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Abstract. In the sentiment attitude extraction task, the aim is to
identify «attitudes» – sentiment relations between entities mentioned
in text. In this paper, we provide a study on attention-based con-
text encoders in the sentiment attitude extraction task. For this task,
we adapt attentive context encoders of two types: (I) feature-based;
(II) self-based. Our experiments (https://github.com/nicolay-r/attitu
de-extraction-with-attention) with a corpus of Russian analytical texts
RuSentRel illustrate that the models trained with attentive encoders
outperform ones that were trained without them and achieve 1.5–5.9%
increase by F1. We also provide the analysis of attention weight distri-
butions in dependence on the term type.

Keywords: Relation extraction · Sentiment analysis · Attention-based
models

1 Introduction

Classifying relations between entities mentioned in texts remains one of the pop-
ular tasks in natural language processing (NLP). The sentiment attitude extrac-
tion task aims to seek for positive/negative relations between objects expressed
as named entities in texts [10]. Let us consider the following sentence as an
example (named entities are underlined):

“Meanwhile Moscow has repeatedly emphasized that its activity in the
Baltic Sea is a response precisely to actions of NATO and the escalation
of the hostile approach to Russia near its eastern borders”

In the example above, named entities «Russia» and «NATO» have the neg-
ative attitude towards each other with additional indication of other named
entities. The complexity of the sentence structure is one of the greatest difficul-
ties one encounters when dealing with the relation extraction task. Texts usually
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contain a lot of named entity mentions; a single opinion might comprise several
sentences.

This paper is devoted to study of models for targeted sentiment analysis
with attention. The intuition exploited in the models with attentive encoders
is that not all terms in the context are relevant for attitude indication. The
interactions of words, not just their isolated presence, may reveal the specificity
of contexts with attitudes of different polarities. The primary contribution of this
work is an application of attentive encoders based on (I) sentiment frames and
attitude participants (features); (II) context itself. We conduct the experiments
on the RuSentRel [7] collection. The results demonstrate that attentive models
with CNN-based and over LSTM-based encoders result in 1.5–5.9% by F1 over
models without attentive encoders.

2 Related Work

In previous works, various neural network approaches for targeted sentiment
analysis were proposed. In [10] the authors utilize convolutional neural networks
(CNN). Considering relation extraction as a three-scale classification task of
contexts with attitudes in it, the authors subdivide each context into outer and
inner (relative to attitude participants) to apply Piecewise-CNN (PCNN) [16].
The latter architecture utilizes a specific idea of max-pooling operation. Initially,
this is an operation, which extracts the maximal values within each convolu-
tion. However, for relation classification, it reduces information extremely rapid
and blurs significant aspects of context parts. In case of PCNN, separate max-
pooling operations are applied to outer and inner contexts. In the experiments,
the authors revealed a fast training process and a slight improvement in the
PCNN results in comparison to CNN.

In [12], the authors proposed an attention-based CNN model for semantic
relation classification [4]. The authors utilized the attention mechanism to select
the most relevant context words with respect to participants of a semantic rela-
tion. The architecture of the attention model is a multilayer perceptron (MLP),
which calculates the weight of a word in context with respect to the entity.
The resulting AttCNN model outperformed several CNN and LSTM based
approaches with 2.6–3.8% by F1-measure.

In [9], the authors experimented with attentive models in aspect-based senti-
ment analysis. The models were aimed to identify sentiment polarity of specific
targets in context, which are characteristics or parts of an entity. Both targets
and the context were treated as sequences. The authors proposed an interactive
attention network (IAN), which establishes element relevance of one sequence
with the other in two directions: targets to context, context to targets. The effec-
tiveness of IAN was demonstrated on the SemEval-2014 dataset [13] and several
biomedical datasets [1].

In [14,17], the authors experimented with self-based attention models, in
which targets became adapted automatically during the training process. Com-
paring with IAN, the presence of targets might be unclear in terms of algorithms.
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The authors considered the attention as context word quantification with respect
to abstract targets. In [14], the authors brought a similar idea also onto the sen-
tence level. The obtained hierarchical model was called as HAN.

