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Abstract. Specifying a computational problem requires fixing encod-
ings for input and output: encoding graphs as adjacency matrices, char-
acters as integers, integers as bit strings, and vice versa. For such discrete
data, the actual encoding is usually straightforward and/or complexity-
theoretically inessential (up to polynomial time, say); but concerning
continuous data, already real numbers naturally suggest various encod-
ings with very different computational properties. With respect to quali-
tative computability, Kreitz and Weihrauch (1985) had identified admis-
sibility as crucial property for “reasonable” encodings over the Cantor
space of infinite binary sequences, so-called representations. For (pre-
cisely) these does the Kreitz-Weihrauch representation (aka Main) The-
orem apply, characterizing continuity of functions in terms of continuous
realizers. We similarly identify refined criteria for representations suit-
able for quantitative complexity investigations. Higher type complexity
is captured by replacing Cantor’s as ground space with more general
compact metric spaces, similar to equilogical spaces in computability.

1 Introduction

Machine models formalize computation: they specify means of input, operations,
and output of elements from some fixed set Γ ; as well as measures of cost and of
input/output ‘size’; such that Complexity Theory can investigate the dependence
of the former on the latter. Problems over spaces X other than Γ are treated by
encoding its elements/instances over Γ .

Example 1. a) Recall the Turing machine model operating on the set Γ of
finite (e.g. decimal or binary) sequences, and consider the space X of
graphs: encoded for example as adjacency matrices’ binary entries. Opera-
tions amount to local transformations of, and in local dependence of, the tape
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contents. Size here is an integer: n commonly denotes the number of nodes
of the graph, or the binary length of the encoded matrix, both polynomially
related to each other.

b) Consider the space X = N of natural numbers, either encoded in binary or in
unary: their lengths are computably but not polynomially related, and induce
computably equivalent but significantly different notions of computational
complexity.

c) Recall the type-2 machine model [Wei00, §2.1] operating on the Cantor space
C := {0, 1}N of infinite binary sequences; and the real unit interval X =
[0; 1], equipped with various so-called representations [Wei00, §4.1]: surjective
partial mappings from C onto X that formalize (sequences of) approximations
up to any given absolute error bound 1/2n, n ∈ N. Different representations
of X may induce non-/equivalent notions of computability [Wei00, §4.2].

d) Computational cost of a type-2 computation is commonly gauged in depen-
dence of the index position n within the binary input/output sequence, that
is, the length of the finite initial segment read/written so far [Wei00, §7.1].
For X = [0; 1] and for some of the representations, this notion of ‘size’ is
polynomially (and for some even linearly) related to n occurring in the error
bound 1/2n [Wei00, §7.1]; for other computably equivalent representations it
is not [Wei00, Examples 7.2.1+7.2.3].

e) Recall the Turing machine model with ‘variable’ oracles [KC12, §3], operating
on a certain subset B of string functions

{0, 1}∗∗ :=
{
ϕ : {0, 1}∗ → {0, 1}∗} .

The ‘size’ of ϕ ∈ B here is captured by an integer function � : N � n �→
max

{|ϕ(−→x )| : |−→x | ≤ n
} ∈ N [KC96]; and polynomial complexity means

bounded by a second-order polynomial in � ∈ N
N and in n ∈ N [Meh76].

f) Equip the space X = C[0; 1] of continuous functions f : [0; 1] → R with the
surjective partial mapping δ� :⊆ B � X from [KC12, §4.3]. Then, up to a
second-order polynomial, the ‘size’ � = �(ϕ) from (e) is related to a modulus
of continuity (cmp. Subsect. 3.1 below) of f = δ�(ϕ) ∈ C[0; 1] and to the
computational complexity of the application operator (f, r) �→ f(r) [KS17,
KS20,NS20].

g) Spaces X of continuum cardinality beyond real numbers are also commonly
encoded over Cantor space [Wei00, §3], or over ‘Baire’ space {0, 1}∗∗ [KC12,
§3]. Matthias Schröder has recommended the Hilbert Cube as domain for par-
tial surjections onto suitable X. Also equilogical spaces serve as such domains
[BBS04].

To summarize, computation on various spaces is commonly formalized by various
models of computation (Turing machine, type-2 machine, oracle machine) using
encodings over various domains (Cantor space, ‘Baire’ space, Hilbert Cube, etc.)
with various notions of ‘size’ and of polynomial time.

