l‘)

Check for
updates

Verifying Faradzev-Read Type
Isomorph-Free Exhaustive Generation

Filip Mari¢(®)

Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
filip@matf.bg.ac.rs

Abstract. Many applications require generating catalogues of combina-
torial objects, that do not contain isomorphs. Several efficient abstract
schemes for this problem exist. One is described independently by
I. A. Faradzev and R. C. Read and has since been applied to catalogue
many different combinatorial structures. We present an Isabelle/HOL
verification of this abstract scheme. To show its practicality, we instanti-
ate it on two concrete problems: enumerating digraphs and enumerating
union-closed families of sets. In the second example abstract algorithm
specification is refined to an implementation that can quite efficiently
enumerate all canonical union-closed families over a six element universe
(there is more than 100 million such families).

Keywords: Isomorph-free exhaustive generation + Orderly - Software
verification - Isabelle/HOL

1 Introduction

Cataloguing finite combinatorial structures (e.g., subsets, partitions, words,
Latin squares, graphs, designs, codes) described by certain specified properties is
required in many application domains. It is very desirable that such catalogues
are exhaustive and isomorph-free i.e., to contain exactly one representative of
each class of isomorphic structures. Often it is not enough to count objects (to
enumerate them), but it is needed to generate them explicitly.

Efficient isomorph-free cataloguing algorithms are often divided into three
types: (i) Faradzev—Read-type orderly algorithms based on canonical represen-
tatives [8,20], (ii) McKay-type algorithms based on canonical orderings [1], and
(iii) algorithms based on the homomorphism principle for group actions [10].
These are applied to a wide variety of problems (according to Google Scholar,
McKay’s paper has more than 500 citations, most of which describe its concrete
applications in mathematics, computer science, chemistry, biology etc.).

In this paper we present a formal verification of Faradzev-Read cataloguing
scheme within Isabelle/HOL. Verified cataloguing of combinatorial structures is
often used in formal proofs (e.g., enumeration of Tame Graphs given by Nipkow
et al. [18] was an important part of the Flyspeck proof of Kepler conjecture). We

© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 270-287, 2020.
https://doi.org/10.1007/978-3-030-51054-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51054-1_16&domain=pdf
http://orcid.org/0000-0001-7219-6960
https://doi.org/10.1007/978-3-030-51054-1_16

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 271

advocate that verifying general isomorph-free catalouging schemes might facili-
tate verifying enumeration algorithms needed for concrete applications. Author’s
personal motivation for these algorithms comes from his previous and current
work in formalizing combinatorics and finite geometry [15,16].

To demonstrate its usefulness, we applied our general framework on two
concrete problems: cataloguing all directed graphs on n nodes (this was the first
problem analyzed in the original Read’s paper [20]) and cataloguing families of
subsets of an n-element domain, closed under unions. A solution for the second
problem was described by Brinkmann and Deklerck in 2018 [4] and it combines
Faradzev-Read type orderly generation [8,20] and the homomorphism principle
[3]. For n = 6, their C implementation found around 100 million such families in
several seconds, while for n = 7, it found around 2-10'° in around 10 to 12 CPU
years (on a cluster computer). We refine an abstract algorithm specification to
an efficient implementation (still purely functional) and show that it can solve
the case n = 6 within Isabelle/HOL in a matter of minutes.

In the current paper we focus mainly on presenting definitions (in the most
cases proofs are not discussed). It is assumed that the reader is familiar with
functional programming and Isabelle/HOL [19]. Some definitions are slightly
simplified, to make them more comprehensible. Proof documents are available
in the Downloads section at http://argo.matf.bg.ac.rs/ and are going to be sub-
mitted to the Archive of Formal Proofs.

Contributions. Our central contribution is the verification of the abstract Fa-
radzev-Read scheme that can be instantiated for many concrete applications.
Other contributions are:

— a verified algorithm for cataloguing digraphs and other similar objects [20];

— a verified efficient algorithm for generating union-closed families [4];

— a small verified library for generating basic combinatorial objects (permuta-
tions and combinations);

— verified bitwise representation of sets, set operations and families of sets by
unsigned integers and some common “bit-hacks”.

Related Work. Literature on fast computer-based enumeration of various com-
binatorial objects is vast, but it seems that there are not many formally veri-
fied algorithms and tools. As a part of Flyspeck project, Nipkow et al. used
Isabelle/HOL to verify an algorithm for enumerating tame graphs [17,18]. Bowles
and Caminati used Isabelle/HOL to verify an algorithm for enumerating event
structures and, as a byproduct, all preorders and partial orders [2]. Giorgetti et
al. used Why3 and Coq to generate basic combinatorial objects, used in software
testing [7,9]. We are not aware of any verified general methods for isomorph-free
exhaustive combinatorial enumeration.

2 General Faradzev-Read Scheme

Algorithms for generating combinatorial objects are usually based on recursive
schemes that build larger objects by augmenting smaller ones. We shall assume

http://argo.matf.bg.ac.rs/

272 F. Marié¢

that the set of all objects S is divided into its subsets Sy, S1,S2, ... grouped by
object “size” (e.g., the size can be the number of edges in a graph or the number
of sets in a family). Objects in Sq41 are produced by augmenting objects in Sy.

A classic, naive algorithm for isomorphism rejection maintains a list L, of
objects of S, produced so far, and compares the current object with all objects
in that list, adding it to the list L, only if L, does not contain its isomorph.
That assumes that there is an efficient isomorphism test and is doomed to be
inefficient when the list becomes long. Efficient schemes (including the Faradzev-
Read’s) avoid comparing the current object with the previous ones an can deduce
whether it should be added to the list only by examining the object itself.