3 Data and Lexicons

We consider sentiment analysis of Russian analytical articles collected in the
RuSentRel corpus [8]. The corpus comprises texts in the international politics
domain and contains a lot of opinions. The articles are labeled with annotations
of two types: (I) the author’s opinion on the subject matter of the article; (II) the
attitudes between the participants of the described situations. The annotation of
the latter type includes 2000 relations across 73 large analytical texts. Annotated
sentiments can be only positive or negative. Additionally, each text is provided
with annotation of mentioned named entities. Synonyms and variants of named
entities are also given, which allows not to deal with the coreference of named
entities.

In our study, we also use two Russian sentiment resources: the RuSentiLex
lexicon [7], which contains words and expressions of the Russian language with
sentiment labels and the RuSentiFrames lexicon [11], which provides several
types of sentiment attitudes for situations associated with specific Russian pred-
icates.

The RuSentiFrames1 lexicon describes sentiments and connotations
conveyed with a predicate in a verbal or nominal form [11], such as
“ ” (to condemn, to improve, to exaggerate),
etc. The structure of the frames in RuSentFrames comprises: (I) the set of
predicate-specific roles; (II) frames dimensions such as the attitude of the author
towards participants of the situation, attitudes between the participants, effects
for participants. Currently, RuSentiFrames contains frames for more than 6 thou-
sand words and expressions.

In RuSentiFrames, individual semantic roles are numbered, beginning with
zero. For a particular predicate entry, Arg0 is generally the argument exhibiting
features of a Prototypical Agent, while Arg1 is a Prototypical Patient or Theme
[2]. In the main part of the frame, the most applicable for the current study is
the polarity of Arg0 with a respect to Arg1 (A0→A1). For example, in case of
Russian verb “ ” (to approve) the sentiment polarity A0→A1 is positive.

4 Model

In this paper, the task of sentiment attitude extraction is treated as follows: given
a pair of named entities, we predict a sentiment label of a pair, which could
be positive, negative, or neutral. As the RuSentRel corpus provides opinions
with positive or negative sentiment labels only (Sect. 3), we automatically added
neutral sentiments for all pairs not mentioned in the annotation and co-occurred
in the same sentences of the collection texts. We consider a context as a text
fragment that is limited by a single sentence and includes a pair of named entities.
1 https://github.com/nicolay-r/RuSentiFrames/tree/v1.0.

https://github.com/nicolay-r/RuSentiFrames/tree/v1.0
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Fig. 1. (left) General, context-based 3-scale (positive, negative, neutral) classification
model, with details on «Attention-Based Context Encoder» block in Sect. 4.1 and 4.2;
(right) An example of a context processing into a sequence of terms; attitude partici-
pants («Russia», «Turkey») and other mentioned entities become masked; frames are
bolded and optionally colored corresponding to the sentiment value of A0→A1 polarity.

The general architecture is presented in Fig. 1 (left), where the sentiment
could be extracted from the context. To present a context, we treat the original
text as a sequence of terms [t1, . . . , tn] limited by n. Each term belongs to one
of the following classes: entities, frames, tokens, and words (if none of
the prior has not been matched). We use masked representation for attitude
participants (Eobj , Esubj) and mentioned named entities (E) to prevent models
from capturing related information.

To represent frames, we combine a frame entry with the corresponding
A0→A1 sentiment polarity value (and neutral if the latter is absent). We also
invert sentiment polarity when an entry has “ ” (not) preposition. For exam-
ple, in Fig. 1 (right) all entries are encoded with the negative polarity A0→A1:
“ ” (confrontation) has a negative polarity, and “ ”
(not necessary) has a positive polarity of entry “necessary” which is inverted due
to the “not” preposition.

The tokens group includes: punctuation marks, numbers, url-links. Each
term of words is considered in a lemmatized2 form. Figure 1 (right) provides a
context example with the corresponding representation («terms» block).

