitable” finite base 0100
B for the given set of coefficients, for example, in MINISAT+ 0100
the base is chosen so that the sum of all the digits of the coef- 0100
ficients written in that base is as small as possible. Then for 0100
each element r; of B construct a sorting network where the 1200
inputs of the i-th sorter will be those digits d (from the coeffi- 0001

cients) where d; is non-zero, plus the potential carry bits from
the (i — 1)-th sorter.

We show a construction of a sorting network system using Fig. 1.
an example. We present a step-by-step process of translating Coofficients
a PB—COHStI‘&th 1/} = 2561 + 2132 —+ 21‘3 —+ 2I4 + 5I5 —+ 181‘6 S 22 of w in base B
Let B = (2,3,3) be the considered mixed radix base. The
representation of the coefficients of 1 in base B may be illustrated by a 6 x 4
matrix (see Fig.1). The rows of the matrix correspond to the representation of
the coefficients in base B. Weights of the digit positions of base B are w =
(1,2,6,18). Thus, the decomposition of the LHS (left-hand side) of ¢ is:

1'(m5)+2~(x1+x2+x3+x4+2x5)+6-(0)+18'(mﬁ)

Now we construct a series of four sorting networks in order to encode the sums
at each digit position of w. Given values for the variables, the sorted outputs
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Fig. 2. Decomposition of a PB-constraint into a series of interconnected sorting net-
works. Outputs of sorting networks are ordered such that the bottom bit is the largest.

from these networks represent unary numbers dy, ds, ds, dy such that the LHS
of ¢ takes the value 1-d; +2-do +6-ds + 18 - dy.

The final step is to encode the carry operation from each digit position to
the next. The first three outputs must represent valid digits (in unary) for B. In
our example the single potential violation to this is dy, which is represented in 6
bits. To this end we add two components to the encoding: (1) each third output
of the second network is fed into the third network as carry input; and (2) a
normalizer MOD3 is added to encode that the output of the second network is
to be considered modulo 3. The full construction is illustrated in Fig. 2.

The outputs from these four sorting networks now specify a number in base
B, i.e., bits representing LHS of the constraint, each digit represented in unary.
To enforce the constraint, we have to add clauses representing the relation <22
(in base B). It is done by lexicographical comparison of digits representing LHS
to digits representing 22 = (0,2,0,1)g. Let 11, 2, 13, 19, 1S, I}® represent the
outputs of the networks, like in Figure 2. Then the following set of clauses
enforce the <22 constraint: [}® = =% and 118 = = (13 A 1}).

Could we eliminate the clauses and the MOD sub-networks as well? Consider
the following scheme. If we add 13 = (1,0, 2,0)p to both sides of ¢, then we get
' = 2@y +2x9 + 2w5+ 224 + 55 + 1826+ 13 < 36. Observe that 36 = (0,0,0,2)p
and the new decomposition of the LHS is:

1-(145)+2- (1 +22+ 23+ 24 +205) +6- (14 1) + 18- (z6)

After this change we virtually add 1s as additional outputs to the corresponding
networks (one to the first network and two to the third network, as indicated by
the new decomposition). This will change the number of inputs to some networks,
that is, /1 will be an additional input to the second network (as a carry) and (¢
will be a similar input to the fourth one. Thus, the fourth network will now have
2 inputs and an additional literal [3® representing its second output needs to be
created.

Observe that ¢ and ¢’ are equivalent, but in the representation of 36 (in
base B) only the most significant bit has a non-zero value, therefore enforcing
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the < 36 constraint is as easy as adding a singleton clause —I3® (or setting it
as an assumption). In consequence, the only relevant outputs of the networks
(except the last one) are the ones that represent the carry bits, therefore there
is no need to use normalizers. This optimization was first proposed in NAPS
[30] and we have already implemented it in our previous solver [17]. Notice that
after changing the RHS, we need to rebuild most of the construction in order to
account for the increased number of inputs and outputs of each network and the
new carry bit positions. What follows is an improvement of this strategy, such
that we do not need to do the rebuilding step.