A central component of Faradzev-Read’s scheme is a linear order (we shall
denote it by <) in which objects are produced (the scheme is sometimes called
orderly generation). Ly shall always be sorted wrt. that order. Also, it is assumed
that for each isomorphism class there is a single canonical object, that for each
object we can test if it is canonical and that lists L, shall contain only canonical
objects. We specify this in an Isabelle/HOL locale (use of locales for stepwise
implementation is described by Nipkow [17]).

locale FaradzevRead’ =

fixes S :: “nat = (’s::linorder) set”
fixes equiv :: “’s = ’s = bool”
fixes is_canon :: “’s = bool”

fixes is_canon_test :: “’s = bool”

fixes augment :: “’s = ’s list”

assumes “A ¢. equivp_on (S q) equiv”

assumes “A s s’ ¢ [equivs s s€ Sql = s'€ S q”

assumes “A s ¢. s € S ¢ = 3! sc. equiv s sc A is_canon s.”

assumes “A s s’ ¢. [is_canon s; s’ € set (augment s)] = s € Sq—— s’€ S (¢ + 1)”
assumes “A s s’ gq. [s € S g; is-canon s; s’ € set (augment s)] =

is_canon_test s’ «—— is_canon s”’

First two assumptions ensure that equiv is an equivalence (isomorphism)
relation on every S, (note that Faradzev-Read scheme does not require to have
an executable isomorphism test). The third one ensures that each isomorphism
class contains exactly one canonical representative. The fourth one describes the
augmentation procedure that builds a list containing possible extensions of a
given canonical object (their dimension is always increased by one). Definition
of a canonical representative should be as simple as possible, since it is used in
proofs. It need not be executable and if it is executable it need not be efficient.
We provide another function is_canon_test that is used to test for canonicity. It
does not need to match the abstract is_canon definition in general, but they need
to match on the objects obtained by augmenting canonical objects.

Faradzev-Read algorithm iterates through a sorted catalogue L, of canonical
objects of S, and builds a sorted catalogue Lq41 for Sg41. For each object p it
iterates trough a list of objects s that augment it. If an object s is non-canonical
it is eliminated. If it is canonical, then it is appended at the end of L, only if
it does not violate the list order. This procedure is specified as follows.

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 273

order_test s res = (if res = [| V s > hd res then s # res else res)

step L = (let cs = filter is_.canon_test (concat (map augment L))
in rev (fold order_test cs []))

Three conditions are sufficient for the correctness of the previous procedure.
First, it must be possible to obtain each canonical object s in S;11 by augment-
ing at least one canonical object in S,. If that holds, then all canonical objects
in Sy41 will be enumerated at least once and we need to guarantee that they
will survive the order test exactly once. Since the ordering of L,y is strict, a
canonical object cannot survive the order test more than once. The first appear-
ance of a canonical object s will be eliminated by the order test iff the list Lq41
constructed so far contains an object s’ such that s’ > s. Element s’ could be
produced either by the same p that produced s or by some element p’ of L, that
precedes p. The former cannot happen if the augmentation procedure always
gives elements s in sorted order. Let f(s) = p be the first element of L, which
produces s, and let f(s") = p’ be the first element of L, which produces s’. To
forbid that s’ is produced by some element p’ of L, that precedes p, we must
forbid that both s’ > s and f(s’) < f(s) hold i.e., we must require that s’ > s
implies f(s") > f(s). To formalize this, we first define the function f (we call it
the minimal parent function).

parent p s «— is_canon p A\ s € set (augment p)

min_parent p s — parent p s A (¥ p’. parent p’s — p < p’)
Then we extend the locale by requiring the following three conditions.

locale FaradzevRead = FaradzevRead’ +
assumes “A s q. [s€ S (q + 1); is_canon s] = (I p € S q. parent p s)”
assumes “A s ¢. [s € S g; ts_canon s| => sorted (filter is_canon (augment s))
assumes ‘A ss'pp’q.

[s €S (q+ 1); is_canon s; min_parent p s;

s’€ S (q + 1); is_canon s’; min_parent p’ s’; s < s = p < p”’

”

Now we can formulate and prove algorithm correctness. We define catalogue
for S, as a strictly sorted list of canonical elements of S, that contains an element
for each isomorphism class.

catalogue L q «— sorted L N\ distinct L A set L C S g N\ (V s € set L. is_.canon s) A
(Vs€Sq 3 s € set L. is_canon sc N\ equiv s Sc)

It is easily shown that catalogue for every ¢ is unique and that it always
exists if Sq is finite (we denote it by the_catalogue q).

The central theorem states that the step function when applied to a catalogue
for S, produces a catalogue for Sg.

theorem “catalogue L ¢ = catalogue (step L) (q + 1)”

274 F. Marié¢

The original proof given by Read is as follows. “Condition 1 ensures that every
canonical configuration X in Sy is produced at least once. Condition 2 ensures
that when X is produced for the first time from f(X) there cannot be an entry
Y produced from f(Y) # f(X) which follows X in L,y and whose presence
will therefore block the addition of X to the list. Condition 3 ensures the same
thing when f(X) = f(Y).” This informal proof sketch had to be expanded to
around 300 lines long Isar proof which employed nested reverse list induction.