To represent the context in a model, each term is embedded with a vector of
fixed dimension. The sequence of embedded vectors X = [x1, . . . , xn] is denoted
as input embedding (xi ∈ R

m, i ∈ 1..n). Sections 4.1 and 4.2 provide an encoder
implementation in details. In particular, each encoder relies on input embedding
and generates output embedded context vector s.

2 https://tech.yandex.ru/mystem/.

https://tech.yandex.ru/mystem/
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Fig. 2. AttCNN neural network [6]

In order to determine a sentiment class by the embedded context s, we apply:
(I) the hyperbolic tangent activation function towards s and (II) transformation
through the fully connected layer :

r = Wr · tanh(s) + br Wr ∈ R
z×c, br ∈ R

c, c = 3 (1)

In Formula 1, Wr, br corresponds to hidden states; z correspond to the size
of vector s, and c is a number of classes. Finally, to obtain an output vector of
probabilities o = {ρi}ci=1, we use softmax operation:

ρi = softmax(ri) =
exp(ri)∑c
j=1 exp(rj)

(2)

4.1 Feature Attentive Context Encoders

In this section, we consider features as a significant for attitude identification
context terms, towards which we would like to quantify the relevance of each
term in the context. For a particular context, we select embedded values of the
(I) attitude participants (Eobj , Esubj) and (II) terms of the frames group and
create a set of features F = [f1, . . . , fk] limited by k.

MLP-Attention. Figure 2 illustrates a feature-attentive encoder with the
quantification approach called Multi-Layer Perceptron [6]. In formulas 3–5, we
describe the quantification process of a context embedding X with respect to a
particular feature f ∈ F . Given an i’th embedded term xi, we concatenate its
representation with f:

hi = [xi, f] hi ∈ R
2·m (3)
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The quantification of the relevance of xi with respect to f is denoted as
ui ∈ R and calculated as follows (see Fig. 2a):

ui = Wa [tanh(Wwe · hi + bwe)] + ba Wwe ∈ R
2·m×hmlp , Wa ∈ R

hmlp (4)

In Formula 4, Wwe and Wa correspond to the weight and attention matrices
respectively, and hmlp corresponds to the size of the hidden representation in the
weight matrix. To deal with normalized weights within a context, we transform
quantified values ui into probabilities αi using softmax operation (Formula 2).
We utilize Formula 5 to obtain attention-based context embedding ŝ of a context
with respect to feature f:

ŝ =
n∑

i=1

xi · αi ŝ ∈ R
m (5)

Applying Formula 5 towards each feature fj ∈ F , j ∈ 1..k results in vector
{ŝj}kj=1. We use average-pooling to transform the latter sequence into single
averaged vector sf = ŝj/[

∑k
j=1 ŝj ].

We also utilize a CNN-based encoder (Fig. 2b) to compete the context rep-
resentation scnn ∈ R

c, where c is related to convolutional filters count [10]. The
resulting context embedding vector s (size of z = m + c) is a concatenation of
sf and scnn.

IAN. As a context encoder, a Recurrent Neural Network (RNN) model allows
treating the context [t1, . . . , tn] as a sequence of terms to generate a hidden rep-
resentation, enriched with features of previously appeared terms. In comparison
with CNN, the application of rnn allows keeping a history of the whole sequence
while CNN-based encoders remain limited by the window size. The application
of RNN towards a context and certain features appeared in it – is another way
how the correlation of these both factors could be quantitatively measured [9].

