
Satisfiability Solving Meets Evolutionary
Optimisation in Designing Approximate

Circuits

Milan Češka, Jǐŕı Matyáš(B), Vojtech Mrazek, and Tomáš Vojnar

FIT, Brno University of Technology, Brno, Czech Republic
imatyas@fit.vutbr.cz

Abstract. Approximate circuits that trade the chip area or power con-
sumption for the precision of the computation play a key role in devel-
opment of energy-aware systems. Designing complex approximate cir-
cuits is, however, very difficult, especially, when a given approximation
error has to be guaranteed. Evolutionary search algorithms together with
SAT-based error evaluation currently represent one of the most success-
ful approaches for automated circuit approximation. In this paper, we
apply satisfiability solving not only for circuit evaluation but also for its
minimisation. We consider and evaluate several approaches to this task,
both inspired by existing works as well as novel ones. Our experiments
show that a combined strategy, integrating evolutionary search and SMT-
based sub-circuit minimisation (using quantified theory of arrays) that
we propose, is able to find complex approximate circuits (e.g. 16-bit mul-
tipliers) with considerably better trade-offs between the circuit precision
and size than existing approaches.

1 Introduction

Approximate circuits are digital circuits that trade functional correctness (pre-
cision of computation) for other design objectives such as chip area or power
consumption. Such circuits play an important role in development of resource-
efficient systems, including applications such as image and video processing [10]
or neural networks [14,17]. Designing approximate systems, i.e. finding optimal
trade-offs between the approximation error and resource savings is, however,
a complex and time-demanding process. Automated methods allowing one to
develop high-quality approximate circuits are thus in high demand, especially
when a bound on the approximation error is to be guaranteed.

There exists a vast body of literature (see, e.g. [13,16,18,19,26]) demon-
strating that evolutionary-based algorithms are able to automatically design
innovative approximate circuits providing high-quality trade-offs among the
different design objectives. There are two main challenges related to the

This work was supported by the Czech Science Foundation grant GJ20-02328Y, the
JCMM Brno Ph.D. Talent scholarship program, and the BUT project FIT-S-20-6427.

c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 481–491, 2020.
https://doi.org/10.1007/978-3-030-51825-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_33&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_33


482 M. Češka et al.

evolutionary-driven circuit approximation: (1) Finding a fast and reliable evalu-
ation of candidate solutions. (2) Designing a quickly converging search strategy
that drives the exploration towards high-quality solutions.

Concerning the first challenge, several circuit evaluation techniques have been
proposed including parallel circuit simulation [27] and various formal meth-
ods [5,9,25,28]. In our recent work [3], we proposed and implemented a new
miter construction together with a resource-limited verifier for SAT-based eval-
uation of the worst-case error. This approach has made feasible approximation
of complex circuits, going beyond 16-bit adders and 12-bit multipliers, which
were the limits of previously known techniques. In this paper, we aim at the sec-
ond challenge. Inspired by recent advances in SAT-based exact synthesis [11,24]
(the problem of finding the optimum logic representation of a given Boolean
function), we investigate whether a search strategy based on satisfiability solv-
ing (StS)—i.e. SAT or SMT solving—can improve state-of-the-art methods for
designing complex approximate circuits.

We emphasize that complex circuits typically have more than a thousand
gates and thus a monolithic approach, i.e. representing the circuit approxima-
tion problem as a single StS query, is not tractable. Instead, we build on an
iterative approach where sub-circuits are optimised (i.e. the sub-circuit logic is
minimised while the original functionality is preserved) [23] or approximated (i.e.
the functionality of the sub-circuit is not preserved and the error of the whole
circuit is increased—to our best knowledge the iterative approximation has not
been considered yet).

Despite the enormous progress in satisfiability solving, our experiments
clearly show that the purely StS-based approximation significantly lags behind
the standard evolutionary approximation. Although the StS-based approxima-
tion performs informed (and thus in some sense more useful) changes in the
candidate circuits, the overhead caused by calling the solver does not pay off
compared to the uninformed but very cheap genetic mutations. Put differently,
the evolution can perform over 100-times more approximation attempts which
is enough to overcome the benefit of the informed changes.

