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Abstract. Faces play a central role in the combinatorial and computa-
tional aspects of polyhedra. In this paper, we present the first formal-
ization of faces of polyhedra in the proof assistant Coq. This builds on
the formalization of a library providing the basic constructions and oper-
ations over polyhedra, including projections, convex hulls and images
under linear maps. Moreover, we design a special mechanism which auto-
matically introduces an appropriate representation of a polyhedron or a
face, depending on the context of the proof. We demonstrate the usability
of this approach by establishing some of the most important combinato-
rial properties of faces, namely that they constitute a family of graded
atomistic and coatomistic lattices closed under sublattices.

1 Introduction

A face of a polyhedron is defined as the set of points reaching the maximum (or
minimum) of a linear function over the polyhedron. Faces are ubiquitous in the
theory of polyhedra, and especially in the complexity analysis of optimization algo-
rithms. As an illustration, the simplex method, one of the most widely used algo-
rithms for solving linear programming, finds an optimal solution by iterating over
the graph of the polyhedron, i.e. the adjacency graph of vertices and edges, which
respectively constitute the 0- and 1-dimensional faces. The problem of finding a
pivoting rule, i.e. a way to iterate over the graph, which ensures to reach an opti-
mal vertex in a polynomial number of steps, is a central problem in computational
optimization, related with Smale’s ninth problem for the twenty-first century [25].
Faces of polyhedra are also involved in the worst-case complexity analysis of other
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optimization methods, such as interior point methods; see [2,13]. This has moti-
vated several mathematical problems on the combinatorics of faces, which are of
independent interest. For example, the question of finding a polynomial bound
on the diameter of the graphs of polyhedra (in the dimension and the number of
defining inequalities) is still unresolved, despite recent progress [6,7,23]. We refer
to [12] for a recent account on the subject.

Other applications of polyhedra and their faces arise in formal verification, in
which passing from a representation by inequalities to a representation as the con-
vex hull of finitely many points and vice versa, is a critical computational step. The
correctness analysis of the algorithms solving this problem, extensively relies on
the understanding of the mathematical structure of faces, in particular of vertices,
edges and facets (i.e. 1-co-dimensional faces).

In this paper, we formalize a significant part of the properties of faces in the
proof assistant Coq. As usually happens in the formalization of mathematics,
one of the key difficulties is to find the right representation for objects in the
proof assistant. For polyhedra and their faces, the choice of the representation
depends on the context. In more detail, every polyhedron admits infinitely many
descriptions by linear inequality systems. In mathematics textbooks, proofs are
carried out by choosing one (often arbitrary) inequality system for a polyhedron
P, and then manipulating the faces of P or other subsequent polyhedra through
inequality systems which derive from the one chosen for P. Proving that these
are valid inequality systems is usually trivial for the reader, but not for the
proof assistant. We exploit the so-called canonical structures of Coq in order
to achieve this step automatically. This allows us to obtain proof scripts which
only focus on the relevant mathematical content, and which are closer to what
mathematicians write.

Thanks to this approach, we show that the faces of a polyhedron P form
a finite lattice, in which the order is the set inclusion, the bottom and top
elements are respectively the empty set and P, and the meet operation is the set
intersection. We establish that the face lattice is both atomistic and coatomistic,
meaning that every element is the join (resp. the meet) of a finite set of atoms
(resp. coatoms). Atoms and coatoms respectively correspond to minimal and
maximal elements distinct from the top and bottom elements. Moreover, we
prove that the face lattice is graded, i.e. every maximal chain has the same
length. Finally, we show that the family of face lattices of polytopes (convex hulls
of finitely many points) is closed under taking sublattices, i.e. any sublattice of
the face lattice of a polytope is isomorphic to the face lattice of another polytope.
As a consequence of that, we prove that any sublattice of height two is isomorphic
to a diamond.

Formalizing these results requires the introduction of several important and
non-trivial notions. First of all, our work relies on the construction of a library
manipulating polyhedra, which provides all the basic operations over them,
including intersections, projections, convex hulls, as well as special classes of
polyhedra such as affine subspaces. Dealing with faces also requires to formalize
the dimension of a polyhedron, and its relation with the dimension of its affine
hull, i.e. the smallest affine subspace containing it. Some classes of faces also
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retain a particular attention, such as vertices, edges and facets. For instance, we
formalize the vertex figure, which is a geometric construction to manipulate the
faces containing a fixed vertex.