3 The Incremental Algorithm

We now show how we can better encode the goal function of a PB-constraint
optimization instance by adding assumptions to the previous construction. To
demonstrate each step of the algorithm, we will be using our running example,
i.e., the goal function is 221 + 225 + 223 + 224 + 525 + 1826 and B = (2,3, 3) is
the chosen base.

Code Notation. The pseudo-code is presented in Algorithms1 and 2. The only
non-trivial data structure used is a vector, i.e., a dynamic array, which in our
case can store either numbers or literals, depending on the context. Vectors are
indexed starting from 0, and x; is the i-th element of a vector Z. The vector
structure supports three straightforward operations:

— pushBack — appends a given element to the end of the vector.
— size — returns the number of elements currently stored in the vector.
— clear — removes all elements of the vector.

A special SAT-solver object ss is also available. It supports the following set of
operations:

— newVar — creates a fresh variable and adds it to the solver instance.

— addClause — adds a clause to the solver instance (a clause is given as a
sequence of literals).

— encodeBySorter — given a sequence of input literals of size n, it constructs a
sorter with n inputs and n outputs and transforms it to a CNF formula (for
example, using our 4-Way Merge Selection Network). The formula is added to
the SAT-solver and the operation returns a sequence of literals representing
the output of the sorter.

— solve — takes a set of assumptions as input and returns a model if the solver
instance is satisfiable under given assumptions, otherwise returns UNSAT.

We now describe our algorithm and show how it works using our running
example. We do this in a bottom-up manner, starting with the encodeGoal
procedure (Algorithm 1).



526 M. Karpinski and M. Piotréw

Algorithm 1. encodeGoal

Input: A PB function g(Z) = ai1z1 + a2x2 + - - - + an®n, where a1, az,...,a, > 0, and
a SAT-solver ss.

Output: A tuple (7, z,y), where 7 is a mixed radix base, Z are new assumption vari-
ables and 7 is a sequence of variables representing output of the encoding. The out-
put is used in Algorithm 2 to force any upper bound on g(Z) by setting assumptions
to ss.

: 7« findGoodBase(a1,az,...,an)

: let @ be the weight vector of 7

let z, 4, carry, in and out be empty vectors

for i =0 to 7.size() — 1 do

in «— carry
for j=1tor; —1do
2y — ss.mewVar()
in.pushBack(z}"), z.pushBack(z}’")
9: for j=2tor; —1do ss.addClause(—'z;”i Vv z;-”jl)
10: for j =1tondo

S A R

11: repeat a; modr; times in.pushBack(x;)
12: aj — a;/r;

13: out < ss.encodeBySorter(in)

14: carry.clear()

15: for j = r; — 1 while j < out.size() step r; do carry.pushBack(out;)
16: in < carry

17: for j =1 ton do

18: repeat a; times in.pushBack(z;)

19: § « ss.encode BySorter(in)

20: return (7, z,7)

encodeGoal. Find a mixed radix base (rg,...,mm—1) (for some m > 0) and
its weight vector (wo, ..., w,,) (lines 1-2). Next, decompose the goal function as
shown in the previous section with the following modifications. The i-th iteration
creates the i-th sorter for which inputs are stored in vector in. New assumption
variables are created and passed to the sorter as additional input. A more detailed
description is as follows, given we are in the i-th iteration of the main loop
0<i<m-—1).

In lines 6-8, create a new variable ij, for each 0 < j < r; (line 7). Add the
new variables as input to the current sorter (line 8). Next, for 1 < j < r; add
the clause 2z, = 2| to the instance (line 9).

The purpose for this step is as follows. The new variables allow to represent
any number between 0 and r; — 1 (for a given 0 < ¢ < m — 1) in unary, and
the new clauses enforce the order of the bits. Now, if we would like to set the
variables (2;"*,..., 2" ;) such that they represent a number 0 < j < r; — 1, we
need to only set z;” =1 and z;*’ﬂ = 0, and the unit propagation will set all

other z]‘? ’s such that exactly j of them will be set to true. If j = 0, then we only



Incr. Encoding of PB-Constraints Based on Comparator Networks 527

z:7: 7078

| <

L)

8

Fig.3. An example of a novel PB-constraint decomposition. The top variables are
stored as assumptions and their values are adjusted after each iteration of the
algorithm.

need to set 2y = 0, and if j = 7; — 1 we set 2" | = 1, and similarly the unit
propagation correctly sets the rest of the variables.