Question 2. Fix two mathematical structures X and Y , expansions over topo-
logical spaces. What machine models, what encodings, what notions of size and
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polynomial time, are suitable to formalize computation of (multi)functions f
from X to Y ?

In the sequel we will focus on the part of the question concerned with
encoding continuous data. Section 2 recalls classical criteria and notions: qual-
itative admissibility of computably ‘reasonable’ representations for the Kreitz-
Weihrauch Main Theorem (Subsect. 2.1), and complexity parameters for a quan-
titative Main Theorem in the real case (Subsect. 2.2). Section 4 combines both
towards generic quantitative admissibility and an intrinsic complexity-theoretic
Main Theorem. The key is to consider metric properties of the inverse of a
representation, which is inherently multivalued a ‘function’. To this end Sect. 3
adopts from [PZ13] a notion of quantitative (uniform) continuity multifunctions
(Subsect. 3.1) and establishes important properties (Subsect. 3.2), including clo-
sure under a generalized conception of restriction. We close with applications to
higher-type complexity.

2 Coding Theory of Continuous Data

Common models of computation naturally operate on some particular domain
Γ (e.g., in/finite binary sequences, string functions, etc.); processing data from
another domain X (graphs, real numbers, continuous functions) requires agreeing
on some way of encoding (the elements x of) X over Γ .

Formally, a representation is a surjective partial mapping ξ :⊆ Γ � X; any
γ ∈ dom(ξ) is called a name of x = ξ(γ) ∈ X; and for another representation υ of
Y , computing a total function f : X → Y means to compute some (ξ, υ)-realizer :
a transformation F : dom(ξ) → dom(υ) on names such that f ◦ ξ = υ ◦ F .

Some representations are computably ‘unsuitable’ [Tur37], including the
binary expansion Γ = {0, 1}N � b̄ �→ ∑∞

n=0 bn2−n−1 ∈ [0; 1]; cmp. [Wei00,
Exercise 7.2.7]. Others are suitable for computability investigations [Wei00, The-
orem 4.3.2], but not for complexity purposes [Wei00, Examples 7.2.1+7.2.3].

Example 3. The signed digit representation of [0; 1] is the partial map

σ :⊆ {00, 01, 10}N ⊆ C � b̄ �→ 1
2 +

∞∑

m=0

(2b2m + b2m+1 − 1) · 2−m−2 ∈ [0; 1]

Already for the case X = [0; 1] of real numbers, it thus takes particular care
to arrive at a complexity-theoretically ‘reasonable’ representation [Wei00, Theo-
rem 7.3.1]; and even more so for continuous real functions [KC12], not to mention
for more involved spaces [Ste17].

2.1 Qualitative Admissibility and Computability

Regarding computability on a large class of topological spaces X, an important
criterion for a representation is admissibility [KW85,Sch02]:
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Definition 4. Call ξ :⊆ Γ � X admissible iff it is (i) continuous and satisfies
(ii):
(ii) To every continuous ζ :⊆ Γ � X there exists a continuous mapping G :
dom(ζ) → dom(ξ) with ζ = ξ ◦ G; see [Wei00, Theorem 3.2.9.2].

Admissible representations exist (at least) for T0 spaces; they are Cartesian
closed; and yield the Kreitz-Weihrauch (aka Main) Theorem [Wei00, Theo-
rem 3.2.11]:

Fact 5. Let ξ :⊆ Γ � X and υ :⊆ Γ � Y be admissible. Then f : X → Y is
continuous iff it admits a continuous (ξ, υ)-realizer F : dom(ξ) → dom(υ).

In particular discontinuous functions are incomputable.

2.2 Real Quantitative Admissibility

The search for quantitative versions of admissibility and the Main Theorem is
guided by above notion of qualitative admissibility. It revolves around quantita-
tive metric versions of qualitative topological properties, such as continuity and
compactness, obtained via Skolemization. Further guidance comes from review-
ing the real case.

Recall that a modulus of continuity of a function f : X → Y between compact
metric spaces (X, d) and (Y, e) is a strictly increasing mapping μ : N → N such
that

d(x, x′) ≤ 2−μ(n) ⇒ e
(
f(x), f(x′)

) ≤ 2−n . (1)

In this case one says that f is μ-continuous. Actually we shall occasionally
slightly weaken this notion and require Condition (1) only for all sufficiently
large n.