In order to leverage the benefits of the informed changes, we propose a com-
bined approach. We interleave the evolutionary approximation and the StS-based
optimisation. The evolutionary approximation typically quickly converges to a
sub-optimal solution. After the progress of the evolution decreases below a cer-
tain threshold, we run the StS-based optimisation. It further reduces the circuit
size, but, more importantly, it introduces new reconnections in the circuit caus-
ing that the subsequent evolution is able to escape a local minimum and further
explore the design space.

2 Designing Approximate Circuits

Technology-independent functional approximation is the most preferred app-
roach to approximation of digital circuits. The goal is to replace the original
accurate circuit (further denoted as the golden circuit) by a less complex circuit
which exhibits some errors but improves non-functional circuit parameters such



Satisfiability Solving Meets Evolutionary Optimisation 483

as power, delay, or chip area. Fully-automated functional approximation meth-
ods typically employ various heuristics to simplify the circuit logic and reduce
its area approximated by the sum of the sizes of the gates used—this sum is
further denoted as the circuit size.

The circuit size can be reduced either by replacing a gate by a smaller one
or by disconnecting a gate. The gate is disconnected if there is no connection
between its output and the primary outputs of the circuit. The essential oper-
ation in the approximation process is thus gate reconnection allowing one to
disconnect some gates. We stress that the space of possible reconnections grows
exponentially with the circuit size, and each reconnection typically causes a non-
trivial change in the overall circuit functionality.

To overcome this complexity, existing approximation techniques leverage var-
ious forms of greedy algorithms, such as ABACUS [18], or genetic algorithms,
such as Cartesian Genetic Programming [13,26], to identify suitable reconnec-
tions. The approximation then boils down to iteratively generating candidate
solutions and evaluating their quality, i.e. the obtained trade-off between the
circuit area and error. Circuit approximation can be naturally formulated as
multi-objective optimisation, but most works consider single-objective optimi-
sation of the circuit size for several predefined target errors—this is motivated
practically as the required error levels are typically known in advance and single-
objective optimisation is computationally less demanding.

There exist several metrics to quantify the error [8] and different techniques
allowing one to evaluate these metrics. For small circuits (up to 12-bit inputs),
parallel circuit simulation [27] provides the best performance. For larger cir-
cuits, various formal verification techniques have been proposed [5,9,25,28]. In
this paper, we build on the SAT-based technique we proposed in [3] allowing
one to verify whether a given candidate circuit meets the required bound T on
the worst-case absolute error (WCAE), i.e. whether the difference between the
candidate and the golden circuit is smaller than T for every input. The technique
constructs a miter [28], an auxiliary circuit interconnecting the golden and can-
didate circuit and allowing one to check their approximate equivalence given by
the bound T . The technique allows us to approximate complex circuits (16-bit
multipliers and beyond).

Recent advances in exact SAT-based synthesis of Boolean chains [24], pro-
viding efficient implementation of a given Boolean function, have opened new
avenues for automated circuit design and optimisation. In this paper, we inves-
tigate whether these advances can improve circuit approximation too.

3 SAT-based Circuit Approximation

We propose three different approaches for SAT-based circuit approximation.

3.1 A Monolithic Approach

The monolithic approach builds a single formula encoding the following
synthesis problem: For a given golden circuit GC, the size S of its currently



484 M. Češka et al.

best-known approximation, and an error bound T , synthesize an approximating
circuit AC whose size is smaller than S and that satisfies the constraint that
error(GC,AC) < T .

The formula has to encode the following features: (1) possible designs of the
circuit (i.e. possible interconnections and functionality of the gates), which must
be encoded using free variables whose suitable values are to be found by the
solver, thus fixing a certain design of the circuit; (2) the way the error of the
circuit is to be checked; and (3) the way the circuit size is to be evaluated.