Let a} 1 < j < n, denote the value of a; in line 11 in the i-th iteration of the
loop 4-15. In lines 10-12, add multiple copies of the variables z1, ..., z, to in, in
such a way that they represent (in unary) terms of the sum Z?Zl (a% mod r;)x;.
Since each sorter acts as an adder, the sequence out in line 13 represents the
value of the sum (plus carry and (2;",...,2,." 1)) in unary.

In our running example we create five new variables: 2, 22, 22, 2§, 2§ and
the set of clauses consists of 23 = 27 and 2§ = 2§.

Remember that we represent the value of the LHS as an expression wq - dg +
<+« 4 Wy, - dm, as explained in the previous section (each d; is a sum of some
input variables). For each 0 <i <m—1and 0 < j < r; we add z;‘“ to d;. In our

running example the decomposition will look like this:
1- (2 +25) +2- (22 + 25+ 21+ + a3+ 34 +225) +6- (25 +28) + 18- (x6)

In lines 10-15 a single sorter is created and the carry bits are set for the next
one. Notice that the output of the current sorter (stored in the out vector) is only
needed for calculating the carry bits passed to the next sorter (line 15). This is
because the only necessary output variable which enforces constraints belongs
to the last sorter (created in lines 16-19). Therefore no additional normalizers
are required, which is another advantage of using our construction.

We show in Fig. 3 how such a construction looks for our running example. The
new assumption variables are shown on the top. Compared to the example from
Fig. 2 we added some new inputs, therefore we needed to also create additional
outputs for each network. Notice that this changed the carry bit positions but
no normalizers were constructed.
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Algorithm 2. optimizeGoal

Input: A PB function g(Z) = ai1z1 + a2x2 + - - - + an®n, where a1, az,...,a, > 0, and
a SAT-solver ss that is filled already with encodings of other constraints.

Output: A model that minimizes the value of g(Z) and satisfies other constraints or
UNSAT.

1: (res,model) «— ss.solve(D)

2: if res = UNSAT then return UNSAT

3: (7, 2,y) < encodeGoal(g, ss) # see Algorithm 1
4: UB « g(model), LB « 0, opt M odel < model

5: let assump be an empty vector and w be the weight vector of 7

6: while UB > LB do

7 bound «— [0.65-UB + 0.35 - LB] # LB < bound < UB
8: assump.clear(), b < bound

9: for i =0 to r.size() — 1 do

10: j<—b modr;, b—b/r;

11: if jA0then j«—mr —j,b—b+1

12: if j = 0 then assump.pushBack(—z;"")

13: else if j =7, — 1 then assump.pushBack(z;”i[l)

14: else assump.pushBack(z;"), assump.pushBack(=z} )

15: assump.pushBack(—ys)

16: (res, model) < ss.solve(assump) # g(Z) < bound is enforced by assump
17: if res = SAT then

18: UB «— g(model) # g(model) < bound
19: opt M odel <— model
20: ss.addClause(—ysp)
21: else
22: LB « bound

23: return optM odel

optimizeGoal. The optimization procedure is presented in Algorithm 2. Notice
that we assume aq,as,...,a, > 0. The goal function can be easily normalized
to satisfy this condition (see [13]). After encoding every constraint into CNF
formulas we first check if the given set of constraints is satisfiable (lines 1-2). If
it is, then we can optimize the goal function given the constraints. We encode the
goal function using the encodeGoal procedure (line 3). The optimization strategy
used is the binary search with the 65/35 split ratio. The detailed description
follows.