Throughout this work, we have drawn much inspiration from the textbooks
of Schrijver [24] and Ziegler [28] to guide us in our approach. The source code
of our formalization is done within the Coq-Polyhedra project, and is available
at https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020, in the
directory theories. We rely on the Mathematical Components library [18]
(abridged MathComp thereafter) for basic data structures such as finite sets,
ordered fields, and vector spaces.

The paper is organized as follows. In Sect. 2, we present how we define the
basic operations and constructions over polyhedra. Section 3 deals with the cen-
tral problem of finding an appropriate representation of faces, and explains how
this leads to a seamless formalization of important properties like the dimension.
Section 4 demonstrates the practical usability of our approach, by presenting the
formalization of the face lattice and its main characteristics. Finally, we discuss
related work in Sect. 5. A link to the relevant source files is given beside section
titles in order to help the reader finding the results in the source code of the
formalization.

2 Constructing a Library Manipulating Polyhedra

2.1 The Quotient Type of Polyhedra1,2

We recall that a (convex) polyhedron of Rn is defined as the intersection of finitely
many halfspaces {x ∈ R

n : 〈α, x〉 ≥ β}, where α ∈ R
n, β ∈ R, and 〈·, ·〉 is the

Euclidean scalar product, i.e. 〈y, z〉 :=
∑

1≤i≤n yizi. Equivalently, a polyhedron
can be represented as the solution set of a linear affine system Ax ≥ b, where
A ∈ R

m×n and b ∈ R
m, in which case each inequality Aix ≥ bi corresponds to a

halfspace.
Throughout the paper, we use the variable n : nat to represent the dimen-

sion of the ambient space. Instead of dealing with polyhedra over the reals, we
introduce a variable R : realFieldType which represents an abstract ordered field
with decidable ordering. In this setting, 'cV[R]_n (or 'cV_n for short) stands for
the type of column vectors of size n over the field R.

As we mentioned earlier, the representation by inequalities (or halfspaces) of
a convex polyhedron P is not unique. The first step in our work is to introduce
a quotient structure, in order to define the basic operations (membership of a
point, inclusion, etc.) regardless of the exact representation of the polyhedron.
The quotient structure is based on a concrete type denoted by 'hpoly[R]_n (or
simply 'hpoly_n, when R is clear from the context). The prefix letter “h” is taken
from the terminology H-polyhedron or H-representation which is used to refer to

1 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
hpolyhedron.v.

2 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
polyhedron.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/hpolyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/hpolyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
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representations by halfspaces. The elements of 'hpoly_n are records consisting of
a matrix A ∈ R

m×n and a vector b ∈ R
m representing the system Ax ≥ b:

Record hpoly := HPoly { m : nat; A : 'M_(m,n); b : 'cV_m }.

We equip 'hpoly_n with a membership predicate stating that, given P : 'hpoly_n

and x : 'cV_n, we have x \in P if and only if x satisfies the system of inequalities
represented by P. Two H-polyhedra are equivalent when they correspond to the
same solution set, i.e. their membership predicate agree. We prove that this
equivalence relation is decidable, by exploiting the implementation of the simplex
method of [3]. The latter allows us to check that an inequality 〈α, x〉 ≥ β is valid
over an H-polyhedron P : 'hpoly_n by minimizing the linear function x �→ 〈α, x〉
over P, and checking that the optimal value is greater than or equal to β. Then,
deciding whether P Q : 'hpoly_n are equivalent amounts to checking that each
inequality in the system defining Q is valid over P, and vice versa.

The quotient structure is built following the approach of [10]. This introduces
a quotient type, denoted here by 'poly[R]_n (or simply 'poly_n). Its elements
are referred to as polyhedra and represent equivalence classes of H-polyhedra. In
practice, each polyhedron is a record formed by a canonical representative of
the class, and the proof that the representative is indeed the canonical one. We
point out that the notion of canonical representative has no special mathematical
meaning or structure.

We define the membership predicate of each P : 'poly_n as the membership
predicate of its canonical representative. As expected, equality between two poly-
hedra of 'poly_n and extensional equality (denoted =i below) of their membership
predicates are equivalent properties:

Lemma poly_eqP {P Q : 'poly_n} : (P = Q) <-> (P =i Q).

2.2 Operations over Polyhedra3

We first lift a number of basic primitives from the type 'hpoly_n to the quotient
type 'poly_n, including the subset relation P `<=` Q and the intersection oper-
ation P `&` Q. The related properties are also lifted by using the fact that the
membership predicate of any element of 'hpoly_n is extentionally equivalent to
the membership predicate of its equivalence class in 'poly_n.