In our approach, we use a forward-propagating network of two-input gates
to represent the designed circuit. We represent each gate by three integers. The
first two represent the inputs of the gate, and they can refer to some of the
primary inputs or to the output of one of the gates (which we identify with the
gate itself). The third integer then encodes the gate’s functionality that is chosen
from a predefined set of operations. A gate implementing each possible operation
has a predefined size given by the target chip architecture. To ensure that the
size of the synthesized circuit AC is smaller than the size S of the currently best
approximation, we add a constraint on the sum of the sizes of the gates forming
AC. We investigate and compare (cf. Section 4) the below presented three ways
of encoding the structure and functionality of C.

The first encoding is purely SAT-based although we present it using both
Boolean and integer variables—those are, however, bit-blasted away. Assume we
have k types of (binary) gates, use l gates, and have m/n primary input/output
bits, respectively. For each gate g ∈ G = {1, ..., l}, we use the integer variables
ing,1 and ing,2 to denote the first and second input of g. These variables range
over the domain W = {1, ...,m + l} of all wires in the circuit where the first
m wires carry the primary inputs and the next l wires carry the outputs of
the different gates. For g ∈ G, we also use the integer variable fg to denote its
type with the domain F = {1, ..., k}. Let I = {0, 1}m denote the different input
combinations. For u ∈ W , we use the Boolean variable bIu to hold the value of
the wire u for a primary input I ∈ I. We encode all possible circuits by the
conjunction of the formulae (ing,1 = u ∧ ing,2 = v ∧ fg = f) → ∧

I∈I
(bIm+g =

bIu opf bIv) that are generated for all gates g ∈ G, all possible types f ∈ F of g,
and all wires u, v ∈ W that may be used as the inputs of g. In particular, we
require that u < g and v < g to prevent backward connections in the circuit
(e.g. the input of g4 cannot be connected to the output of g6). In the formula,
opf denotes the Boolean operation implemented by gates of the type f ∈ F .

We also need to link the concrete input combinations with the input wires,
which is done by the conjunction

∧
I∈I

∧
j∈{1,...,m} b

I
j = I[j] where I[j] denotes

the j-th bit of I. Finally, for each output o ∈ O = {1, ..., n}, we introduce the
integer variable outo, which ranges over the domain of wires W and says from
where the output o is taken, and the Boolean variable outIo carrying the value of
the output o for the primary input I ∈ I (this variable will be compared with the
appropriate output of the golden circuit). These variables are connected with the
rest of the circuit using the conjunction of the formulae outo = u → ∧

I∈I
outIo =

bIu generated for every output o ∈ O and every wire u ∈ W . The solver then



Satisfiability Solving Meets Evolutionary Optimisation 485

chooses a concrete circuit by fixing the values of the variables ing,1, ing,2, and
fg for every g ∈ G as well as the values of the variables outo for every o ∈ O.

Second, using a theory of arrays, we simplify the above encoding by using
an array b

I
: W → {0, 1} for each I ∈ I to hold the values of the wires in

W for the input I. Then, the conjuncts describing the structure of the circuit
may be simplified to fg = f → ∧

I∈I
(b

I
[m + g] = b

I
[ing,1] opf b

I
[ing,2]). The

input formula is changed to
∧

I∈I

∧
j∈{1,...,m} b

I
[j] = I[j] and similarly for the

output. Finally, third, using a theory of arrays with quantifiers, one suffices with
a single array b, simplifying the formulae describing the structure of the circuit
to fg = f → b[m+ g] = b[ing,1] opf b[ing,2]), adding the universal quantification
∀i1, ..., im over the entire formula, using the input formula

∧
j∈{1,...,m} b[j] = ij ,

and handling the output accordingly.
Using our encodings of AC, we can easily add a constraint on the required

error that compares the WCAE between the result coming from AC (using the
outo variables) and the expected result for all input combinations.

A comparison to existing encoding schemes for exact synthesis. Our encoding of
circuits is quite similar to other works such as [24]. The authors of [24] do not
consider a predefined set of gates. Instead, they synthesize the internal function-
ality of the gates too. The work [24] and other existing approaches use SAT based
encodings only. Further, they consider uniform gate sizes only (the circuit size is
given by the number of gates). Our more general formulation using non-uniform
gate sizes leads to more complex problems. As in [22], we use simplifications and
symmetry-pruning to reduce the complexity of the StS queries.