Example 6. The signed digit representation σ :⊆ C � [0; 1] from Example 3 has
modulus of continuity κ(n) = 2n.

Proposition 11d) below provides a converse. Together with Theorem13 and
Lemma 10 below, they yield the following quantitative strengthening of Fact 5
aka qualitative Main Theorem, where O() of refers to the asymptotic Landau
symbol:

Theorem 7. Fix strictly increasing μ : N → N. A function f : [0; 1] → [0; 1] has
modulus of continuity O

(
μ
(O(n)

))
iff it has a (σ, σ)-realizer with modulus of

continuity O
(
μ
(O(n)

))
.

In particular functions f with (only) ‘large’ modulus of continuity are inher-
ently ‘hard’ to compute; cmp. [Ko91, Theorem 2.19]. This suggests gauging the
efficiency of some actual computation of f relative to it modulus of continuity,
rather than absolutely [KC12,KS17,KS20,NS20]:
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Definition 8. Function f : [0; 1] → [0; 1] is polynomial-time computable iff it
can be computed in time bounded by a (first or second order) polynomial in the
output precision parameter n and in f ’s modulus of continuity.

In the sequel we consider continuous total (multi)functions whose domains are
compact: The latter condition ensures them to have a modulus of (uniform)
continuity. Moreover computable functions with compact domains admit com-
plexity bounds depending only on the output precision parameter n; cmp. [Ko91,
Theorem 2.19] or [Wei00, Theorems 7.1.5+7.2.7] or [Sch03].

3 Multifunctions

Multifunctions are unavoidable in real computation [Luc77]. Their introduction
simplifies several considerations; for example, every function f : X → Y has a
(possibly multivalued) inverse f−1 : Y ⇒ X.

Formally, a partial multivalued function (multifunction) F between sets X,Y
is a relation F ⊆ X × Y that models a computational search problem: Given
(any name of) x ∈ X, return some (name of some) y ∈ Y with (x, y) ∈ F . One
may identify the relation f with the single-valued total function F : X � x �→
{y ∈ Y | (x, y) ∈ F} from X to the powerset 2Y ; but we prefer the notation
f :⊆ X ⇒ Y to emphasize that not every y ∈ F (x) needs to occur as output.
Letting the answer y depend on the code of x means dropping the requirement
for ordinary functions to be extensional; hence, in spite of the oxymoron, such
F is also called a non-extensional function. Note that no output is feasible in
case F (x) = ∅.

Definition 9. Abbreviate with dom(F ) := {x | F (x) �= ∅} for the domain of F ;
and range(F ) := {y | ∃x : (x, y) ∈ F}. F is total in case dom(F ) = X; surjective
in case range(F ) = Y . The composition of multifunctions F :⊆ X ⇒ Y and
G :⊆ Y ⇒ Z is G ◦ F =

{
(x, z)

∣
∣ x ∈ X, z ∈ Z,F (x) ⊆ dom(G), ∃y ∈ Y : (x, y) ∈ F ∧ (y, z) ∈ G}

Call F pointwise compact if F (x) ⊆ Y is compact for every x ∈ dom(F ).

Note that every (single-valued) function is pointwise compact. A computational
problem, considered as total single-valued function f : X → Y , becomes ‘easier’
when restricting arguments to x ∈ X ′ ⊆ X, that is, when proceeding to f ′ = f |X′

for some X ′ ⊆ X. A search problem, considered as total multifunction F : X ⇒
Y , additionally becomes ‘easier’ when proceeding to any F ′ ⊆ X ⇒ Y satisfying
the following: F ′(x) ⊇ F (x) for every x ∈ dom(F ′). We call such F ′ also a
restriction of F , and write F ′ � F . A single-valued function f : dom(F ) → Y is
a selection of F :⊆ X ⇒ Y if F is a restriction of f .