Even though we now work on the quotient type, we still need a way to build
polyhedra from sets of inequalities. While H-polyhedra rely on inequality con-
straints under the matrix form, we choose now to be closer to the mathematical
definition of polyhedra as the intersection of finitely many halfspaces. To this
end, we introduce the type lrel[R]_n (or simply lrel_n when R is clear from the
context), which is isomorphic to the cartesian product 'cV_n * R of vectors of
size n and elements of R. This type is used to construct linear affine inequalities

3 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
polyhedron.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/polyhedron.v
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or equalities. In more detail, if e represents the pair (α, β) ∈ R
n × R, then the

polyhedron [hs e] corresponds to the halfspace 〈α, x〉 ≥ β:

Lemma in_hs (e : lrel_n) x : x \in [hs e] <-> ('[e.1,x] >= e.2).

Similarly, the element e is used to build a hyperplane denoted [hp e]:

Lemma in_hp (e : lrel_n) x : x \in [hp e] <-> ('[e.1,x] = e.2).

(In the last two statements, the terms e.1 and e.2 respectively stand for the first
and second component of the pair formed by e, while '[.,.] stands for the scalar
product between two vectors.)

We can now construct polyhedra defined by sets of inequalities. To this aim,
we use the type {fset lrel_n} of finite sets of elements of type lrel_n. Then,
given base : {fset lrel_n}, the polyhedron denoted by 'P(base) is defined as the
intersection of the halfspaces [hs e] for e \in base. In particular, we introduce
the empty polyhedron [poly0] and the full polyhedron [polyT], which are defined
by the inequality 1 ≤ 0 and by no inequality respectively. As we shall see in
Sect. 3, the formalization of faces requires us to manipulate polyhedra defined
by systems mixing inequalities and equalities. We denote such a polyhedron by
'P^=(base; I), where both base and I are of type {fset lrel_n}. It represents the
intersection of the polyhedron 'P(base) with the hyperplanes [hp e] for e \in I.

The cornerstone of more advanced constructions is the primitive proj0, which,
given P : 'poly_(n.+1), builds its projection on the last n components. This is
carried out by implementing Fourier–Motzkin elimination algorithm (see e.g. [24,
Chapter 12]). In short, this algorithm starts from a system of linear inequalities,
and constructs pairwise combinations of them in order to eliminate the first vari-
able. The result is that the new system is a valid representation of the projected
polyhedron. This is written as follows:

Theorem proj0P (P : 'poly_(n.+1)) :

reflect (exists2 y : 'cV_(n.+1), x = row' 0 y & y \in P) (x \in proj0 P).

where row' 0 y : 'cV_n is the projection of y on the last n components, and
reflect stands for a logical equivalence between the two properties. This projec-
tion primitive then allows us to construct many more polyhedra. For example,
we can build the image of a polyhedron P by the linear map represented by
a matrix A ∈ R

k×n. The latter is obtained by embedding P in a polyhedron
over the variables (x, y) ∈ R

n+k, intersecting it with the equality constraints
y = Ax, and finally projecting it on the last k components. The construction of
the convex hull of finitely many points immediately follows. Indeed, the convex
hull of a finite set V = {v1, . . . , vp} ⊂ R

n can be defined as the image of the
simplex Δp := {μ ∈ (R≥0)p :

∑p
i=1 μi = 1} by the linear map μ �→ ∑p

i=1 μiv
i.

We denote the convex hull by conv V where V : {fset 'cV_n} represents a finite
set of points, and we obtain (cf. Lemma in_convP) that x \in conv V if and only
if x is a barycentric combination of the points of V. The convex hull constructor
yields some other elementary yet very useful constructions, such as polyhedra
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Fig. 1. A polyhedron, defined by the inequalities on the right, and its faces. The vertices
(0-dim. faces) are represented by blue dots, while the edges (1-dim. faces) are depicted
in black. Arrows correspond to linear functions associated with some of the faces, in the
sense of Definition 1. We also indicate beside them the set I of the defining inequalities
turned into equalities, as in Theorem 1. (Color figure online)

reduced to a single point (denoted [pt x] where x : 'cV_n) or segments between
two points (denoted [segm x; y] where x y : 'cV_n).

Finally, we recover some important results of the theory of polyhedra which
were proved in [3]. In more detail, we lift a version of Farkas Lemma expressed
on the type 'hpoly_n, and then obtain the Strong Duality Theorem, the com-
plementary slackness conditions (which are conditions characterizing the opti-
mality of solutions of linear programs), and some separation results. We refer to
Section Separation and Section Duality for further details on these statements.