3.2 Sub-circuit Approximation

As discussed in [11], the monolithic approach for exact synthesis is feasible only
for small circuits up to 8 input bits (depending on the complexity of the syn-
thesized function). Our experiments confirm similar scalability limits also for
circuit approximation (cf. Sect. 4), and thus we focus on an iterative approach
that approximates selected sub-circuits. We focus on approximation wrt. Ham-
ming Distance as arithmetic metrics are not suitable for sub-circuits. Note that
there is no effective method allowing us to determine how the error introduced
in the sub-circuit affects the overall circuit error.

In every iteration, we select a single gate (either randomly or by enumeration,
depending on the circuit size) and perform a breadth-first search starting from
the selected gate to identify a sub-circuit of a suitable size. Note that, in our
approach, we consider multi-input and multi-output sub-circuits. The size of the
sub-circuits is indeed essential: Considering only very small sub-circuits prevents
the approximation from doing more complicated and non-local changes that are
crucial for finding high-quality approximate circuits. On the other hand, approx-
imation of larger sub-circuits introduces a significant overhead causing that only
a small number of iterations can be done within the given time limit. Regarding
the encoding of sub-circuit approximation, we consider the same schemes as in



486 M. Češka et al.

the monolithic approach discussed above. After every sub-circuit approximation,
we need to evaluate the error of the whole circuit. If it satisfies the error bound,
we accept the circuit as the new candidate solution, otherwise the next iteration
continues with the circuit before the approximation.

3.3 Evolutionary Approximation with StS-Based Optimisation

Evolutionary algorithms, in particular Cartesian Genetic Programming (CGP),
have achieved excellent results in approximation of complex circuits [3]. The
key idea is similar to sub-circuit approximation, but here CGP performs ran-
dom changes in the candidate solution instead of utilising satisfiability solving.
Unlike finding an optimal sub-circuit approximation, random changes are very
fast, and the success of CGP is typically achieved by a large number of small
changes. We emphasize that CGP is also able to accumulate a large change in
the candidate circuit via so-called inactive mutations [15]—a chain of changes
where only the last change directly affects the circuit functionality. Although
CGP usually quickly converges to a sub-optimum solution, it can get stuck in
this solution for a long time. On the other hand, the StS-based approach is able
to systematically search for improvements that are hard to find for CGP.

We hence propose a combined approach leveraging the benefits of both tech-
niques. In particular, we interleave the evolutionary search by iterative StS opti-
misation. In contrast to StS-based approximation, StS-based optimisation min-
imises the size of the selected sub-circuit by changing the internal structure while
preserving its functionality. The rationale behind this is based on the observation
that a large portion of approximated sub-circuits are rejected as they cause that
the WCAE error of the whole circuit gets above the allowed bound. Compared
with CGP, the cost of each approximation operation is too high—in our scenar-
ios, CGP is about 100-times faster. Therefore, the combined approach uses CGP
to introduce changes affecting the functionality, and the StS-based optimisation
to minimise the logic.Further, we also explore different encoding schemes for the
optimisation problem.

The interleaving is controlled in the following way. If CGP gets stuck in
a local optimum, we switch to the iterative StS optimisation that has a time
budget depending on the given overall time for the approximation. Once the
budget is spent, we continue with again CGP. Our experiments show that the
optimisation helps CGP to escape the local optimum and to further effectively
explore the space of candidate circuits.

4 Experimental Results

We ran all our experiments on a server with an Intel(R) Xeon(R) CPU at
2.40 GHz. Although search-based approximation can naturally benefit from a
simple task parallelisation, we use a single-core computation to simplify the
interpretation of the results.



