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Abstract. Using subword n-grams for training word embeddings makes
it possible to subsequently compute vectors for rare and misspelled
words. However, we argue that the subword vector qualities can be
degraded for words which have a high orthographic neighbourhood; a
property of words that has been extensively studied in the Psycholin-
guistic literature. Empirical findings about lexical neighbourhood effects
constrain models of human word encoding, which must also be consis-
tent with what we know about neurophysiological mechanisms in the
visual word recognition system. We suggest that the constraints learned
from humans provide novel insights to subword encoding schemes. This
paper shows that vectors trained with subword properties informed by
psycholinguistic evidence are superior to those trained with ad hoc n-
grams. It is argued that physiological mechanisms for reading are key
factors in the observed distribution of written word forms, and should
therefore inform our choice of word encoding.

1 Introduction

There is currently a great deal of research activity around solutions using con-
tinuous representations of words. The most popular methods for learning word
vectors, or embeddings, produce a single vector for each word form in the train-
ing set, for example GloVe [18], word2vec [15], and SVD [12]. These methods do
not attempt to exploit syntactic or morphological regularities behind the word
forms, as the unit of analysis is the single word.

These methods could be regarded as modern day experiments inspired by
Zellig Harris’ hypotheses about the distributional structure of language. Harris
proposed that word meanings give rise to observable distributional patterns in
language, such that two semantically unrelated words A and C would be less
likely to be found in common linguistic contexts as two semantically related
words A and B [10]. Modern machine learning techniques have made it compu-
tationally possible to embed very high dimensional distributional patterns in a
much lower dimensional vector space, in which the distances between any given
vectors are related to the similarities of context in which the corresponding words
are found in the training set. Semantic relatedness is therefore correlated with
the calculated distance (e.g. cosine distance) between vectors.
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Since the unit of analysis in such machine learning models is the word, it is
generally the case that rare words, and words formed by novel morphological
combinations, are not represented in the training set with sufficient frequency
to obtain a vector embedding. In response, Bojanowski et al. [2] trained vectors
by decomposing words into subword components. Their embeddings had the
advantage that low frequency and out-of-vocabulary words could be assigned a
vector representation from the sum of their subword units. The training model
is a modification of the skipgram model [15], in introducing a scoring function
over the sum of the component n-grams (including the word itself). A word is
therefore represented as the sum of the vector representation of the word and its
constituent n-grams. Conversely, the vector representation of individual n-grams
is shared between all words containing the particular n-gram, and therefore rare
words can acquire reliable representations by taking advantage of the shared
representations.

While the reported evaluations of the embedding vectors look promising, our
experience in using them in an application has been mixed. Using the standard
implementation! fastText and our own vectors trained with the latest Wikipedia
dumps?, we observed some examples where the related words would not be
particularly useful for some tasks, for example query expansion. Consider the
fairly common word dictionary, which has the following nearest vectors: dic-
tionaries, dictionarys, dictionarian, dictionarie, dictions, dictionarial, diction-
eer, dictioner, dictionaric, dictionay. These are highly overlapping morphological
variations and not particularly useful in applications where more heterogeneous
semantically related concepts are required for information retrieval. In contrast,
word2vec?® provided the following results for this example: dictionaries, lexicon,
oed, merriam, encyclopedia, bibliographical, lexicography, britannica, websters,
encyclopaedia, glossary. In general we had the intuition that fastText was more
likely to include overlapping orthographic clusters in the results set, which moti-
vated the experiments reported in this paper. We wanted to understand why, and
under what circumstances the fastText results might suffer, and developed the
hypothesis that psycholinguistic factors were involved. The approach is similar
in spirit to emerging efforts which explore modern machine learning results from
a psycholinguistic perspective. For example, Mandera et al. [14] use semantic
priming results from psycholinguisic experiments instead of semantic similarity
judgements to evaluate word vectors, and report new insights in the quality of
embeddings.

The subword embedding approach presupposes that orthography to seman-
tics mappings can be established for words as well as for the summation of
the subword fragments. Thus, the vector obtained for out-of-vocabulary items
acquires its position in semantic ‘co-occurance’ space as a function of the

! https://github.com /facebookresearch/fast Text.

2 We also used publicly available pretrained vectors, e.g. wiki-en.bin https://s3-us-
west-1.amazonaws.com/fasttext-vectors/wiki.en.zip but found these even less satis-
factory.