Lemma 10. Fix partial multifunctions F :⊆ X ⇒ Y and G :⊆ Y ⇒ Z.

a) If both F and G are pointwise compact, then so is their composition G ◦ F .
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b) The composition of restrictions F ′ � F and G′ � G, is again a restriction
G′ ◦ F ′ � G ◦ F .

c) It holds F−1◦F � idX : X → X. Single-valued surjective partial g :⊆ X � Y
furthermore satisfy g ◦ g−1 = idY .

d) For representations ξ of X and υ of Y , the following are equivalent: (i) f ◦ ξ
is a restriction of υ ◦ F (ii) f is a restriction of υ ◦ F ◦ ξ−1 (iii) υ−1 ◦ f ◦ ξ
is a restriction of F .

3.1 Quantitative Continuity for Multifunctions

Every restriction f ′ of a single-valued continuous function f is again continu-
ous. This is not true for multifunctions with respect to hemicontinuity. Instead
Definition 12 below adapts, and quantitatively refines, a notion of continuity for
multifunctions from [PZ13] such as to satisfy the following properties:

Proposition 11. a) A single-valued function is μ-continuous iff it is μ-
continuous when considered as a multifunction.

b) Suppose that F :⊆ X ⇒ Y is μ-continuous. Then every restriction F ′ � F is
again μ-continuous.

c) If additionally G :⊆ Y ⇒ Z is ν-continuous, then G ◦ F is ν ◦ μ-continuous
d) The multivalued inverse of the signed digit representation σ−1 is O(n)-

continuous.
e) For every ε > 0, the soft Heaviside ‘function’ hε is id-continuous, but not for

ε = 0:

hε(t) :=
{

0 : t ≤ ε
1 : t ≥ −ε

Our notion of quantitative (uniform) continuity is inspired by [BH94] and [PZ13,
§4+§6]:

Definition 12. Fix metric spaces (X, d) and (Y, e) and strictly increasing μ :
N → N. A total multifunction F : X ⇒ Y is called μ-continuous if there exists
some n0 ∈ N, and to every x0 ∈ X there exists some y0 ∈ F (x0), such that the
following holds for every k ∈ N:

∀n1 ≥ n0 ∀x1 ∈ Bμ(n1)(x0) ∃y1 ∈ F (x1) ∩ Bn1(y0)

∀n2 ≥ n1 + n0 ∀x2 ∈ Bμ(n2)(x1) ∃y2 ∈ F (x2) ∩ Bn2(y1) . . .

∀nk+1 ≥ nk + n0 ∀xk+1 ∈ Bμ(nk+1)(xk)∃yk+1 ∈ F (xk+1) ∩ Bnk+1(yk) .

The parameter n0 is introduced for the purpose of Proposition 11d+e). Recall
that also in the single-valued case we sometimes understand Eq. (1) to hold only
for all n ≥ n0.

A continuous multifunction on Cantor space, unlike one for example on the
reals [PZ13, Fig. 5], does admit a continuous selection, and even a bound on the
modulus:
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Theorem 13. Suppose (Y, e) is compact of diameter diam(Y ) ≤ 1 and satisfies
the strong triangle inequality

e(x, z) ≤ max
{
e(x, y), e(y, z)

} ≤ e(x, y) + e(y, z). (2)

If G :⊆ C ⇒ Y is μ-continuous and pointwise compact with compact domain
dom(G) ⊆ C, then G admits a μ

(
n + O(1)

)
-continuous selection.

3.2 Generic Quantitative Main Theorem

Generalizing both Fact 5 and Theorem 7, Lemma 10 and Proposition 11 and The-
orem 13 together in fact yields the following quantitative counterpart to the
qualitative Main Theorem for generic compact metric spaces:

Theorem 14. Fix compact metric spaces (X, d) and (Y, e) of diam(X),
diam(Y ) ≤ 1. Consider representations ξ :⊆ C � X and υ :⊆ C � Y .

Let μ, μ′, ν, ν′, κ,K : N → N be strictly increasing such that ξ is μ-continuous
with compact domain and μ′-continuous multivalued inverse ξ−1 : X ⇒ C; υ is
ν-continuous with compact domain and ν′-continuous multivalued inverse υ−1 :
Y ⇒ C.

a) If total multifunction g : X ⇒ Y has a K-continuous (ξ, υ)-realizer G, then
g is (ν ◦ K ◦ μ′)-continuous.

b) If total multifunction g : X ⇒ Y is κ-continuous and pointwise compact, then
it has a ν′ ◦ κ ◦ μ

(
n + O(1)

)
-continuous (ξ, υ)-realizer G.