Strict Faradzev/Read Conditions. In some concrete instances stronger con-
ditions are met that make possible to skip the order test within step function.
Although that does not make the implementation much more efficient (the order
test is usually quite fast), this can significantly simplify the depth-first variant
of the procedure.

locale FaradzevReadStrict = FaradzevRead’ +

«

assumes sq. [s€ S (qg+ 1); is-ccanon s] = (I p € S q. parent p s)”
assumes “A s g. [s € S g; is_canon s] => sorted (augment s) A distinct (augment s)”
assumes “A psp’s’q [p€ S g parentp s;p’ € S ¢ parent p’ s’; p < p] = s < s’

We formally showed that the order test can be skipped.

lemma
assumes “distinct L” “sorted L” “set L C S q” Y x € set L. is_canon x”
shows “step L = filter is_canon_test (concat (map augment L))” “distinct (step L)”

We have also shown that strict conditions imply the original conditions (by
showing that FaradzevReadStrict is a sublocale of FaradzevRead).

Depth First Variant. When step function is iterated, objects are generated
in breadth first fashion. A serious concern about such procedure is its mem-
ory usage, since at each step it needs to store both the whole list L, and the
elements of L, that are generated. We have defined a procedure that makes
the catalogue in depth first fashion, and that usually consumes significantly less
memory. Note that such procedure could have been defined in the non-strict
Faradzev/Read locale, but it would be more complicated, since, to be able to
perform the order tests, it would have to store the largest element in L, for all
recursion levels g. In many concrete applications, including both our case studies,
strict conditions hold, so we opted only for the simpler variant. We have defined
a function fold_dfs that “folds” the elements of the Faradzev-Read tree, enumer-
ated in the DFS order, by some given accumulating function. This tree can be
formed by augmenting each node in each possible way (using the augment func-
tion) and retaining only the canonical descendants (filtered by the is_canon _test
function), but it is not explicitly built in the memory. The lvl parameter guaran-
tees termination by controlling the depth of the generated tree. The definition
of fold_dfs is quite technical.

fold_dfs ll f i ss =
(if lvl = 0 then i
else fold (A s’ z. s’ (fold_dfs (lwl - 1) f z (filter is_canon_test (augment s’)))) ss i)

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 275

Elements of the tree are usually folded by the following functions. The func-
tion catalogue_dfs computes the catalogue by collecting all tree nodes in a list,
while the function count_dfs only counts nodes, without keeping their list.

catalogue_dfs Wl ss = fold_dfs Wl (X s z. s # x) [] ss
count_dfs lvl ss = fold_dfs lvl (A s xz. x + 1) 0 ss

If the procedure catalogue_dfs starts from a catalogue for S;, then it traverses
over elements of all catalogues from S, to Sq4ivi—1 (although in different order
than the traversal based on the step function). This is formalized by the following
theorem (where mset denotes the multiset of list elements).

theorem
assumes “catalogue L q”
shows “mset (catalogue_dfs lvl L) = mset (concat (map the_catalogue [q..<q+Wl]))”

3 Cataloguing Digraphs

The first case-study used to test our general scheme was cataloguing all loopless
directed graphs (digraphs) with n nodes. It was the first problem described by
Read [20] and we directly follow his approach. As this was just a toy-example, we
did not invest much effort into low-level implementation details (e.g., we have
used lists which are the simplest data structures)—additional refinement step
that would introduce more efficient data structures and some other algorithmic
enhancements could make the enumeration much more efficient.

Objects. Following [20], digraphs are represented by their adjacency matrices.
As only loopless digraphs with n nodes are considered, the diagonal can be
excluded from the matrix and by concating matrix rows an n x (n — 1) vector
(a list) representation can be obtained. Graphs will be augmented by adding
branches, so we define sets Sp, S1, ... in the following way (the number of nodes
n is fixed when interpreting the locale).

Snq={llengthl=n*(n-1) A setlC {0, 1} N sum_list | = ¢}

Example graph, its matrix and list representation are shown on Fig. 1.

0 000
O (100> 000,10

100

Fig. 1. A graph represented graphically, by a matrix and by a list

Equivalence. Two graphs are equivalent if there is a permutation of nodes that
would map one graph onto another. Permutations are represented by lists of

276 F. Marié¢

length n (e.g., [2,0, 1] denotes a permutation that maps 0 to 2, 1 to 0 and 2 to
1). For example, if nodes in the Fig. 1 are ordered 0, 1, 2 instead of 1, 0, 2, then
the graph would be represented by the list [1,0,0,0,0,1]. A direct (but not the
most efficient) way to define action of node permutation to a list representing a
digraph is to convert it to a matrix, permute the rows and columns of the matrix
and then convert the matrix back to a digraph list.

permute_matriz p M = permute_list p (map (permute_list p) M)
permute_dig p n | «—— mat2dig (permute_matriz p (dig2mat n 1))

Equivalence is often defined by using permutations, so we introduce it
abstractly in a separate locale and prove its properties.

locale Permute =

fixes invar :: “nat = ’a = bool”

fixes permute :: “nat = nat list = ’a = ’a”

assumes “A a p n. [invar n a; is_perm n p] = invar n (permute n p a)”
assumes “A a n. invar n a = permute n (perm_id n) a = a”

assumes “A a p1 p2 n. [invar n a; is_perm n p1; is_perm n p2] =

permute n (perm_comp p1 p2) a = permute n p1 (permute n p2 a))”

assumes “A a p n. [invar n a; is_perm n p] =

permute n (perm_inv p) (permute n p a) = a”

Predicate is_perm abbreviates the condition p <~~> [0.. < n|, where <~~>
is the permutation relation from the Isabelle/HOL library. Permutations are
applied on objects of some abstract type ’a (e.g., to lists that represent digraphs)
that may satisfy some given invariant (e.g., that the list length is n(n —1)). The
function permute is the action of permutations on the objects of type ’a. If it
respects the permutation group operations (identity perm_id, inverse perm_inv,
and composition perm_comp), then we can use it to define equivalent objects and
to prove that it is an equivalence relation.

equiv n F1 Fo «—— (3 p. is.perm n p A Fo = permute p F1)

Ordering. The ordering is very simple — the lexicographic order on lists used
to represent graphs is used, except that the order of list elements is reversed (1
is treated as less than 0).