3 https://github.com/dav/word2vec.
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semantic space vectors in the constituent n-grams. Consider the following exam-
ple adapted from [2], where the word where contains the following set of tri-
grams. Note that the word is actually represented by n-grams where n is greater
than or equal to 3 and less than or equal to 6, but for the sake of brevity we
only list the trigrams:

<wh, whe, her, ere, re>

where the symbols ‘ <’ and ‘ > ’ denote word boundaries.

Each of these trigrams are shared by many other words with very different
meanings, for example:

< wh appears in which, whence, whale, white, whack, whack — a — mole,
whar f, whatever, ..

whe appears in anywhere, arrowhead, wheel, wheat, ...

her appears in whether, cherish, butcher, sherif f, thermometer, ...

It seems clear that vectors generated from short n-grams will be at a point in
semantic space that is not necessarily close to the semantics of any of the words
which contain them, because they are contained in many words. The longer the
n-gram, the fewer the containing words. It might seem odd that the inclusion
of short n-grams in training would do any good at all, because they appear to
introduce semantic noise. In fact, a systematic evaluation of n-gram length shows
that embeddings that include bi- and tri- grams always show a slight degradation
in performance when compared to those with only longer n-grams [2].

An additional consideration about the number of words sharing subword ele-
ments originates in psycholinguistic evidence about the mental representation of
words. An important variable in human word recognition studies is the ortho-
graphic neighbourhood, commonly measured with Coltheart’s N [3], where the
orthographic neighbourhood of a word is determined by counting the number
of other words of the same length, sharing all but one letter, and maintaining
letter position. The measure of orthographic neighbourhood is correlated with
the number of words related to the target word, which overlap significantly with
the set of subword components. Every n-gram in a word is shared by a vari-
ety of semantically unrelated words, but the set of the constituent n-grams is
unique to a particular word. Or, to put it in the opposite way, each word con-
tributes its context to the training of its unique set of n-grams. When this set
is re-assembled, the summed vector will be consistent with the vector just for
the word itself. But this will be maximally effective when the combined set of
constituent n-grams does not overlap significantly with another set of n-grams
corresponding to a different word with a different meaning.

For example, the word safety has the ¢ri-grams

<sa, saf, afe, fet, ety, ty>

and there are no other six-letter words which have a significant overlap with this
set. On the other hand the word singer has the tri-grams

<si, sin, ing, nge, ger, er>
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which overlap significantly with many semantically unrelated words such as sin-
ner, finger, linger

<si, sin, inn, nne, ner, er>, <fi, fin, ing, nge, ger, er>, <li, lin, ing, nge, ger, er>

The result of this overlap is that if we present a rare word which overlaps sig-
nificantly with these n-grams, its vector representation will be degraded to the
extent that the set of overlapping n-grams is shared by semantically unrelated
words. For example the semantically unrelated word zinger (a striking or amus-
ing remark) will have similar sets of n-grams:

<zi, zin, ing, nge, ger, er>

which has a 67% overlap with finger and linger. The assembled vector for
“zinger” would therefore be somewhere between “finger” and “linger”.

The set of overlapping words in these examples is just what we have called
the orthographic neighbourhood. In the previous example, this means that the
trigrams for the high- N six-letter words have a 50%—67% overlap with N other
words in its lexical neighbourhood, whereas for the low-N it is none, except for
morphological variants of the word itself*. The higher the N, the more likely it
is that a significant subset of n-grams will be shared by semantically unrelated
words.

This paper explores the hypothesis that orthographic neighbourhood struc-
ture of English has some influence on the way subword n-grams are incorporated
into word embeddings. We first describe some relevant findings involving ortho-
graphic neighbourhoods that have come to light as a result of psycholinguistic
theories. We then show empirically how these properties can influence the qual-
ity of word embeddings, and propose alternative encoding schemes inspired by
psycholinguistics and neuroscience, which solve some of the problems. Our main
contribution is to show that a consideration of words as more than letter strings
in some disembodied vocabulary, is beneficial. Words are the result of psycholin-
guistic processes. Based on this argument we develop a putatively better encod-
ing scheme which takes into consideration the interdependency between word
structure and human psychological and neural processing systems.

2 Orthographic Neighbourhood Density

Coltheart’s N is the simplest measure of orthographic neighbourhood density,
where two words are neighbours if they have the same length and differ in just
one letter position. There have been many refinements, including the counting
of words formed by letter transposition or repetition, and the use of Levenshtein
distance. Nevertheless, many of the fundamental results hold for neighbourhoods
with the Colthert’s N measure, which we use in this paper [1,3,7,22].