Satisfiability Solving Meets Evolutionary Optimisation 487

A Comparison of different encoding schemes and satisfiability solvers. We con-
sider a set of formulae relevant for the monolithic as well as for the iterative
approach. The set includes both SAT and UNSAT instances including a full
adder, 2-bit adder, 2-bit multiplier, 4-1 multiplexor, and some randomly gen-
erated 4-input functions. We compare the total time needed to solve all the
formulae with a 3 hour time limit. We do not include any additional penalty for
timing out. The Z3 solver [6] and the quantified array encoding proved to be the
fastest combination of the encoding and the solver. Z3 with separate arrays for
different input combinations is about 2 times slower, and the Glucose solver [1]
with the purely SAT-based encoding is about 3 times slower. Z3 with the purely
SAT-based encoding as well as its SMT variant without bit-blasting were roughly
5 times slower. Other tested solvers—MathSAT [2], Minisat [7], Sadical [12], and
Vampire [20]—were all more than 5 times slower. Based on these observations,
we use Z3 with the quantified array encoding in all further StS-based queries.

The monolithic approach. The monolithic approach was able to find optimal
approximations of 2-bit adders and multipliers as well as randomly generated
functions with 4 inputs and 2 outputs. Approximation of larger circuits proved
to be infeasible, i.e. most instances timed out within the given limit of 3 h.

We compare the performance of our monolithic approach with Cirkit [21], a
state-of-the-art tool for exact synthesis. As expected, Cirkit is able to achieve
a better performance and scalability: It is significantly faster on 4-bit functions
and it can also synthesize optimal solutions for some 6-bit and 8-bit functions.
However, there are also some hard 6-bit instances that are infeasible for Cirkit.

The better performance of Cirkit is mainly caused by the following factors:
(1) Our formulation of circuit approximation is more complicated due to the
non-uniform gate sizes and the error quantification. (2) Cirkit uses different cir-
cuit representations (such as AIGs, MIGs, or n-bit look-up tables) that proved to
be more efficient for some exact synthesis problems [22]. (3) Cirkit implements
various optimisations and symmetry breaking methods [11]. Some of these meth-
ods are problem- and representation-specific and thus not directly applicable to
our approximation problem. We are, however, aware that our current prototype
implementation could be improved by adapting some of the methods. However,
the improvements would not change the practical limits of the monolithic app-
roach.

In the following subsections, we will examine three strategies for approxima-
tion of complex circuits: (1) CGP: the state-of-the-art evolutionary approxima-
tion [4]. (2) SMT: the sub-circuit approximation from Sect. 3.2. (3) COMB: the
combined approach from Sect. 3.3 using the following interleaving strategy:

In each iteration, we run the CGP-based approximation until no improvement
is found for 100 K generations. Then, for 10% of the overall time limit, we switch
to the SMT-based optimisation. Afterwards, a new iteration starts.

Based on our preliminary experiments, we use sub-circuits with 5 gates (recall
the discussion in Sect. 3.2) in all SMT-based sub-circuit approximation and opti-
misation queries. We also introduce a hard time limit on every such query.



488 M. Češka et al.

Table 1. The resulting size of the approximate circuits, obtained using the proposed
approximate strategies, expressed as the percentage of the size of the golden circuits
(left) and of the size of the best known approximations presented in [3] (right).

8-bit adders 4-bit multipliers

Err CGP SMT COMB CGP SMT COMB

1 % 64.8 83.5 54.5 78.4 90.5 74.6

2 % 52.6 78.0 44.9 69.3 82.6 67.1

5 % 37.1 57.4 32.3 53.4 77.0 49.7

32-bit adders 16-bit multipliers

Err[%] CGP COMB Err[%] CGP COMB

10−5 100.0 81.5 10−3 97.9 91.4

10−4 100.0 81.3 0.01 97.6 91.1

10−3 100.0 81.1 0.1 95.0 90.1

It prevents the SMT solver to spend a prohibitively long time in complex queries
and thus to significantly slow down the approximation process.

4.1 Performance on Small Circuits

We first consider small circuits (a 4-bit multiplier with 67 gates and an 8-bit
adder with 49 gates) to understand performance aspects of the search strategies.
We report the area savings (as the percentage of the size of the golden circuit)
for selected WCAE error bounds and the approximation time limit of 1 h.