Figure 3a illustrates the IAN architecture attention encoder. The input
assumes separated sequences of embedded terms X and embedded features F . To
learn the hidden term semantics for each input, we utilize the LSTM [5] recur-
rent neural network architecture, which addresses learning long-term dependen-
cies by avoiding gradient vanishing and expansion problems. The calculation ht

of t’th embedded term xt based on prior state ht−1, where the latter acts as
a parameter of auxiliary functions [5]. The application of LSTM towards the
input sequences results in [hc

1, . . . , hc
n] and [hf

1 , . . . , hf
k ], where hc

i , hf
j ∈ R

h

(i ∈ 1..n, j ∈ 1..k) and h is the size of the hidden representation. The quan-
tification of input sequences is carried out in the following directions: (I) fea-
ture representation with respect to context, and (II) context representation with
respect to features. To obtain the representation of a hidden sequence, we utilize
average-pooling. In Fig. 3a, pf and pc denote a hidden representation of features
and context respectively. Figure 3b illustrates the quantification computation of
a hidden state ht with respect to p:
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Fig. 3. Interactive Attention Network (IAN) [9]

uc
i = tanh(hc

i · Wf · pf + bf ) Wf ∈ R
h×h, bf ∈ R, i ∈ 1..n

uf
j = tanh(hf

j · Wc · pc + bc) Wc ∈ R
h×h, bc ∈ R, j ∈ 1..k

(6)

In order to deal with normalized weight vectors αf
i and αc

j , we utilize the
softmax operation for uf and uc respectively (Formula 2). The resulting context
vector s (size of z = 2 ·h) is a concatenation of weighted context sc and features
sf representations:

sc =
n∑

i=1

αc
i · hc

i sf =
k∑

j=1

αf
j · hf

j (7)

4.2 Self Attentive Context Encoders

In Sect. 4.1 the application of attention in context embedding fully relies on the
sequence of predefined features. The quantification of context terms is performed
towards each feature. In turn, the self-attentive approach assumes to quantify
a context with respect to an abstract parameter. Unlike quantification methods
in feature-attentive embedding models, here the latter is replaced with a hidden
state (parameter w, see Fig. 4b), which modified during the training process.

Figure 4a illustrates the bi-directional RNN-based self-attentive context
encoder architecture. We utilize bi-directional LSTM (BiLSTM) to obtain a
pair of sequences

−→
h and

←−
h (

−→
hi ,

←−
hi ∈ R

h). The resulting context representation
H = [h1, . . . , hn] is composed as the concatenation of bi-directional sequences
elementwise: hi =

−→
hi +

←−
hi , i ∈ 1..n. The quantification of hidden term repre-

sentation hi ∈ R
2·h with respect to w ∈ R

2·h is described in formulas 8–9 and
illustrated in Fig. 4b.

mi = tanh(hi) (8)

ui = mT
i · w (9)
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Fig. 4. Attention-based bi-directional LSTM neural network (Att-BLSTM) [17]

We apply the softmax operation towards ui to obtain vector of normalized
weights α ∈ R

n. The resulting context embedding vector s (size of z = 2 ·h) is
an activated weighted sum of each parameter of context hidden states:

s = tanh(H · α) (10)

5 Model Details

Input Embedding Details. We provide embedding details of context term
groups described in Sect. 4. For words and frames, we look up for vectors in
precomputed and publicly available model3 Mword based on news articles with
window size of 20, and vector size of 1000. Each term that is not presented in the
model we treat as a sequence of parts (n-grams) and look up for related vectors
in Mword to complete an averaged vector. For a particular part, we start with a
trigram (n = 3) and decrease n until the related n-gram is found. For masked
entities (E, Eobj , Esubj) and tokens, each element embedded with a randomly
initialized vector with size of 1000.

Each context term has been additionally expanded with the following param-
eters:

– Distance embedding [10] (vd-obj , vd-subj) – is vectorized distance in terms from
attitude participants of entry pair (Eobj and Esubj respectively) to a given
term;

– Closest to synonym distance embedding (vsd-obj , vsd-subj) is a vectorized abso-
lute distance in terms from a given term towards the nearest entity, synony-
mous to Eobj and Esubj respectively;

3 http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000
_20_2015.bin.gz.

http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz
http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz
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– Part-of-speech embedding (vpos) is a vectorized tag for words (for terms of
other groups considering «unknown» tag);

– A0→A1 polarity embedding (vA0→A1) is a vectorized «positive» or «nega-
tive» value for frame entries whose description in RuSentiFrames provides
the corresponding polarity (otherwise considering «neutral» value); polarity
is inverted when an entry has “ ” (not) preposition.