The neighbourhood density of words is correlated with their length. [1]
counted the number of neighbours for four, five, and six letter words in the

4 In this example, safe has overlapping n-grams with safety.
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CELEX linguistic database. In total these amounted to 8956 words, and she
found a systematic difference; four-letter words had on average 7.2 neighbours,
five-letter words had 2.4, and six-letter words, 1.1 neighbour. Not surprisingly,
longer words tend to have fewer neighbours. Experiments which specifically
manipulate neighbourhood density tend to use shorter words, typically four-
letter words.

Orthographic neighbourhood N has an effect on how quickly people can
respond to stimuli in a lexical decision task (LDT). In LDT, subjects are pre-
sented with a random sequence of words and nonwords, and asked to classify
them as quickly as possible. Coltheart et al. [3] found that high-N nonwords
(nonwords with many word neighbours) were classified more slowly than non-
words with few word neighbours. That is, people would be slower to respond
that dinger was not a word than that rafety was not. This result is consistent
with our view that nonword letter sequences that are similar to many words will
be subject to more interference from existing word representations.

The effect of N on the word stimuli in LDT is less clear, but the prepon-
derance of evidence suggests that words with high neighbourhoods are classified
faster than words with low neighbourhoods. Thus, while having lots of neigh-
bours hinders nonword classification, it helps word classification. Large lexical
neighbourhood also helps in the naming task, where subjects are required to pro-
nounce words presented to them. Andrews [1] reviewed eight studies and found
that they all showed facilitatory effects. On the face of it, these findings appear
to contradict the hypothesis that high neighbourhood words should have lower
quality representations. However, one problem with interpreting the psycholin-
guistics evidence is that the results might not bear directly on the quality of the
representations but, rather, on the decision process employed by the subjects in
the experiment. That is, if a stimulus can generate lots of potential word vectors
then a decision process might be more ready to accept it as a word - which is
helpful if in fact it is a word, but unhelpful if it is not. The reaction time would
then be influenced by the number of vectors rather than their quality.

However, a more intriguing possibility is that the human word recognition
system constructs representations in such a way that high-N words are not
disadvantaged by their overlapping lexical neighbours. If it is true that machine
learning techniques can suffer in high-/N environments but humans do not, then
it would be advantageous to learn from the human system. We therefore decided
to find more concrete evidence about the effects of neighbourhood density on
the quality of trained embeddings.

2.1 Experiment 1: Effects of Orthographic Neighbourhood on Word
Embeddings

Perhaps it goes without saying that there are currently no tests of word embed-
dings which take orthographic neighbourhood density into consideration. As a
first step we decided to do a post-hoc analysis on popular data sets which are
used for evaluating embeddings: SimLex-99 [11], WS353 [5], and the Stanford
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Rare Word (RW) Similarity Dataset [13]. We counted the neighbourhood den-
sity of every unique word in each data set, as reported in Table 1. The average
densities were surprisingly high; for example Forster and Shen [6] limit their
high neighbourhood condition to N > 4, and other experimenters typically con-
sider 4-5 as being high-N. Table 1 also shows the distribution of words of various
lengths in the dataset, as well as the weighted mean length. WS353 has a slightly
higher distribution of longer words and a correspondingly lower neighbourhood
than SimLex, but most interestingly the RW set showed quite a different distri-
bution with many more long words and a corresponding decrease in the N. We
take this to be a completely uncontrolled and accidental feature of the datasets.

The differences in neighbourhoods suggest an alternative explanation for
results obtained by [2], who found that English word embeddings from word2vec
performed slightly better than fastText in the WS353 test set, but fastText
performed better with RW. Their explanation was that the words in WS353
are common words for which good word2vec vectors can be obtained without
exploiting subword information. The words in the RW dataset, on the other
hand, are helped by subword information because their whole-word vectors are
poor. Our analysis of neighbourhoods suggests a quite different explanation. By
our hypothesis, fastText embeddings perform best in low-N words environments,
which is only the case for the RW data set.