3 Representing Faces of Polyhedra4

3.1 Equivalent Definitions of Faces

Faces are commonly defined as sets of optimal solutions of linear programs,
i.e. problems consisting in minimizing a linear function over a polyhedron.

Definition 1. A set F is a face of the polyhedron P ⊂ R
n if F = ∅ or there

exists c ∈ R
n such that F is the set of points of P minimizing the linear function

x �→ 〈c, x〉 over P.

We note that P is a face of itself (take c = 0). Figure 1 provides an illustration
of this definition.

In formal proving, the choice of the definition plays a major role on the abil-
ity to prove complex properties of the considered objects. A drawback of the
previous definition is that it does not directly exhibit some of the most basic
properties of faces: for instance, the fact that a face is itself a polyhedron, the
fact that the intersection of two faces is a face, or the fact that a polyhedron
4 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/

poly_base.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
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has finitely many faces. In contrast, these properties are straightforward conse-
quences of the following characterization of faces:

Theorem 1. Let P = {x ∈ R
n : Ax ≥ b}, where A ∈ R

m×n and b ∈ R
m. A set

F is face of P if and only if F = ∅ or there exists I ⊂ {1, . . . , m} such that

F = P ∩ {x ∈ R
n : Aix = bi for all i ∈ I}. (1)

Nevertheless, Theorem 1 is expressed in terms of a certain H-representation of
the polyhedron P, while the property of being a face is intrinsic to the set P.
This raises the problem of exploiting the most convenient representation of P to
apply the characterization of Theorem 1. We illustrate this on the proof of the
following property, which is used systematically (or even implicitly) in almost
every proof of statements on faces:

Proposition 1. If F is a face of P, then any face of F is a face of P.

Assume P is represented by the inequality system Ax ≥ b, and take I as in (1).
Let F ′ be a nonempty face of F . We apply Theorem 1 with F as P, by using the
following H-representation of F : Ax ≥ b and −Aix ≥ −bi for i ∈ I. We get that
F ′ = F ∩ {x ∈ R

n : Aix = bi for all i ∈ I ′} for a certain set I ′ ⊂ {1, . . . ,m}. We
deduce that F ′ = P ∩{x ∈ R

n : Aix = bi for all i ∈ I ∪I ′}, and conclude that F ′

is a face of P by applying Theorem 1. While the choice of the H-representation
of P is irrelevant, we point out that the proof would not have been so immediate
if we had initially chosen an arbitrary H-representation of F .

3.2 Working Within a Fixed Ambient H-Representation

Theorem 1 leads us to the following strategy: when dealing with the faces of
a polyhedron, and possibly with the faces of these faces, etc., we first set an
H-representation of the top polyhedron, and then manipulate the subsequent H-
representations of faces in which some inequalities are strengthened into equali-
ties, like in (1).

The top H-representation will be referred to as the ambient representation,
and is formalized as a term base of type {fset lrel_n} representing a finite set of
inequalities. Then, we introduce the type {poly base}, which corresponds to the
subtype of 'poly_n whose inhabitants are the polyhedra Q satisfying the following
property:

Definition has_base base Q :=

(Q != [poly0]) -> exists I : {fsubset base}, Q = 'P^=(base; I).

where {fsubset base} is the type of subsets of base. We recall that 'P^=(base; I)

denotes the polyhedron defined by the inequalities in base, with the additional
constraint that the inequalities in the subset I are satisfied with equality. This
means that {poly base} corresponds to the polyhedra defined by equalities or
inequalities in base. The choice of the name base is reminiscent of the terminology
used in fiber bundles. Indeed, as we shall see in the next sections, several proofs
will adopt the scheme of fixing a base locally, and then working on polyhedra
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of type {poly base}. Following this analogy, the latter may be thought of as a
fiber.

We now present a first formalization of the set of faces relying on the subtype
{poly base}:

Definition pb_face_set (P : {poly base}) :=

[set Q : {poly base} | Q `<=` P].

It defines the set of faces of P : {poly base} as the set of elements of {poly base}

contained in P. With this definition, some properties of faces come for free. For
instance, the finiteness of the set of faces follows from the fact that there are only
finitely many inhabitants of the type {fsubset base}, and subsequently of {poly

base}. Another example is that Proposition 1 straightforwardly derives from the
transitivity of the inclusion relation `<=`.