Table 1 (left) shows the results obtained from 15 independent approximation
runs for each combination of the approximation method, circuit, and target error.
For the 8-bit adder, the combined approach wins in all 45 evolutionary runs. On
average, the combined approach saves 7.6% more than the pure CGP and 29%
more than the pure SMT-based approach. For the 4-bit multiplier, the combined
strategy provides 3.27% better savings than the pure CGP and 19,6% more than
the pure SMT-based approach. It also wins 37 out of 45 comparisons.

These experiments show that the pure SMT approximation is not competi-
tive, and it is not considered in the following approximation of complex circuits.

4.2 Performance on Complex Circuits

In this subsection, we focus on our key research question: Can the combined
strategy improve the performance of the approximation of complex circuits?

We consider approximation of (1) a 32-bit adder (the golden model has 235
gates), and (2) 16-bit multiplier (the golden model has 1,534 gates). To evalu-
ate the potential of the combined strategy, we start with state-of-art approxi-
mate circuits we obtained in our previous work by a pure evolutionary search
strategy [3]. For each target error, we choose the best 32-bit adders and 16-bit
multipliers, obtained by 2 and 8-h approximation runs respectively. From each
of these circuits (seeds), we continue the approximation using pure CGP and
combined strategy for 10 h (adders) and 75 h (multipliers).

32-bit adders. Each pure CGP run performs around 10 million iterations within
the given 10 h but achieves no improvements at all. The sub-circuit optimisation,
however, introduces changes in the circuit structure, which allow CGP to escape
the local optimum and perform further improvements. In total, the combined
strategy saves roughly 19% of the seeding circuit area—11% was achieved by the
CGP approximation and 8% by SMT optimisation.



Satisfiability Solving Meets Evolutionary Optimisation 489

Fig. 1. Progress of the area reduction for
the 16-bit multiplier and target WCAEs:
red = 10−1%, green = 10−2%, blue = 10−3%.

16-bit multipliers. As illustrated in
Fig. 1, which shows the progress of
the two approximation strategies
for different target errors, the pure
CGP approximation improves the
candidate slowly and achieves only
marginal improvements after 45 h.
The combined strategy is able to
improve the candidate solution dur-
ing the whole 75-h run—after this
time, it saves 4–6% more than the
pure CGP. Recall that, compared to
32-bit adders, the approximation of the 16-bit multipliers is significantly more
complex. The 8-h CGP run computing the seed performs around 230 K itera-
tions, which is around 13-times less than the 2-h run for the 32-bit adder. Hence,
the pure CGP run requires much more time to reach the local optimum.

Conclusion. The proposed fusion of satisfiability solving and evolutionary opti-
misation leads to a new circuit approximation strategy that is able to effectively
escape local optima and thus to explore the design space more effectively than
pure evolutionary search strategies. The obtained approximate circuits provide
the best known trade-offs between the precision and the chip area.

References

1. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27, 1840001 (2018)

2. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
299–303. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 28

3. Češka, M., Matyáš, J., et al.: Approximating complex arithmetic circuits with for-
mal error guarantees: 32-bit multipliers accomplished. In: International Conference
on Computer Aided Design (ICCAD’2017), pp. 416–423. IEEE (2017)

4. Češka, M., Matyáš, J., Mrazek, V., Sekanina, L., Vasicek, Zdenek, Vojnar,
Tomáš: ADAC: Automated design of approximate circuits. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 612–620. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 35

5. Chandrasekharan, A., Soeken, M., et al.: Precise error determination of approxi-
mated components in sequential circuits with model checking. In: Design Automa-
tion Conference (DAC’2016), pp. 129:1–129:6. ACM (2016)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-319-96145-3_35
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37


490 M. Češka et al.

8. Froehlich, S., Große, D., Drechsler, R.: One method - all error-metrics: a three-
stage approach for error-metric evaluation in approximate computing. In: Design,
Automation Test in Europe Conference Exhibition (2019)