Encouraged by this evidence, we devised a more direct plausibility test for our
hypothesis, further inspired by the observation that many of the high-N words
we entered into the fast Text nearest neighbour® query tool returned results where
many of the words were morphologically related. They seemed to retain a core
morphological stem. For example the high- N query word tone has the following
semantic neighbours: tones, overtone, staccato, toned, overtones, dissonantly,
accentuation, accentuations, intonation, intonations. One possible explanation
for the morphological overlap is that a critical n-gram such as ton becomes cen-
tral to the representation because it has to be intact to capture the semantic
meaning. That is, tone has 20 orthographic neighbours, *one: bone done gone
lone none cone hone pone sone zone t*ne: tine tune tyne to*e: toke tole tome
tope tore tote ton*: tons and disrupting the morpheme ton gives a completely
different word. Interestingly, this phenomenon seems to extend to morphemes
that are not part of the original query word. For example bone has fastText
semantic neighbours: bones, tooth, cartilage, marrow, teeth, osteo, arthroplastie,
osteoarthritic, osteochondral, osteolysis and word2vec neighbours: bones, carti-
lage, tooth, skull, marrow, tissue, femur, fractures, teeth, spine. Again, fastText
appears to have latched on to an orthographic cluster which has stable semantic
context, whereas word2vec has a much more varied answer set. We wanted to
quantify this observation, and the test we proposed was to count the number
of unique word stems returned for a nearest neighbour query. That is, by using
a common stemming algorithm, we were able to eliminate results which shared

5 It is unfortunate that words with similar embeddings are sometimes called ‘neigh-
bour’, e.g. on http://fasttext.cc. To avoid confusion we will refer to these as ’semantic
neighbours’ from now on.
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Table 1. Percentage of words of length [ in three common data sets, the mean length
of words in the data set and their observed Coltheart’s N

Word Length | SimLex-99 | WS353 | RW
1 0 0.2 0

2 2 0.2 0.1
3 8 5.5 1.45
4 18 13 4.8
5 20 14.7 6.2
6 19 20 6.7
7 13.7 11.9 11.7
8 7 10 14.1
9 6.2 9 14.8
10 34 6 12.7
11 1.7 4.6 11
12 0.5 2 7.5
13 0.01 0.9 4.4
14 0.01 0.4 2.7
15 0.88
16 0.5
17 0.27

18 0.03
19 0.03
Mean length |5.8 6.63 8.78
N 4.83 3.45 1.47

a common stem. There are several commonly used stemming algorithms [17],
and none of them necessarily eliminate all the orthographically derived forms
we would like, but after some experimentation we used the popular Snowball
stemmer from NLTK.

We trained a word2vec and a fastText model on the latest WikiPedia data
dump as of March 2018° (enwiki 20180320). All word2vec and fastText models
were trained on the same dump to ensure consistency. The build of word2vec
was obtained from https://github.com/dav/word2vec and fastText from https://
github.com/facebookresearch /fast Text.git.

A set of 9 low-N and 9 high-N, 4-letter words were assembled, keeping
word length constant. These were submitted to word2vec and fastText to com-
pute the top 10 nearest semantic neighbours. Each word was stemmed with
the Snowball stemmer in the NLTK toolbox’. Finally the number of unique
stems was subtracted from the total number of semantic neighbours for the two

5 https://dumps.wikimedia.org/.
" http://www.nltk.org/howto/stem.html.
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conditions. Table2 shows the number of words that share some unique stem.
fastText performed about as well as word2vec on low-N words, but seemed to
suffer on the high-N words, corroborating our intuition that fastText vectors
were sub optimal with high- N words.

Table 2. Number of words sharing a common stem

Low-N | High-N
word2vec | 14 15
fastText |12 20

3 Models of Word Encoding

Experiment 1 gave some reason to believe that the simple n-gram model of sub-
word representation might be limiting the quality of the vectors obtained with
fastText, because of the presence of high-N words. Since orthographic neigh-
bourhoods effects are predominantly psycholinguistic, we reasoned that drawing
on existing knowledge about human word encoding schemes, might help us to
improve orthographic word representations. Our hypothesis is that the surface
form of writing systems evolved in light of the properties of the human ortho-
graphic encoding mechanism, and an understanding of the properties of the
human encoding system could help us implement coding schemes which are bet-
ter suited to process those surface forms. The Latin alphabet provides discrete
components which are combined to form words of various lengths. Interestingly,
even though short words tend to have higher neighbourhood densities, there is
an inverse relation between word length and frequency of use in English func-
tion words [16]. That is, the most frequently used words tend to be short with
potentially high orthographic neighbourhoods, which could lead to errors if the
perceptual system was not adapted to avoid the errors. Psycholinguistic results
about neighbourhood density effects form a key source of evidence for models of
visual word recognition.