For the current bound on the constraint (stored in the bound variable) com-
pute how many 1s need to be added to both sides of the inequality, such that the
RHS has only the most significant position set in the base (rg,...,rn—1). Let ¢
be that number, that is, if bound is divisible by w,, then c is zero, otherwise ¢
is set to wy, —bound mod w,,, and let {co, ..., cm—1) be the representation of ¢
in base (rog, ..., m—1). Notice that ¢,, is omitted since it is equal to 0. For each
0<i<m-—1,let j =c¢; and do:

— if j =0, set 2" =0,
—ifj=mr;—1,set 2" | =1,

wi __

. wi
— otherwise set z;" =1 and z;7{; = 0.
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This is done in lines 9-14, where variable b in the i-th iteration is set to the value
of [bound/w;41]. Thus, j is the i-th digit (in base 7) of bw; 1 —bound. Next, add
a singleton clause enforcing the constraint (line 15) to the set of assumptions.

In our running example let us assume that the current bound is 23, therefore
¢ = 13, so the assumptions are z{ =1, 22 =0, 2§ = 1 (23 and 2} will be set by
unit propagation), which means that in order to enforce a constraint <36, we
only need to add —ys as another assumption. Note that § is the output of the
last sorter created by the encodeGoal procedure, so y» is equivalent to the [38
in Fig. 3.

Finally, we run the underlying SAT-solver under the current set of assump-
tions (line 16) and based on the answer we strengthen the bounds on the goal
function (lines 17-22). The binary search continues until the optimum is found.
For example, if the algorithm determines that the next bound to check for our
running example is 19, then we revert the assignment of the assumptions and
now we set 2 = 1, 25 = 1 and 2§ = 1, since now we need to add 17 to both
sides of the inequality so that the encoding is still equisatisfiable with the < 36
constraint. Notice that no other operation is necessary. As we will see in the next
section, the fact that we are building the sorting networks structure only once
for the goal function leads to a performance increase in both running time and
memory use, compared to other state-of-the-art methods. Let us now prove the
correctness of our algorithm, for the sake of completeness.

Theorem 1. Let g(Z) = a1x1 + agxe + - - - + any, where ay,as,...,a, >0 are
integer coefficients and x1,x4, ..., T, are propositional literals. Let ¢ be a CNF
formula. Algorithm 2 returns a model of ¢ which minimizes the value of g(Z) or
UNSAT, if ¢ is unsatisfiable.

Proof (sketch). If ¢ is unsatisfiable, then the algorithm terminates on line 2.
Assume that ¢ is satisfiable. The binary search of optimizeGoal will find the
optimal model of ¢ with respect to the goal function ¢g(Z), if the distance between
upper and lower bounds decreases in each iteration of the algorithm. It is obvi-
ously true if g(Z) < bound is enforced on SAT solver by assump set in lines
8-15. To prove this, let (7, z, ) be the result of line 3, m be the size of 7 and let
@ be the weight vector of base 7 (see Subsect. 2.2). Fix the value of bound and
let by = bound and define b;;1 and j; to be the values of variables b and j after

line 11 in the i-th iteration of the loop in lines 9-14. Notice that b;y; = [ﬁ—‘

T4
and j; = r;b;4+1 — b;. By induction one can prove the following invariants of the

loop: b; = % and Zl;t Jsws = bjw; — bound.

Therefore, after the loop, we have bound = b, w.,, — E:":_Ol jsws. It follows
that the inequality ¢(Z) < bound is equivalent to ¢(Z) + Z;n:_ol JsWs < bW,
(1). Each value js is set (in unary) on variables 21*, ..., 2’ | in lines 12-14 (see

also line 9 in Algorithm 1). In this way the LHS of (1) is set in the encoding
generated by encodeGoal. The sequence § = (y1,¥s,...) represents (in unary) a
value that is multiplied by w,,, thus, by adding -y, to assump in line 15, we
enforce the value to be less than b,,. That ends the proof that the SAT-solver
call in line 16 returns SAT if and only if both ¢g(Z) < bound and ¢ are satisfied.
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4 Experimental Evaluation

Our extension of MINISAT+, based on the features explained in this paper and in
the previous one [17], is available online!. We call it KP-MiNiSaT+ (KP-MSP,
in short). It should be linked with a slightly modified COMINISATPS?, where
the patch is also given at the link above (See footnote 1). The latest addition to
the patch is an assumptions processing improvement due to Hickey and Bacchus
[15]. Detailed results of the experimental evaluation are also available online®.