Some other properties come at the price of proving that a polyhedron inhab-
its the type {poly base}. As an example, if P : {poly base} and c : 'cV_n, the
polyhedron argmin P c : 'poly_n is defined as the set of points of P minimizing
the function fun x => '[c,x]. Showing that argmin P c is a face of P essentially
amounts to proving the following property:

Lemma argmin_baseP (P : {poly base}) c : has_base base (argmin P c).

Indeed, the inclusion argmin P c `<=` P is immediate from the definition of the
polyhedron argmin P c. However, even once Lemma argmin_baseP is proved, we
cannot yet write a statement of the form argmin P c \in pb_face_set P due to
the fact that argmin P c has type 'poly_n. In order to turn it into an element
of the subtype {poly base}, we need to explain in more detail how this type is
defined. The type {poly base} is a short-hand notation for the following inductive
type:

Inductive poly_base base :=

PolyBase { pval :> 'poly_n ; _ : has_base base pval }.

In other words, an element of type {poly base} is a record formed by an element
pval : 'poly_n and a proof that the property has_base base pval holds. While we
could construct the element PolyBase (argmin_baseP P c), we introduce a more
general scheme to cast elements of type 'poly_n to {poly base} whenever possible.
This scheme relies on Coq canonical structures, which provide an automatic
way to recover a term of record type from the head symbol. The association is
declared as follows:

Canonical argmin_base (P : {poly base}) c := PolyBase (argmin_baseP P c).

One restriction of Coq is that canonical structures are resolved only when unify-
ing types, and not arbitrary terms. This is why our primitive poly_base_of, which
casts a Q : 'poly_n to a {poly base}, encapsulates the value Q in a phantom type,
i.e. a type isomorphic to the unit type, but with a dependency to Q.
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Definition poly_base_of (Q : {poly base}) (_ : phantom 'poly_n Q) := Q.

Notation "Q %:poly_base" := (poly_base_of (Phantom _ Q)).

In consequence, writing (argmin P c)%:poly_base triggers the unification algo-
rithm between the term argmin P c and a value of type {poly base}, which is
resolved using the Canonical declared above. We finally end up with the follow-
ing statement

Lemma argmin_pb_face_set base (P : {poly base}) c :

(argmin P c)%:poly_base \in pb_face_set P.

whose proof is trivial: it just amounts to proving the inclusion argmin P c `<=` P.
We declare other canonical structures over elementary constructions for

which the property has_base base _ can be shown to be satisfied. This includes
the intersection P `&` Q of two elements P Q : {poly base}, the empty set [poly0

], or polyhedra of the form 'P(base) or 'P^=(base; .). This allows us to cast com-
plex terms to the type {poly base}, or, said differently, to prove automatically
that they satisfy the property has_base base _. As an example, the term

('P^=(base; I) `&` argmin 'P(base) c)%:poly_base

typechecks thanks to multiple resolutions of canonical structures on the afore-
mentioned declarations, without requiring extra proof from the user. We refer
to [21] for the use of canonical structures in formal mathematics.

We point out that Lemma argmin_pb_face_set is a proof of one side of the equiv-
alence between the definition of faces brought by pb_face_set and Definition 1
(i.e. the equivalence in Theorem 1). The other side can be written as follows:

Theorem pb_faceP base (P Q : {poly base}) :

Q \in pb_face_set P -> Q != [poly0] ->

exists c, Q = (argmin P c)%:poly_base.

When Q is nonempty, we use a set I such that Q = 'P^=(base, I), and we build c

as the sum of the vectors -e.1 : 'cV_n for e \in I. The equality Q = argmin P c

follows from a routine verification of the complementary slackness conditions.

3.3 Getting Free from Ambient Representations

So far, we have worked with a fixed ambient representation base, and restricted
the formalization of faces to polyhedra that can be expressed as terms of type
{poly base}. We now describe how to formalize the set of faces of any polyhedron
of type 'poly_n as a finite set of polyhedra of the same type, without sacrificing
the benefits brought by {poly base}.

First, we exploit the observation that for each polyhedron P : 'poly_n, there
exists base : {fset lrel_n} and P' : {poly base} such that P = pval P' (recall
that pval also stands for the coercion from the type {poly base} to 'poly_n).
This can be proved by exploiting the definition of the quotient type 'poly_n.
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Indeed, P admits a representative hrepr P : 'hpoly_n corresponding to a certain
H-representation, from which we can build a term base : {fset lrel_n} such
that P = pval 'P(base)%:poly_base.