Canonical Objects. Permutations are also used to define canonical objects.
An object is canonical if it is minimal among all its possible permutations. For
example, the list [1,0,0,0,0, 1] is canonical for the graph shown in Fig. 1. This
definition is also generic and can be specified within the previous locale (a linear
order on the type ’a is assumed). Then it can be proved that each equivalence
class contains a single canonical representative (what is needed for Faradzev-
Read enumeration).

“is_.canon n F «—— (V¥ p. is.perm n p — F < permute p F)”

lemma “nv n a = 3/ c. equiv n a ¢ A\ is_.canon n ¢’

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 277

An optimization can be made when checking canonicity of a digraph. By the
definition of ordering, the list that starts with as most ones as possible will be
always less than lists that have zeros at that initial positions. Therefore only
permutations that put a maximal degree node at the beginning and nodes that
it is connected to after it need to be considered. This is the essence of our
is_canon_test definition (that we do not show here).

Augmentation. Graphs are augmented by adding an edge i.e., by changing one
0 in the list to 1. If the list contains some elements 1, then only zeros behind the
last 1 can be changed (otherwise any zero can be changed). For example, the list
[1,0,0,1,0,0] can be augmented to [1,0,0,1,1,0] and [1,0,0, 1,0, 1]. This can be
formalized as a relation between two lists!.

tslastone i xs «—— xs i =1 N (Vi i< i'A i< lengthzs — zs i’ = 0)

all_zeros zs «—— (¥ i < length xzs. zs ! i = 0)

increment_after_last_one zs ys «—— (3 5. j < length zs A\ ys = xs [j := 1] A
(all_zeros xs V (3 i. is_last_one zs i A\ i < j)))

All required properties of the augmentation procedure are proved using this
abstract definition, and only then its concrete implementation is given (it is quite
technical, so we do not show it here). It must return digraphs in sorted order,
which is ensured by sequentially incrementing every 0, after the last 1, one by
one.

Results. The naive implementation we defined can catalogue all 1540944
digraphs with 6 nodes in 276 seconds (on an 2.4GHz, Intel Core i5, 8GB RAM
laptop). Interestingly, the original paper reports only 1540744 digraphs [20].
Cataloguing more than 800 million digraphs with 7 nodes is possible, but would
require significant improvements of the implementation.

4 Cataloguing Union-Closed Families

Families of sets closed under unions have gotten a lot of research attention due to
the famous conjecture by Péter Frankl, claiming that in each such family there
is an element occurring in at least half of the sets. Although quite elementary,
the conjecture is still open [5,16]. Recently Brinkmann and Deklerck applied
Faradzev-Read type algorithm to catalogue union-closed and intersection-closed
families [4]. We have formalized their procedure in Isabelle/HOL.

4.1 Abstract Procedure Specification

Objects. The most natural way to model sets of natural numbers in
Isabelle/HOL is to use the built-in nat set type. The type nat set set could

! By following Read [20], we formalized a slightly more general case where the lists
can contain larger numbers than 1 (so at some future point multigraphs can also be
considered).

278 F. Marié¢

be used for families of sets. However, in order to apply Faradzev-Read enumera-
tion, we need to define a very specific total order of families (based on a specific
ordering of sets). We cannot change the default ordering of sets on the type ’a
set nor the ordering of families on the type ’a set set. Additionally, only finite
sets can be ordered, so we must introduce the following two types.

typedef Set = “{ s :: nat set. finite s }” morphisms elems Set
typedef Family = “{ s :: Set set. finite s }” morphisms sets Family

The union-closed property is defined as follows.

unton sl s2 = Set (elems s1 U elems s2)
unton_closed F —— (Y A € sets F. ¥ B € sets F. union A B € sets F)

We want to enumerate all families closed for union whose largest set is
{0,1,...,n — 1}. Since the empty set does not affect union-closedness, when
enumerating union-closed families it is usually excluded from all families. Enu-
meration starts from the family {{0,1,...,n — 1}}, and extends it by adding
sets with less elements. We define the dimension of a family, as the number of
its sets without this largest set. Therefore, we define collections Sy, S1, .52, ... by
the following definition.

“Snq={F. (¥ s¢€ sets F. elems s C {0..<n}) A card (sets F) = q+1”
Set {0..<n} € sets s A Set {} ¢ sets F' A\ union_closed F}

Equivalence. The function permute_family permutes every set in a family by
applying the permute_set function which permutes a set by applying the given
permutation to each member. The function permute_family interprets the locale
Permute (with the invariant that all elements if family sets are less than n) and
the definition and properties of equivalence given in that locale are used.