The set of instances we use is from the Pseudo-Boolean Competition 2016%.
We use instances with linear Pseudo-Boolean constraints that encode optimiza-
tion problems. To this end, two categories from the competition have been
selected:

— OPT-BIGINT-LIN - 1109 instances of optimization problems with big
coefficients in the constraints (at least one constraint with a sum of coef-
ficients greater than 220). An objective function is present. The solver must
find a solution with the best possible value of the objective function.

— OPT-SMALLINT-LIN - 1600 instances of optimization problems. Like
OPT-BIGINT-LIN but with small coefficients in the constraints (no con-
straint with sum of coefficients greater than 229).

We compare our solver with two state-of-the-art general purpose con-
straint solvers. The first one is PBSOLVER from PBLIB ver. 1.2.1, by Tobias
Philipp and Peter Steinke [28] (abbreviated to PBLib in the results). This
solver implements a plethora of encodings for three types of constraints: at-
most-one, at-most-k (cardinality constraints) and Pseudo-Boolean constraints.
PBLIB automatically normalizes the input constraints and decides which
encoder provides the most effective translation. We have launched the pro-
gram ./BasicPBSolver/pbsolver of PBLIB on each instance with the default
parameters.

The second solver is NAPS ver. 1.02b by Masahiko Sakai and Hidetomo
Nabeshima [30] which implements improved ROBDD structure for encoding con-
straints in band form, as well as other optimizations. This solver is also built
on the top of MINISATH. NAPS won two of the optimization categories in the
Pseudo-Boolean Competition 2016: OPT-BIGINT-LIN and OPT-SMALLINT-
LIN. We have launched the main program of NAPS on each instance, with
parameters —a —-s -nm.

We also compare our solver with the original MINISAT+ in two different ver-
sions, one using the original MINISAT SAT-solver and the other using COMIN-
ISATPS. We label these MS+ and MIS4COM in the results. We present results
for MS+COM in order to show that the advantage of using our solver does not
come simply from changing the underlying SAT-solver.

! See https://github.com/karpiu/kp-minisatp.

2 See https://baldur.iti.kit.edu/sat-competition-2016 /solvers.
3 See http://www.ii.uni.wroc.pl/~karp/sat/2020.html.

4 See http://www.cril.univ-artois.fr/PB16/.
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Table 1. Results summary for the OPT-BIGINT-LIN category

solver solved | Opt | UnSat |cpu (s) |scpu (s) |avg(scpu) smem (MB) | avg(smem)
KP-MSP++|468 |395|73 1046518 | 44424 94.9 208035 444.5
KP-MSP+-|467 395 |72 1037085 44886 96.1 213973 458.2
KP-MSP--461 389 |72 1039499 37672 | 81.7 283681 615.4
NaPS 383 314 169 1314536 |51557 |134.6 245533 641.1
MS+ 220 149 |71 1647958 47759 |217.1 42181 191.7
MS+COM |245 174 |71 1609433 |54234 |221.4 46336 189.1

Table 2. Results summary for the OPT-SMALLINT-LIN category

solver solved | Opt | UnSat |cpu (s) |scpu (s) |avg(scpu) smem (MB) | avg(smem)
KP-MSP++|894 |808 |86 1282788 | 43556 48.7 164223 183.7
KP-MSP+-|893 806 |87 1278926 |38474 43.1 162405 181.9
KP-MSP-- 893 809 84 127872237747 | 42.3 153619 172.0
NaPS$S 887 |803 84 1310006 |40376 45.5 186760 210.6
PBLib 747 691 |56 1611247 |74993 |100.4 112993 151.3
MS+ 788 715 |73 1515166 |53566 68.0 113606 144.2
MS+COM | 805 734 |71 1491269 | 60270 74.9 106886 132.8

We are providing results for three versions of KP-MSP: (1) KP-MSP++
that contains our algorithms and the latest modification to COMiniSatPS, (2)
KP-MSP+- that also contains the algorithms but not the modification, and (3)
KP-MSP-- - without the algorithms and the modification, but still with opti-
mizations of KP-MSP described in [17] (in particular, in encodings of constraints
on a goal function, it reuses clauses from previous encoding by the “shared-
formulas” original technique of MINISAT+). We would like to see what is the
impact of new techniques on the number of solved instances and the average
times and spaces used.