There is general consensus in the literature that abstract letter identities,
independent of type font and case, are involved in the initial stages of printed
word recognition [7]. Beyond that, there are differing proposals for how the letter
detectors combine to enable printed word recognition. It is clear, for example,
that letter position must somehow be computed because readers have no trouble
distinguishing between, say, bale and able. On the other hand humans seem
to be unperturbed by letter transposition, deletion, or insertion, such that the
intended meanings of tmie, grdn, and garzden are generally recognised [9].

One of the most well supported proposals for an orthographic encoding
schema is the open bigram (or more generally open n-gram) model of spatial
encoding. In the open bigram model, letter encoding includes distant bigram
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pairs in words, not just spatially contiguous ones. For example, the word clam
could be coded by the set {cl, ca, ecm, la, Im, am}. Here the character gap
between the letters is not constrained.

Whitney [21] proposed an interesting version of the open bigram approach in
the SERIOL model, which incorporates facts about the role of neural activation
in information representation. The model postulates a letter level encoding stage
in which the relative position of each letter in the word string is encoded by the
temporal neural firing patterns. That is, the subsequent bigram level recognises
ordered pairs of letters, converting the temporal sequence into a spatial one.
Bigram nodes recognize ordered pairs of letters and fire only if, for example,
input A is followed by input B but not if only A were received, or if B were
received prior to A. The neuronal firing occurs if letter nodes transmit their
information within an oscillatory cycle, so non contiguous letter pairs can also
activate letter bigrams, but the strength of firing is diminished with the distance
between characters.

The bigram encoding model has similarities with the model of subword encod-
ing in fastText. There are also important differences, in that Whitney’s model
uses only bigrams as well as non-contiguous bigrams. We decided to try if the
introduction of non-contiguous/open n-grams, in analogy with the human per-
ceptual system, could improve the performance of fastText embeddings.

3.1 Experiment 2: Non-contiguous n-grams

In this experiment we tested the addition of open n-grams to subword features,
to see if they improved fastText vector representations. We experimented many
different encoding schemes, and found that including both open, and regular
contiguous n-grams gave inferior results to just using open n-grams®. In other
words, contiguous n-grams always degraded performance. The best results were
obtained by 300 dimensional vectors trained with n-grams where 3 < n < 6. We
call the trained models with only open n-grams fasterText, because every word
has fewer n-gram components, and the model is slightly faster to train®.

To illustrate the reduction in the number of components compared to contigu-
ous n-grams, consider just the ¢ri-grams for the word safety from our previous
example, showing a 66% reduction in just the number of tri-grams:

contiguous trigrams: <sa saf afe fet ety ty>
open trigrams: <ae sft aey ft>

The performance of the fasterText vectors is shown in Table 3 for the pre-
viously described tests in Table 1, as well as the SemEval2012 task 2, and the
Google analogy task. The former of these adds some fine grained semantic rela-
tions, and the latter some syntactic as well as semantic analogies. The results

8 This is an interesting result since it departs from theories of human representation.
‘We return to this point in the discussion.

9 For example time to train the two best performing models on an Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30 GHz, 40 cores, 62GB RAM, fastText real time =
376 m36.311 s, fasterText real time = 361 m35.879s.
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Table 3. Correlation between human judgement and word vector similarity scores
on SimLex999 (semantic similarity, not relatedness), WS353 (semantic similarity and
relatedness combined), SemEval2012 task 2 (various complex semantic relations),
Google (semnatic and syntactic analogy task), and RareWord dataset (semantic sim-
ilarity). Non-contiguous n-grams in fasterText shown against word2vec and fastText.
Five different hyperparamters in fasterText are shown, where the number in parenthe-
ses is the degree of n. o+c also includes closed bigrams.

SimLex | WS353 | SemEval | Google | RW
word2vec .33 .64 .18 71 41
fast Text .33 .69 A7 .69 44
fasterText(20+c¢) | .33 .66 17 .68 .38
fasterText(2) .33 .67 A7 .69 .39
fasterText(2-3) |.33 .68 .18 7 A4
fasterText(2-6) | .33 .69 .18 .69 42
fasterText(3-6) |.34 .70 .18 .71 .45

show Spearman’s rank correlation coefficient between vector cosine distance and
human judgement. fasterText embeddings achieve the best result (or equal best)
on all of the five tests. This in spite of the fewer total n-gram components.
The table also shows that performance tended to increase as longer n-grams
were included, and degraded if bigrams were also present. However, the impor-
tant point again is that the open bigram trained embeddings outperformed or
equalled the state-of-the-art algorithms on every test.