Ordering. The ordering of families is based on an ordering of sets. Sets are
ordered first by their cardinality (sets with more elements are declared to precede
sets with less elements). Sets of the same cardinality are ordered by lexicographi-
cally comparing reverse-sorted lists of their elements. For example, the following
is a strictly increasing chain of sets {0,1,2} < {0,1} < {0,2} < {1,2} < {0} <
{1} < {2} <{}

less_Set (Set s1) (Set s3) «——
(let n1 = card si; ny = card s2
in ni > ny V (n1 = na A rev (sorted_list_of_set s1) > rev (sorted_list_of-set s3)))

Families are ordered by lexicographically comparing sorted lists of their sets
(wrt. the previous ordering of sets).

less_Family (Family F1) (Family F2) «—— sorted_list_of-set F1 < sorted_list_of_set F2

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 279

Canonical Objects. Canonical families are also defined by using permutations,
by reusing definitions and statements from the Permute locale—two families are
equivalent if there is a permutation that transforms one family to the other,
and a family is canonical if it is the least one (wrt. the ordering of families)
among all its permutations. We have formalized an efficient method for testing
if a given family is canonical. The crucial insight is that if a family is obtained
by augmenting a canonical family (and that is always the case in the Faradzev-
Read scheme), then it is certainly less than all families obtained by permutations
that change some of its sets with cardinality greater than minimal. Therefore,
it is enough to check only the permutations that fix such sets. For example,
when extending the family {{0,1,2},{0,1},{0,2},{0}}, the permutation 0 —
1,1 — 2,2+ 0 needs not to be considered since it maps non-minimal cardinality
sets {0, 1,2},{0,1},{0,2} to {0, 1,2},{0, 1}, {1, 2}, thus always yielding a greater
family. Only permutations that map 0 to 0 need to be analyzed. Note that this
is one of the crucial components of the algorithm, since it tremendously reduces
the number of permutations that have to be applied to check if a given family
is canonical (as the number of sets in families is increased, that number very
quickly drops to just a couple of permutations).

min_card F = Min (set_card ¢ (sets F))
above_card_sets F' ¢ = {s. s € sets F' A\ set_card s > c}
perm._fizes F «—— (V s € F. permute_set p s € F)
filter_perms ps F = (let F’ = above_card_sets F (min_card F)
in filter (A p. perm_fizes p F’) ps)
is_canon_test n F «—— (¥ p € set (filter_perms (permute [0..<n]) F).
F < permute_family p F)

Augmentation. A family is augmented by adding sets that are larger than its
largest set (wrt. the ordering of sets).

augment_set n s = {s’. elems s’ # {} A elems s’ C {0..<n} A s’ > s}

augment n F = (let Fs = {add_set F s | s. s € augment_set n (Maz (sets F'))}
in sorted_list_of_set {F’ € Fs. union_closed F’})

Testing if a family is union-closed requires analyzing all pairs of sets. However,
since families are generated by adding sets to smaller union-closed families, we
only need to find unions of the new set s with the sets present in the family F
that is being augmented. Since s is larger than all sets in F|, the procedure can
be optimized. It suffices to check only those sets of F' that do not contain subsets
in F' (those sets form the reduction of F).

reduction F = {s € sets F. = (3 s’ € sets F. elems s’ C elems s)}
lemma
assumes “union_closed F'” v s’ € sets F. s > s”’
shows “union_closed (add_set F's) «—— (V s’ € reduction F. union s’ s € sets F)”

280 F. Marié¢

Note that many previous definitions are not efficient or even not executable
(e.g., in the augmentation procedure it is not specified how to construct sets
larger than the given one, and the required sorted order of the resulting list of
families is ensured by explicitly sorting the list, which would be inefficient in
a real implementation). However, abstract specification like this one are very
convenient for proving algorithm correctness, while efficient executable imple-
mentation can be defined later.

4.2 Implementation

The abstract procedure specification already contains two very important opti-
mizations: filtering permutations when checking canonicity and filtering sets
when checking union-closedness. However, there are many additional optimiza-
tions that should be done in order to get an executable, efficient implementation
of the procedure:

— sets and families must be represented using efficient data structures;

— objects should be generated in-order, and a-posteriori sorting must be
avoided,;

— computations that are redundantly repeated many times should be avoided
by applying memorization and storing results in lookup tables.

Unlike abstract specification that is stateless, an efficient implementation
must be stateful. There are many methods to handle state in functional pro-
grams, and we use the simplest one: it is explicitly passed trough function calls.

Objects. Using bitwise representation is the best choice for representing sets
and families. A set can be represented by an unsigned integer that has the bit
i equal to 1 iff the set contains the element i. For example, if 8-bit words are
used, the set {0,2,5} can be represented by 00100101, i.e., by 37. Similarly, a
family can be represented by unsigned integer that has the bit ¢ equal to 1 iff
the family contains the set represented by i. Since there are 22" families over
{0,...,n — 1}, 64-bit words can be used to represent families over {0,...,5}.

However, since we wanted to make a very clear separation between the high-
level algorithm correctness and low-level bit-twiddling hacks, we have introduced
another layer of abstraction. We have introduced another locale, parametrised
by the type ’s for representing sets and ’f for representing families, and by some
primitive operations over these types.

For example, a type ’s that represents sets must support a constant for the
empty set, must support reading the list of set elements, checking if the set
contains an element, adding an element to a set, finding union of two sets,
determining the cardinality of a set, finding the list of all possible subsets of
{0,...,n—1}, etc. It must be linearly ordered and that order must be compliant
with the lexicographic order of reversed lists of set elements. Since only elements
up to a certain size must be represented, all assumptions in our locale are guarded
by the condition n < n,4., Where n,,4. is a locale parameter. Based on such
primitives, algorithm-specific set operations are defined (e.g., ordering of sets is

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 281

defined based on card and <, and permuting sets is defined by traversing the list
of elements and inserting their permuted images into a resulting set).

A type fmust support a constant for the empty family, must support reading
the list of family sets, adding and removing set from the given family etc. Again,
value n,q, assures that all families can be properly represented.