9. Froehlich, S., Grosse, D., Drechsler, R.: Approximate hardware generation using
symbolic computer algebra employing grobner basis. In: Design, Automation Test
in Europe Conference Exhibition (DATE’2018), pp. 889–892. IEEE (2018)

10. Gupta, V., Mohapatra, D., et al.: Low-power digital signal processing using approx-
imate adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 124–
137 (2013)

11. Haaswijk, W., Soeken, M., et al.: SAT based exact synthesis using DAG topology
families. In: Design Automation Conference (DAC’2018), pp. 1–6 (2018)

12. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven
clause learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427,
pp. 41–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 3

13. Lotfi, A., Rahimi, A., et al.: Grater: an approximation workflow for exploiting data-
level parallelism in FPGA acceleration. In: Design, Automation Test in Europe
Conference Exhibition (DATE’2016), pp. 1279–1284. EDA Consortium (2016)

14. Mahdiani, H.R., Ahmadi, A., et al.: Bio-inspired imprecise computational blocks for
efficient VLSI implementation of soft-computing applications. IEEE Trans. Circuits
Syst. I Regul. Pap. 57(4), 850–862 (2010)

15. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-540-46239-2 9

16. Mrazek, V., Hrbacek, R., et al.: EvoApprox8b: library of approximate adders and
multipliers for circuit design and benchmarking of approximation methods. In:
Design, Automation Test in Europe Conference Exhibition (DATE’2017) (2017)

17. Mrazek, V., Sarwar, S.S., et al.: Design of power-efficient approximate multipliers
for approximate artificial neural networks. In: International Conference on Com-
puter Aided Design (ICCAD’2016), pp. 811–817. ACM (2016)

18. Nepal, K., Hashemi, S., et al.: Automated high-level generation of low-power
approximate computing circuits. IEEE Trans. Emerg. Top. Comput. 7, 18–30
(2018)

19. Reda, S., Shafique, M. (eds.): Approximate Circuits. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-99322-5

20. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Com-
mun. 15, 91–110 (2002)

21. Soeken, M.: Cirkit (version 3). https://github.com/msoeken/cirkit (2019)
22. Soeken, M., Amarù, L.G., et al.: Exact synthesis of majority-inverter graphs and

its applications. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 36(11),
1842–1855 (2017)

23. Soeken, M., De Micheli, G., Mishchenko, A.: Busy man’s synthesis: combinational
delay optimization with sat. In: Design, Automation Test in Europe Conference
Exhibition (DATE’2017), pp. 830–835 (2017)

24. Soeken, M., Haaswijk, W., et al.: Practical exact synthesis. In: Design, Automation
Test in Europe Conference Exhibition (DATE’2018), pp. 309–314 (2018)

25. Vasicek, Z., Mrazek, V.: Towards low power approximate DCT architecture for
HEVC standard. In: Design, Automation Test in Europe Conference Exhibition
(DATE’2017) (2017)

26. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits
design. IEEE Trans. Evol. Comput. 19(3), 432–444 (2015)

https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/978-3-319-99322-5
https://github.com/msoeken/cirkit


Satisfiability Solving Meets Evolutionary Optimisation 491

27. Vaš́ıček, Z., Slaný, K.: Efficient phenotype evaluation in cartesian genetic program-
ming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, Carlos (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 266–278. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29139-5 23

28. Venkatesan, R., Agarwal, A., et al.: MACACO: Modeling and analysis of circuits for
approximate computing. In: International Conference on Computer Aided Design
(ICCAD’2011), pp. 667–673. ACM(2011)

https://doi.org/10.1007/978-3-642-29139-5_23
https://doi.org/10.1007/978-3-642-29139-5_23

	Satisfiability Solving Meets Evolutionary Optimisation in Designing Approximate Circuits
	1 Introduction
	2 Designing Approximate Circuits
	3 SAT-based Circuit Approximation
	3.1 A Monolithic Approach
	3.2 Sub-circuit Approximation
	3.3 Evolutionary Approximation with StS-Based Optimisation

	4 Experimental Results
	4.1 Performance on Small Circuits
	4.2 Performance on Complex Circuits

	References