Second, we introduce another quotient structure over the type 'poly_n, in
order to deal with the fact that a polyhedron may correspond to several ele-
ments of type {poly base} for different values of base. Our construction amounts
to showing that 'poly_n is isomorphic to the quotient of the dependent sum type∑

base {poly base} by the equivalence relation in which Q1 : {poly base1} and
Q2 : {poly base2} are equivalent if pval Q1 = pval Q2. Given a polyhedron P of
type 'poly_n, this construction provides us a canonical ambient representation
denoted \repr_base P : {fset lrel_n}, and an associated canonical representa-
tive \repr P of type {poly (\repr_base P)} satisfying P = pval (\repr P).

We are now ready to define the set of faces of P in full generality:

Definition face_set (P : 'poly_n) :=

[fset (pval F) | F in pb_face_set (\repr P)]%fset.

which corresponds to the image by the coercion pval of the face set of \repr P

(here, pval has type {poly (\repr_base P)} -> 'poly_n). Of course, we need to
check that this definition is independent of the choice of the representative of P

in this new quotient structure. This is written as follows:

Lemma face_set_morph (base : {fset lrel_n}) (P : {poly base}) :

face_set P = [fset pval F | F in pb_face_set P]%fset.

The proof relies on the geometric properties of the elements of pb_face_set estab-
lished in Sect. 3.2. Indeed, they imply that, regardless of the choice of the ambi-
ent representation, the set [fset pval F | F in pb_face_set P] always consists
of the empty set [poly0] and the polyhedra of the form argmin P c.

Now that this architecture is settled, we can prove some of the basic proper-
ties of faces. Most of the proof make use of the following elimination principle:

Lemma polybW (Pt : 'poly_n -> Prop) :

(forall (base : {fset lrel_n}) (Q : {poly base}), Pt Q) ->

(forall P : 'poly_n, Pt P).

which means that, given a property to be proved on any polyhedron P : 'poly_n,
it is sufficient to prove it over the type {poly base} for any choice of base. In
practice, Lemma polybW is used to introduce an ambient representation. Let us
illustrate it on the proof that the intersection of two faces of P is a face of P:

Lemma face_set_polyI (P Q1 Q2 : 'poly_n) :

Q1 \in face_set P -> Q2 \in face_set P -> Q1 `&` Q2 \in face_set P.

Proof.

elim/polybW: P => base P.

case/face_setP => {}Q1 Q1_sub_P.

case/face_setP => {}Q2 Q2_sub_P.

by rewrite face_setE ?(poly_subset_trans poly_subsetIl) ?pvalP.

Qed.
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The first line destructs P, and introduces the ambient representation base and an
element still named P, now of type {poly base}. The second and third lines suc-
cessively consume the assumptions that Q1 and Q2 are faces, then introduce two
elements of type {poly base} having the same name and respectively satisfying
Q1 `<=` P and Q2 `<=` P. Finally, the tactics rewrite face_setE replaces the goal
Q1 `&` Q2 \in face_set P by the following two subgoals: Q1 `&` Q2 `<=` P and
has_base base (Q1 `&` Q2). Since (Q1 `&` Q2) `<=` Q1 and Q1 `<=` P, the former
is proved by transitivity of the subset relation. The latter is automatically pro-
vided by the canonical structure mechanism described in Sect. 3.2, triggered by
the generic statement

Lemma pvalP base (P : {poly base}) : has_base base P.

3.4 From Faces to the Affine Hull and Dimension

We argue that the approach that we have introduced to represent faces of poly-
hedra also perfectly fits the formalization of the affine hull and dimension of
polyhedra. Recall that the affine hull of a polyhedron refers to the smallest
(inclusionwise) affine subspace of R

n containing it, and the dimension of the
polyhedron is defined as the dimension of this subspace (i.e., the dimension of
the underlying vector subspace).

To this end, given an ambient representation base and a polyhedron P of
type {poly base}, we introduce the set of active inequalities of P, i.e. the set of
e \in base such that the corresponding inequality is satisfied as equality over P.
This is written as the inclusion P `<=` [hp e] (recall that [hp e] is the hyper-
plane '[e.1, x] = e.2). The active inequalities form a subset of base denoted
{eq P}. Equivalently, when P is non-empty, {eq P} corresponds to the largest
(inclusionwise) subset I such that P = 'P^=(base; I).

It is a classic property of polyhedra that the affine hull of a non-empty poly-
hedron is the affine subspace defined by the equalities in {eq P}. We take this
property as a definition:

Definition pb_hull base (P : {poly base}) :=

if P != [poly0] then affine << {eq P} >> else [poly0].

Definition hull (P : 'poly_n) := pb_hull (\repr P).