Caching Information About Families. Each family F must contain infor-
mation about all sets that it contains (and this is represented by a value of
type ’f). However, in order to avoid repeating computations, we shall associate
some additional data with each family. For augmentation of F' we need to know
the maximal set and the reduction of a family (so that we can efficiently check
union-closure). For testing canonicity we need to know a list of permutations
that fix sets in F' with cardinality above minimal. We store all these in a record
(permutations are represented by numbers from 0 to n! — 1).

datatype (’f, ’s) FamilyRecord =
FamilyRecord (all_sets : ’f) (maz_set : ’s) (reduction : ’f) (perms : “nat list”)

Ordering. Ordering families is a bit tricky in the general case. If bitwise repre-
sentation is used, the order of family codes need not necessarily comply with our
abstract ordering of families (which takes into account set cardinality). However,
within the enumeration we only compare families with their permuted variants
for permutations that fix all sets except those with the minimal cardinality.
Therefore, it suffices just to extract sets with minimal cardinality and compare
two families based only on those sets. When bitwise representation is used, since
all other bits will be the same, it suffices just to compare family codes.

Canonical Objects. Due to a relatively low number of subsets of {0,...,n —
1} (for n = 6, there are only 64 such sets) and a relatively low number of
permutations of [0,...,n— 1] (for n = 6, there are only 720 such permutations),
the action of all permutations on all sets can be precomputed and stored into a
lookup table (we use a RBT Mapping available from the Isabelle/HOL library).
The function that initializes the lookup table can easily be defined and it need
not be very efficient (it is called only once at the very beginning of the procedure).

type_synonym ’s SetPerms = “((nat x ’s), ’s) mapping”

init_set_perms n =
(let ps = permute [0..<n]; ss = powerset n;
keys = concat (map (A p. map (X s. (p, s)) ss) [0..<length ps])
in Mapping.tabulate keys (X (p, s). permute_set n (ps ! p) s))

In the previous code, the function permute is defined within our small library
for generating basic combinatorial objects and it generates all permutations of
the given list. The function that permutes a given family then just looks up
permuted sets from the set_perms mapping.

permute_family F p =
foldl (\ F’ s. add F’ (the (Mapping.lookup set_perms (p, s)))) empty_family (sets F)

282 F. Marié¢

Now the canonicity check can easily be implemented. The list of relevant
permutations is stored within the family record. The first permutation in that
list is always the identity permutation and it does not need to be checked (so in
many cases no family permutations at all need to be made).

is_canon_test set_perms F =
list_all (X p. less_eq_family (all_sets F) (permute_family set_perms p (all_sets F)))
(¢l (perms F))

Augmentation. Implementing augmentation has several important parts. First,
we need to know how to enumerate all augmenting sets for a given set, then we
need to check if adding an augmenting set to a family would leave it union-closed
and finally, when the set is added we need to update the list of permutations
that need to be tested when checking if the family is canonical, to update the
reduction of the family and to update its maximal set.

The function that finds all possible augmentations for a given set might be
implemented in the following way (again, it does not need to be much efficient,
since it is also called only once).

augment_set n s = filter (X s’. s < s’) (set_of (combine [0..<n] (card s))) @
concat (map (X ¢’. set_of (combine [0..<n] c¢’)) (rev [1..<card s]))

The function combine is also defined within our small library for generating
basic combinatorial objects and combine [k computes all k-element sublists of
the given list I. Augmenting sets of a set s first contain sets with the same
cardinality as s that are larger than it, and then, all sets of each cardinality
less than the cardinality of s, in decreasing order (this gives a sorted list of all
augmenting sets wrt. our set order).

Since the same sets are augmented over and over again (as they occur in
different families), results of augment_set for each s in powerset n are stored
in a lookup table and that lookup table becomes a parameter of the family
augmentation procedure augment.

Each augmenting set is analyzed and it is checked if adding it to the family
leaves it union-closed. This is done by examining only the sets from the reduced
family (which are stored within the family record).

is_union_closed F s = list_all (A s’. contains_set F (union s’ s)) (sets (reduction F))

If adding the set s to the family F leaves it union closed, then a new family
record is created. The set is added to the collection of all sets using the primitive
operation and it is set as the maximal set of the extended family (since the
augmenting sets are always larger than all sets in the family). The reduction
of the extended family is obtained by analyzing all sets in the reduction of the
original family F, removing those that contain s (by means of the primitive
operation), and by adding s to the reduction (as the maximal set it has the
minimal cardinality and the family cannot contain its subset).

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 283

update_reduction Rs s =
(let Rs’ = foldl (A Rs s’. if is_subset s s’ then remove Rs s’ else Rs) Rs (sets Rs)
in add Rs’ s)

add_set F's = FamilyRecord (add (all_sets F) s)
(update_reduction (reduction F) s) s (perms F)

Finally, the augmented set is added to the family and if its cardinality is
strictly less than cardinality of other sets in the family, the set of permuta-
tions is filtered (permutations that do not fix sets above minimal cardinality are
removed).

perm_fizes set_perms F p «——
list_all (X s. contains_set F (the (Mapping.lookup set_-perms (p, s)))) (sets F)
filter_perms n set_perms F ¢ =
(let perms’ = filter (perm_fizes set_perms (sets_of-card F ¢)) (perms F)
in FamilyRecord (all_sets F) (reduction F') (last_set F) perms’)
extend_family n set_perms F s =
(let F’ = add_set F' s; ¢ = card (maz_set F); ¢’ = card s
in if ¢ # ¢’ then filter_perms n set_perms ¢ F’ else F’)

With these functions available, we define the augmenting procedure.

augment n augmenting_sets powerset_by_card set_perms F =
map (extend_family n powerset_by_card set_perms F)
(filter (X s. is—union_closed F s)
(the (Mapping.lookup augmenting_sets (maz_set F'))))