All the three versions of KP-MSP used default parameters, except for the
parameter -gs, which forces the algorithm to always encode the goal function
using our selection network (and the direct encoding for small sub-networks).
This means that other constraints can sometimes be encoded using either BDDs
or adder networks, and the original MINISAT+’s heuristics (slightly modified
by us to strongly prefer encoding by sorters) decide which method is used. For
example, for OPT-BIGINT-LIN instances, in all encoded non-goal constraints:
99.58% were encoded by sorters, 0.34% by BDDs and 0.08% by adders. If we
consider only the successfully solved instances then the corresponding numbers
are: 99.73%, 0.02% and 0.25%.

All experiments were carried out on machines with Intel(R) Core(TM) i7-
2600 CPU @ 3.40 GHz. The timeout limit is set to 1800 s and the memory limit is
15 GB, which are enforced with the following commands: ulimit -Sv 15000000
and timeout —k 20 1809 < solver > < parameters > < instance >.
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Fig. 4. Cactus plot for OPT-BIGINT-LIN division from the PB16 suite
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Fig. 5. Cactus plot for OPT-SMALLINT-LIN division from the PB16 suite

In Tables1 and 2 we present results for categories OPT-BIGINT-LIN and
OPT-SMALLINT-LIN, respectively. In the solved column we show the total
number of solved instances, which is the sum of the number of instances where
the optimum was found (the Opt column) and the number of unsatisfiable
instances found (the UnSat column). In the cpu column we show the total
solving time (in seconds) of the solver over all instances of a given category, and
scpu is the total solving time over solved instances only. Similarly, smem is the
total memory space used (in megabytes) during the computation of the solved
instances. Averages have been computed as follows: avg(scpu) = scpu/solved
and avg(smem) = smem/solved.
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Looking at the results, one can observe that new algorithms increase the
number of solved instances to 468 in the OPT-BIGINT-LIN category. It is now
almost equal to the number of 470 instances solved together by all the competi-
tors of PB Competition 2016. The modification of COMINISATPS add 1 solved
instance and reduces the average time (by 1.2s) and memory use (by 13.7 MB).
The algorithms reduce the average memory use by 157.2 MB (KP-MSP+- versus
KP-MSP--). Moreover, one can observe significant improvement in the number
of solved instances in comparison to NaPS§ in this category.

In case of OPT-SMALLINT-LIN category, the differences among the results
of all three versions of KP-MSP are small. It is understandable, as the coefficients
of goal functions are not big in this category, thus, the sizes of mixed-radix bases
are small, so the optimization techniques of [17] are equivalently efficient to the
new algorithms.

In terms of memory usage MS+ and MS+COM are the most efficient in
this evaluation, but their overall performance is poor. Observe also that their
average values are computed over much smaller sets of solved instances. Solver
PBLib had the worst performance in this evaluation. Notice that the results of
PBLib for OPT-BIGINT-LIN division are not available. This is because PBLib
is using 64-bit integers in calculations, thus could not be launched with all OPT-
BIGINT-LIN instances.

Figures4 and 5 show cactus plots of the results, which indicate the number
of solved instances within the time. We see a clear advantage of our solvers over
the competition in the OPT-BIGINT-LIN category.

5 Conclusions

In this paper we showed that comparator networks are still competitive when
used in encoding Pseudo-Boolean constraints to SAT. The popular idea of incre-
mental encoding applied to the sorting network encoding of a pseudo-Boolean
goal function leads to an increase in the number of solved instances in the OPT-
BIGINT-LIN category and reduces the memory use compared to other state-
of-the-art methods. The proposed modification is short and easy to implement
using any modern SAT-solver which supports assumptions.
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