Table 4. Results from jiant target tasks.

mnli (accuracy) | kerte (accuracy) | sts-b (spearman r) | wnli (accuracy)
fastText (pretrained) | 0.408 0.552 0.218 0.563
fastText 0.408 0.552 0.244 0.563
fasterText 0.440 0.578 0.248 0.563

3.2 Downstream Tasks

We compared the embeddings on several downstream tasks using the jiant'°

toolkit to evaluate on several GLUE!!" benchmarks [20].

The network configuration, including pretrain tasks, was taken from the jiant
tutorial. The core model is a shared BiILSTM and no effort was made to opti-
mize the model, since we were looking for a comparison between the embeddings

19 https://jiant.info/.
" https://gluebenchmark.com/.
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rather than state-of-the-art performance. The test tasks were the Multi-Genre
Natural Language Inference (MultiNLI) for textual entailment, the Recognizing
Textual Entailment (RTE), the Semantic Textual Similarity Benchmark (sts-
b) and the Winograd Natural Language Inference (WNLI or also known as The
Winograd Schema Challenge), from the GLUE test set. These tasks are all puta-
tively semantic, indicating semantic encoding in the word vectors [20]. Table4
shows the results of the comparison between pretrained fastText vectors obtained
through the jiant web site, the fastText vectors trained on our corpus and the
fasterText vectors trained on the same corpus. There is a slight improvement
with fasterText in these downstream tasks, suggesting that these embeddings
encode more precise semantic information.

In a separate line of work, HaCohen-kerner et al. [8] used Skip Char Ngrams
and other character level features in stance classification of tweets. Their goal
was to maximise the available features for the short texts available in individual
tweets, and to reduce the effect of noisy data due to misspellings. They gener-
ated a large number of skip character features, skipping the range between 2—6
characters depending on the word, and found that their skip character ngrams
outperformed previous benchmarks. While this work did not use word embed-
dings directly, it nevertheless shows that non contiguous n-grams provide unique
information about word meanings.'?

4 Summary, Conclusions, and Future Work

The use of subword information for training word embeddings benefits rare
words, and languages where words are spontaneously derived by compounding. It
was argued that subword encoding is also intrinsic to human word recognition,
and the experiments showed that by including aspects of the known human
encoding scheme in machine learning, the results can be improved across the
board.

One curious aspect of the results was that regular, closed n-grams tended
to reduce the quality of the embedding vectors. This is unusual because all
psychological models we are aware of include regular n-grams. One possible
explanation is that our model misrepresented the role of closed n-grams because
it used only a simple model of open m-grams. In our implementation we put
equal weight on each n-gram, irrespective of its serial position in the word. In
addition, we only used a gap of one character between letters. This corresponds
most closely with a discrete open bigram model, where non contiguous bigrams
within a specified inter-letter distance receive an activation of 1, all other bigrams
0. Other approaches allow larger gaps and weighting functions, which result in
different contributions of the subword units. For example the unit c¢m is activated
in the word clam if two intervening letters are permitted, but not by the word
claim. On the other hand the continuous open bigram model assigns a continuous
and decreasing activation to bigrams that are separated by more letters. Thus

12 We would like to thank an anonymous reviewer for bringing our attention to this
work.
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e¢m would receive some activation from both words, but more from clam. An
obvious next step is to implement a version of the continuous model. This could
be achieved by repeating bigrams by a factor that is proportional to the distance
between them. That is, spatially closer n-grams would get more training cycles
in any given word. By doing this we might be able to re introduce shorter n-
grams which would improve out of vocabulary performance as well as retain its
other good characteristics.

Hannagan et al. [9] argue that orthographic encoding can be mathemati-
cally modelled as a string kernel, and different encoding schemes are simply
different parameters of the kernel. String kernels are a general approach origi-
nally designed for protein function prediction, and are consistent with a general,
biologically plausible model of sequence comparison that is tolerant of global
displacement and local changes. Our main contribution is to show that subword
embeddings based on biologically plausible string kernels produce better results
than embeddings based on ad hoc letter combinations. The claims should there-
fore apply also to other languages and writing scripts, as well as to other meth-
ods for generating embedding vectors, for example BERT [4] and ELMo [19].
Observed word forms evolve in conjunction with the capabilities and properties
of the human visual system. Encoding schemes used in artificial neural networks
could benefit from learning about the properties of real neural networks and the
environments in which they operate.
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