Correctness Proof. The correctness proof reduces to showing that this stateful
implementation corresponds to the abstract specification. Functions abs_set and
abs_family that convert ’s to Set and ’f to Family are easily defined and it is
easily shown (by using the locale assumptions) that primitive operations given
in a locale are in accordance with operations on sets (the real burden of showing
this is when interpreting the locale by bitwise representation). Then, a set of
lemmas is proved that connects each implemented function with its abstract
counterpart. For example, the lemma that establishes the connection between
the abstract test for canonicity and its implementation is the following.

lemma
assumes ‘n < n_maz” “inv_f n (all_sets F')”
“set_perms_OK set_perms n” “perms_filtered F' n” “hd_perms F”
shows “Familylmpl.is_canon_test n set_perms F «——
FamilyAbs.is_canon_test n (abs_fam (all_sets F))”

The assumptions require that all sets in the family record satisfy all required
representation invariants (for example, this guarantees that all sets in F are
subsets of {0,...,n—1}), that the lookup table set_perms contains permutations
of all sets, that the family record contains exactly those permutations that fix

284 F. Marié¢

all sets of F' with more elements than the minimal set of F, and that the first
element in the list of those permutations is the identity permutation. In many
cases such lemmas are proved almost immediately (by using similar lemmas
about functions called in the current function definition). However, in some
cases there is more work that should be done (e.g., we need to show that our
augment_set implementation builds a sorted and distinct list of sets that covers
every set that is larger than the one being augmented).

It is also necessary to show that functions preserve invariants. All lookup
tables are initialized before the enumeration starts and we prove that func-
tions that initialize lookup tables do that correctly. For example, we show that
init_set_perms builds a lookup table that for each set sin powerset n and each per-
mutation index p from 0 to n! — 1 returns the set obtained by permuting s by the
p-th permutation in the lexicographic ordering of permutations of [0,...,n — 1].
Other invariants characterize data in the family record. For example, one such
invariant claims that max_set F'is always a set in F'that is the largest among all
sets of F. Since the family record is updated only in the augment function, the
major challenge is to show that it preservers all such invariants.

4.3 Bitwise Set Representation

Finally, we used the bitwise representation to represent sets and families, based
on the Native word library [14]. Sets are represented by the type uint8, while
families are represented by the type uint64. Primitive operations on sets are
implemented using the bitwise operations. For example, adding element and
removing element from a set, union and intersection of sets is defined by

add z e =x OR (1<< k) remove x e = ¢ AND NOT (1<< k)
union xl 2 = x1 OR z2 inter x1 ©2 = x1 AND x2

We have also implemented an efficient function for finding the cardinality of
a set, by using the parallel bit-count algorithm.

card sO = (let s1 = (sO0 AND 0z55) + ((sO >> 1) AND 0z55);
s2 = (s1 AND 0233) + ((s1 >> 2) AND 0233);
$3 = (s2 AND 0z0F) + ((s2 >> 4) AND 0z0F)

in nat_of-uint8 s3)

However, since we calculate cardinality only for 8-bit numbers, it turns out
that there is no much benefit to using a naive, sequential bit-testing algorithm.

Similarly, a list of sets in a family could be determined by a naive, sequential
test of each of 64 bits. For families that do not contain many sets, it is more
efficient to iterate only trough the bits that are set. Many hardware architectures
offer count trailing zeros (ctz) instruction that is used to find the last set bit.
Clearing last set bit can be achieved by calculating x & (x-1). Unfortunately,
it seems that ctz instruction is not available from functional languages. It can
be implemented by a binary search approach, yielding a six-step algorithm for
64-bit words, but our experiments reveal that using such implementation is less
efficient than the naive algorithm.

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 285

4.4 Results

Our verified implementation exported to Haskell catalogues all 108281 182
union-closed families in around 11 min (on an 2.4GHz, Intel Core i5, 8GB RAM
laptop). Our fastest, unverified implementation in C++ that uses the same algo-
rithm, but is based on arrays, does it in around 28 seconds. Profiling shows
that the verified implementation spends more than 60% of the time in RBT
lookup. Replacing O(logn) RBT with O(1) lookup array reduces the time to
less than 5min (for this we can use the Isabelle Collections Framework [11] or
Imperative/HOL [6]). Unfortunately, a range-check is performed with each ver-
ified bitwise operation, and there is no direct access from Isabelle/HOL to all
hardware implemented bitwise operations (e.g., —_builtin_ctzl in GCC), so its
hard to expect that C++ runtimes could be reached with standard Isabelle code
generator. When families are only counted using the depth-first variant of the
algorithm, memory consumption is not an issue.

5 Conclusions and Further Work

We have formalized the general Faradzev-Read scheme for making exhaustive,
isomorph-free catalogues of combinatorial objects within Isabelle/HOL and have
shown its applicability by instantiating in on two different problems: cataloguing
directed graphs and cataloguing union-closed families. In the second case study
we have created an efficient implementation capable of generating more than one
hundred million union-closed families over a six-element domain.

Our experience shows that even with the general scheme verified, there is
still much work to do for each concrete application, especially if efficient imple-
mentation is required (our rough estimate is that verifying the general scheme is
around 30-50% of the effort needed to verify a concrete efficient algorithm). Still,
a verified general scheme does save a significant amount of work in each con-
crete instance, and, more importantly, guides us towards elements that should
be defined in order to get an efficient algorithm.

Specification and the correctness proof of the abstract Faradzev-Read scheme
contains 3 locales with around 10 assumptions, 10 definitions and 40 lemmas,
consuming around 1200 lines of code (LOC). The case study of digraphs contains
around 25 definitions and 100 lemmas, consuming around 4000 LOC. The case
study of union-closed families contains around 105 definitions and 350 lemmas,
consuming around 8000 LOC (5000 LOC are devoted to efficient implementa-
tion). Some definitions and lemmas are shared between both case studies.