Following up on Definition 8, this suggests gauging the efficiency of some actual
computation of g relative to both it modulus of continuity and moduli of conti-
nuity of the representations (and their multivalued inverses) involved.

4 Generic Quantitative Admissibility

According to Theorem14, quantitative continuity of a (multi)function g is con-
nected to that of a (single-valued) realizer G, subject to properties of the repre-
sentations ξ, υ under consideration.

A ‘true’ quantitative Main Theorem should replace these extrinsic param-
eters with ones intrinsic to the co/domains X,Y : by imposing suitable condi-
tions on the representations as quantitative variant of qualitative admissibility
[Lim19].

Definition 15. The entropy of a compact metric space (X, d) is the mapping
η = ηX : N → N such that X can be covered by 2η(n) closed balls Bn(x) of radius
2−n, but not by 2η(n)−1.

Introduced by Kolmogorov [KT59], η thus quantitatively captures total bound-
edness [Koh08, Definition 18.52]. Its connections to computational complexity
are well-known [Wei03,KSZ16].
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Example 16. a) The d-dimensional real unit cube X = [0; 1]d has linear entropy
η(n) = Θ(dn). Cantor space C = {0, 1}N, equipped with the metric d(x̄, ȳ) =
2−min{n:xn �=yn}, has linear entropy η(n) = Θ(n).

b) The space [0; 1]′ of non-expansive (aka 1-Lipschitz) functions f : [0; 1] → [0; 1]
is compact when equipped with the supremum norm and has entropy η(n) =
Θ(2n).

c) More generally fix a connected compact metric space (X, d) of diameter
diam(X) := sup{(d(x, x′) : x, x′ ∈ X} with entropy η. Then the space X ′

of non-expansive functionals Λ : X → [0; 1] is compact when equipped with
the supremum norm and has entropy η′(n) = 2η(n±O(1)).

Items (b) and (c) are relevant for higher-type complexity theory.
Since computational efficiency is connected to quantitative continuity (Sub-

sect. 2.2), in Theorem 14 one prefers ξ and ξ−1 with ‘small’ moduli; similarly
for υ and υ−1. A simple but important constraint has been identified in [Ste16,
Lemma 3.1.13]—originally for single-valued functions, but its proof immediately
extends to multifunctions.

Lemma 17. If surjective (multi)function g : X ⇒ Y is μ-continuous, then it
holds ηY (n) ≤ ηX ◦ μ(n) (for all sufficiently large n).

This suggests the following tentative definition:

Definition 18. Fix some compact metric space Γ , and recall Example 1g).

a) A representation of compact metric space (X, d) is a continuous partial sur-
jective (single-valued) mapping ξ :⊆ Γ � X.

b) Fix another compact metric space Δ and representation υ :⊆ Δ � Y . A
(ξ, υ)-realizer of a total (multi)function f : X ⇒ Y is a (single-valued) func-
tion F : dom(ξ) → dom(υ) satisfying any/all conditions of Lemma10d).

c) Representation ξ :⊆ Γ � X is polynomially admissible if (i) It has a mod-
ulus of continuity μ such that ηΓ ◦ μ is bounded by a (first or second order)
polynomial in the precision parameter n and in the entropy η of X. (ii) Its
multivalued inverse ξ−1 has polynomial modulus of continuity μ′.

d) Call total (multi)function f : X ⇒ Y polynomial-time computable iff it can
be computed in time bounded by a (first or second order) polynomial in the
output precision parameter n and in the entropy η of X.

In view of Lemma 10c+d) we deliberately consider only single-valued represen-
tations [Wei05]. Item d) includes Definition 8 as well as higher types, such as
Example 16b) and c). Note that Item (c i) indeed quantitatively strengthens
Definition 4i). And Item (c ii) quantitatively strengthens Definition 4ii): For ν-
continuous ζ, Theorem 13 yields a ν ◦ μ′-continuous selection G of ξ−1 ◦ ζ, that
is, with ζ = ξ ◦ G according to Lemma 10.
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[Sch02] Schröder, M.: Effectivity in spaces with admissible multi representations.
Math. Logic Q. 48(Suppl 1), 78–90 (2002)
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