Training. This process assumes hidden parameter optimization of a given
model. We utilize an algorithm described in [10]. The input is organized in
minibatches, where minibatch yields of l bags. Each bag has a set of t pairs
〈Xj , yj〉tj=1, where each pair is described by an input embedding Xj with the
related label yj ∈ R

c. The training process is iterative, and each iteration includes
the following steps:

1. Composing a minibatch of l bags of size t;
2. Performing forward propagation through the network which results in a vector

(size of q = l · t) of outputs ok ∈ R
c;

3. Computing cross entropy loss for output: Lk =
c∑

j=1

log p(yi|ok,j ; θ), k ∈ 1..q;

4. Composing cost vector {costi}li=1, costi = max
[
L(i−1)·t .. Li·t

)
to update

hidden variables set; costi is a maximal loss within i ’th bag;

Parameters Settings. The minibatch size (l) is set to 2, where contexts count
per bag t is set to 3. All the sentences were limited by 50 terms. For embedding
parameters (vd-obj , vd-subj , vsd-obj , vsd-subj , vpos, vA0→A1), we use randomly ini-
tialized vectors with size of 5. For CNN and PCNN context encoders, the size of
convolutional window and filters count (c) were set to 3 and 300 respectively. As
for parameters related to sizes of hidden states in Sect. 4: hmlp = 10, h = 128. For
feature attentive encoders, we keep frames in order of their appearance in context
and limit k by 5. We utilize the AdaDelta optimizer with parameters ρ = 0.95
and ε = 10−6 [15]. To prevent models from overfitting, we apply dropout towards
the output with keep probability set to 0.8. We use Xavier weight initialization
to setup initial values for hidden states [3].

6 Experiments

We conduct experiments with the RuSentRel4 corpus in following formats:

1. Using 3-fold cross-validation (CV), where all folds are equal in terms of the
number of sentences;

2. Using predefined train/test separation5.

4 https://github.com/nicolay-r/RuSentRel/tree/v1.1.
5 https://miem.hse.ru/clschool/results.

https://github.com/nicolay-r/RuSentRel/tree/v1.1
https://miem.hse.ru/clschool/results
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Table 1. Three class context classification results by F1 measure (RuSentRel dataset);
Columns from left to right: (I) average value in CV-3 experiment (F1avg) with results
on each split (F1icv, i ∈ 1..3); (II) results on train/test separation (F1TEST)

Model F1avg F11cv F12cv F13cv F1TEST

Att-BLSTM 0.314 0.35 0.27 0.32 0.35
Att-BLSTMz-yang 0.292 0.33 0.25 0.30 0.33
BiLSTM 0.286 0.32 0.26 0.28 0.34
IANef 0.289 0.31 0.28 0.27 0.32
IANends 0.286 0.31 0.26 0.29 0.32
LSTM 0.284 0.28 0.27 0.29 0.32
PCNNatt-ends 0.297 0.32 0.29 0.28 0.35
PCNNatt-ef 0.289 0.31 0.25 0.31 0.31
PCNN 0.285 0.29 0.27 0.30 0.32

In order to evaluate and assess attention-based models, we provide a list of
baseline models. These are independent encoders described in Sects. 4.1 and 4.2:
PCNN [10], LSTM, BiLSTM. In case of models with feature-based attentive
encoders (IAN∗, PCNN∗) we experiment with following feature sets: attitude
participants only (att-ends), and frames with attitude participants (att-ef). For
self-based attentive encoders we experiment with Att-BLSTM (Sect. 4.2) and
Att-BLSTMz-yang – is a bi-directional LSTM model with word-based attentive
encoder of HAN model [14].