We use refinement based on Isabelle/HOL locales to separate reasoning
about abstract procedure properties and concrete implementation details. Using
a framework (e.g., Isabelle refinement framework [12]) might give us better proof
automation and easier introduction of imperative features [13], so we plan to use
it in our future work.

There are other general cataloguing schemes, some more efficient than Fa-
radzev-Read’s. Most notable of them is McKay’s canonical path generation [1].
In our further work we plan to formalize it, too. We hope that some parts of

286 F. Marié¢

the developed theory could be reused (e.g., the definition of isomorphism based
on permutations and their action and the definition of the catalogue). On the
other hand, Faradzev/Read and McKay’s approach are substantially different
so we are not too optimistic that any parts of Faradzev/Read algorithm spec-
ification would be useful for computing canonical labellings. A prerequisite for
McKay’s algorithm trusted implementation is an efficient, trusted graph isomor-
phism testing algorithm which we plan to construct (either by its verification
within a theorem prover, or by some kind of certificate checking).

References

1. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306-324
(1998)

2. Bowles, J., Caminati, M.B.: A verified algorithm enumerating event structures. In:
Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017.
LNCS (LNAI), vol. 10383, pp. 239-254. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-62075-6_17

3. Brinkmann, G.: Isomorphism rejection in structure generation programs. In: Dis-
crete Mathematical Chemistry (1998)

4. Brinkmann, G., Deklerck, R.: Generation of union-closed sets and Moore families.
J. Integer Sequences 21(1), 9-18 (2018)

5. Bruhn, H., Schaudt, O.: The journey of the union-closed sets conjecture. Graphs
Comb. 31(6), 2043-2074 (2015)

6. Bulwahn, L., Krauss, A., Haftmann, F., Erkok, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muifioz, C., Tahar, S.
(eds.) TPHOLSs 2008. LNCS, vol. 5170, pp. 134-149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7_14

7. Erard, C., Giorgetti, A.: Bounded exhaustive testing with certified and optimized
data enumeration programs. In: Gaston, C., Kosmatov, N., Le Gall, P. (eds.) ICTSS
2019. LNCS, vol. 11812, pp. 159-175. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31280-0_10

8. Faradzev, I.A.: Constructive enumeration of combinatorial objects. Colloques Int.
CNRS 260, 131-135 (1978)

9. Giorgetti, A., Dubois, C., Lazarini, R.: Combinatoire formelle avec why3 et coq.
In: Journées Francophones des Langages Applicatifs (JFLA 2019), pp. 139-154,
Les Rousses, France (2019)

10. Kerber, A., Laue, R.: Group actions, double cosets, and homomorphisms: unify-
ing concepts for the constructive theory of discrete structures. Acta Applicandae
Mathematicae 52, 63-90 (1998). https://doi.org/10.1023/A:1005998722658

11. Lammich, P.: Collections framework. Archive of Formal Proofs. Formal proof devel-
opment, November 2009. http://isa-afp.org/entries/Collections.html

12. Lammich, P.: Refinement for monadic programs. Archive of Formal Proofs. Formal
proof development, January2012. http://isa-afp.org/entries/Refine_Monadic.html

13. Lammich, P.: Refinement to imperative HOL. J. Autom. Reason. 62(4), 481-503
(2019). https://doi.org/10.1007/s10817-017-9437-1

14. Lochbihler, A.: Native word. Archive of Formal Proofs. Formal proof development,
September 2013. http://isa-afp.org/entries/Native_Word.html

15. Maric, F.: Fast formal proof of the Erdés-Szekeres conjecture for convex polygons
with at most 6 points. J. Autom. Reasoning 62, 301-329 (2017)

https://doi.org/10.1007/978-3-319-62075-6_17
https://doi.org/10.1007/978-3-319-62075-6_17
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-030-31280-0_10
https://doi.org/10.1007/978-3-030-31280-0_10
https://doi.org/10.1023/A:1005998722658
http://isa-afp.org/entries/Collections.html
http://isa-afp.org/entries/Refine_Monadic.html
https://doi.org/10.1007/s10817-017-9437-1
http://isa-afp.org/entries/Native_Word.html

16.

17.

18.

19.

20.

Verifying Faradzev-Read Type Isomorph-Free Exhaustive Generation 287

Marié¢, F., Zivkovié, M., Vuckovi¢, B.: Formalizing Frankl’s conjecture: FC-families.
In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 248-263.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_17
Nipkow, T.: Verified efficient enumeration of plane graphs modulo isomorphism.
In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 281-296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22863-6_21

Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21-35. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771_4

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

Read, R.C.: Every one a winner or how to avoid isomorphism search when cat-
aloguing combinatorial configurations. In: Alspach, B., Hell, P., Miller, D. (eds.)
Algorithmic Aspects of Combinatorics, Annals of Discrete Mathematics, vol. 2, pp.
107-120. Elsevier (1978)

https://doi.org/10.1007/978-3-642-31374-5_17
https://doi.org/10.1007/978-3-642-22863-6_21
https://doi.org/10.1007/978-3-642-22863-6_21
https://doi.org/10.1007/11814771_4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

	Verifying Faradžev-Read Type Isomorph-Free Exhaustive Generation
	1 Introduction
	2 General Faradžev-Read Scheme
	3 Cataloguing Digraphs
	4 Cataloguing Union-Closed Families
	4.1 Abstract Procedure Specification
	4.2 Implementation
	4.3 Bitwise Set Representation
	4.4 Results

	5 Conclusions and Further Work
	References