The second definition lifts the affine hull from {poly base} to 'poly_n. Of course,
we show that the resulting affine subspace hull P is independent of the choice
of base (cf. Lemma hullE). We establish that this definition is correct w.r.t. the
usual mathematical definition discussed above, i.e.:

Lemma hullP P U : (P `<=` affine U) <-> (hull P `<=` affine U).

Here, U corresponds to a vector subspace of lrel_n, and the term affine U stands
for the affine subspace given by the intersection of the affine equalities repre-
sented by the elements of U. (The term << {eq P} >> above corresponds to the
vector subspace spanned by the elements of {eq P}.)
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We follow the same scheme to formalize the dimension dim P of a polyhedron
P : 'poly_n, which we define as one plus the co-dimension of the vector span of
{eq P}. The shift by one originates from the fact that dim P ranges over the type
nat of natural numbers. Therefore, we have to set the dimension of the empty
set [poly0] to 0, while it is common to set it to −1 in the literature. As expected,
we obtain the following statement:

Lemma dim_hull (P : 'poly_n) : dim P = dim (hull P).

Like in mathematics textbooks, Lemma dim_hull is the natural way to establish the
basic statements concerning the dimension, i.e. by reducing to elementary proofs
over vector spaces. For instance, we establish that the dimension is monotone
(Lemma dimS), and compute the dimension for important classes of polyhedra.
This includes the fact that segments of two distinct points have dimension 2

(remember the shift by one of our formalization):

Lemma dim_segm (x y : 'cV_n) : dim [segm x; y] = (x != y).+1.

and that, conversely, any compact polyhedron of dimension 2 is a segment of
two points:

Lemma dim2P (P : 'poly_n) : compact P -> dim P = 2 ->

exists x, exists2 y, P = [segm x; y] & x != y.

(We point out that compact P is simply defined as the fact that P is a bounded
set, as polyhedra are topologically closed.) Similarly, we prove that polyhedra
reduced to a single point are precisely the ones having dimension 1, that proper
hyperplanes have codimension 1, etc. We refer to Section Dimension for a detailed
account of our results.

4 The Face Lattice5

In this section, we illustrate how the framework that we have introduced in
Sect. 3 serves as a foundation for formalizing the structural properties of faces.
We refer to Fig. 2 for an example of the properties presented below.

At the core of the formalization lies the theory of ordered structures such as
partial orders, semilattices and lattices. Some of these structures have been very
recently introduced in the MathComp library – for instance, the non-distributive
lattice structure has been introduced in early 2020. However, as we shall see in
this section, the formalization of the face lattice requires to implement additional
objects, such as graded lattices, sublattices, and lattice homomorphisms. This
development is gathered in the module xorder.v of the Coq-Polyhedra project.

The first property that we can immediately formalize following the results of
Sect. 3 is the finite lattice structure over the set face_set P for P : 'poly_n. The

5 https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/
poly_base.v.

https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
https://github.com/Coq-Polyhedra/Coq-Polyhedra/tree/IJCAR-2020/theories/poly_base.v
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Fig. 2. A three-dimensional polytope (left) and the Hasse diagram of its face lattice
(right). A interval of height 2 is depicted in blue. (Color figure online)

partial order is given by the polyhedron inclusion `<=`, the meet operator is the
intersection `&` (as a consequence of Lemma face_set_polyI), while the bottom
and top elements are respectively [poly0] and P. As a finite lattice, the join
operator Q `|` Q' can be built as the meet of all the faces of P containing both
Q and Q'.

4.1 Facets and Gradedness

Recall that a lattice (L,≺) is said to be graded if there exists a rank function
Φ: L → N such that: (i) Φ(u) < Φ(v) whenever u ≺ v, (ii) u � v and Φ(u)+1 <
Φ(v) implies that there exists w ∈ L satisfying u ≺ w ≺ v. Equivalently, this is
a lattice in which all maximal chains have the same length.

In the case of the face lattice, the rank function can be defined as the dimen-
sion of the face. Property (i) is proved as follows. If Q and Q' are both faces of
P and Q `<` Q', then dim Q <= dim Q', as the dimension is monotone. Moreover,
hull Q `<=` hull Q'. If we assume dim Q = dim Q', then we can prove that hull

Q is equal to hull Q' (as affine subspaces of the same dimension). We conclude
that Q = Q' by the fact that F = P `&` hull F for any face F of P.