Table 1 provides related results. For evaluating models in this task, we adopt
macroaveraged F1-score (F1) over documents. F1-score is considered averag-
ing of the positive and negative class. We measure F1 on train part every 10
epochs. The number of epochs was limited by 150. The training process termi-
nates when F1 on train part becomes greater than 0.85. Analyzing F1test results
it is quite difficult to demarcate attention-based models from baselines except
Att-BLSTM and PCNNatt-ends. In turn, average results by F1 in the case of
CV-3 experiments illustrate the effectiveness of attention application. The aver-
age increase in the performance of such models over related baselines is as follows:
1.4% (PCNN∗), 1.2% (IAN∗), and 5.9% (Att-BLSTM, Att-BLSTMz-yang)
by F1. The greatest increase in 9.8% by F1 is achieved by Att-BLSTM model.

7 Analysis of Attention Weights

According to Sects. 4.1 and 4.2, attentive embedding models perform the quan-
tification of terms in the context. The latter results in the probability distribution
of weights6 across the terms mentioned in a context.

6 We consider and analyze only context weights in case of IAN models.
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Fig. 5. Kernel density estimations (KDE) of context-level weight distributions of term
groups (from left to right: prep, frames, sentiment) across neutral (N) and sentiment
(S) context sets for models: PCNNatt-ef , IANef , Att-BLSTM; the probability range
(x-axis) scaled to [0, 0.2]; vertical lines indicate expected values of distributions

We utilize the test part of the RuSentRel dataset (Sect. 6) for analysis of
weight distribution of frames group, declared in Sect. 4, across all input con-
texts. We also introduce two extra groups utilized in the analysis by separating
the subset of words into prepositions (prep) and terms appeared in RuSentiLex
lexicon (sentiment) described in Sect. 3.

The context-level weight of a group is a weighted sum of terms which both
appear in the context and belong the corresponding term group. Figure 5 illus-
trates the weight distribution plots, where the models are organized in rows, and
the columns correspond to the term groups. Each plot combines distributions of
context-levels weights across:

– Neutral contexts – contexts, labeled as neutral;
– Sentiment contexts – contexts, labeled with positive or negative labels.

In Fig. 5 and further, the distribution of context-level weights across neu-
tral («N» in legends) and sentiment contexts («S» in legends) denoted as ρgN
and ρgS respectively. The rows in Fig. 5 correspond to the following models:
(1) PCNNatt-ef , (2) IANef , (3) Att-BLSTM. Analyzing prepositions (col-
umn 1) it is possible to see the lack of differences in quantification between
the ρprepN and ρprepS contexts in the case of the models (1) and (2). Another
situation is in case of the model (3), where related terms in sentiment contexts
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are higher quantified than in neutral ones. frames and sentiment groups are
slightly higher quantified in sentiment contexts than in neutral one in the case
of models (1) and (2), while (3) illustrates a significant discrepancy.

Overall, model Att-BLSTM stands out among others both in terms of
results (Sect. 6) and it illustrates the greatest discrepancy between ρN and ρS
across all the groups presented in the analysis (Fig. 5). We assume that the latter
is achieved due to the following factors: (I) application of bi-directional LSTM
encoder; (II) utilization of a single trainable vector (w) in the quantification
process (Fig. 4b) while the models of other approaches (AttCNN, IAN, and
Att-BLSTMz-yang) depend on fully-connected layers. Figure 6 shows examples
of those sentiment contexts in which the weight distribution is the largest among
the frames group. These examples are the case when both frame and attention
masks convey context meaning.

Fig. 6. Weight distribution visualization for model Att-BLSTM on sentiment con-
texts; for visualization purposes, weight of each term is normalized by maximum in
context

8 Conclusion

In this paper, we study the attention-based models, aimed to extract sentiment
attitudes from analytical articles. The described models should classify a con-
text with an attitude mentioned in it onto the following classes: positive, nega-
tive, neutral. We investigated two types of attention embedding approaches: (I)
feature-based, (II) self-based. We conducted experiments on Russian analytical
texts of the RuSentRel corpus and provide the analysis of the results. According
to the latter, the advantage of attention-based encoders over non-attentive was
shown by the variety in weight distribution of certain term groups between senti-
ment and non-sentiment contexts. The application of attentive context encoders
illustrates the classification improvement in 1.5–5.9% range by F1.
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