The proof of Property (ii) (see Lemma graded) relies on the formalization of
facets of polyhedra, and their combinatorial characterization in terms of active
inequalities. We recall that a facet of a non-empty polyhedron P is a face of
P of dimension dim P − 1. A classical result states that when P is given by
a non-redundant system of inequalities Ax ≥ b (i.e. the H-representation is
minimal inclusionwise), the facets are precisely the polyhedra of the form P∩{x ∈
R

n : Aix = bi} for any i such that P �⊂ {x ∈ R
n : Aix = bi}. The formalization

of this statement first goes through the construction of non-redundant bases for
any polyhedron, and the proof of the following elimination principle:
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Lemma non_redundant_baseW (Pt : 'poly_n -> Prop) :

(forall base, non_redundant base -> Pt 'P(base)%:poly_base) ->

(forall P : 'poly_n, Pt P).

This allows to specialize P to a polyhedron of the form 'P(base) where base is a
minimal set of inequalities defining P. Using the techniques of Sect. 3, we switch
to a proof environment dealing with polyhedra in {poly base}, and establish that
the facets of P are precisely the polyhedra of the form 'P^=(base; [fset i]) for
i \notin {eq P} (where [fset i] is the singleton consisting of i). We refer to the
statements Lemma dim_facet and Lemma facetP for the exact description.

Going back to the description of the proof of Property (ii), we assume that
Q and Q' are two faces of P satisfying Q `<=` Q' and (dim Q).+1 < dim Q'. We
first consider the case where Q' = P. Since Q `<` P, we can pick an element i

in {eq Q} but not in {eq P}, and verify that the facet F := 'P^=(base; [fset i])

satisfies Q `<` F `<` P. The general case where Q' is a proper face of P is handled
by using the fact that Q \in face_set P and Q `<=` Q' ensures that Q is a face of
Q' (see Lemma face_set_of_face).

4.2 Vertices, Atomicity and Coatomicity

The atoms of a lattice L are the elements u ∈ L\{⊥} such that there is no v ∈ L
satisfying ⊥ ≺ v ≺ u, where ⊥ denotes the bottom element of L. In the face
lattice of a polyhedron P, they correspond to the faces F of P such that dim F = 1,
i.e. to the vertices of P (remember the shift by one of our formalization). This
motivates the introduction of the vertex set of P, which satisfies the following
two characteristic properties:

Lemma in_vertex_setP (P : 'poly_n) x :

(x \in vertex_set P) <-> ([pt x] \in face_set P).

Lemma face_dim1 (P Q : 'poly_n) : Q \in face_set P -> dim Q = 1 ->

exists2 x, Q = [pt x] & x \in vertex_set P.

A central property is that if P is compact, then it coincides with the convex hull
of its vertices:

Theorem conv_vertex_set (P : 'poly_n) :

compact P -> P = conv (vertex_set P).

Remark that this shows that any compact polyhedron is a polytope. Together
with the converse statement (Lemma compact_conv in polyheron.v), this brings a
proof of Minkowski Theorem.

The latter result allows us to prove that, when P is compact, its face lattice
is atomistic, meaning that any face of P is the join of a finite set of atoms:

Lemma atomisticP (Q : face_set P) :

reflect (exists2 S, (forall x, x \in S -> atom x) & Q = \join_(x in S) x)

(atomistic Q).

Lemma face_atomistic (Q : face_set P) : atomistic Q.
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To prove this statement for Q, we set S to the set of vertices of Q. The latter
are vertices of P as well, and thus correspond to atoms of the face lattice of
P. The inclusion Q `<=` \join_(x in vertex_set Q) x is established by substitut-
ing Q by conv (vertex_set Q) thanks to Lemma conv_vertex_set, which makes the
statement obvious by construction of the convex hull and the join operator. The
opposite inclusion Q `>=` \join_(x in vertex_set Q) x is trivial by property of
the join operator, and this concludes the proof.

The coatoms of L are defined dually: these are the elements u ∈ L\{�} such
that there is no v ∈ L satisfying u ≺ v ≺ �, where � denotes the top element of
L. The coatomicity of face_set P means that any face of P is the intersection of
facets of P. Our proof exploits the characterization of facets presented in Sect. 4.1.
We refer to Lemma face_coatomistic for more details.

4.3 Closedness Under Taking Sublattices

The closedness under sublattices of the face lattices of polytopes states that if
Q and Q' are two faces of a polytope P such that Q `<=` Q', then the interval
'[< Q; Q' >], i.e. the sublattice formed by the faces F : face_set P satisfying
Q `<=` F `<=` Q', is isomorphic to the face lattice of a polytope of dimension
dim Q' - dim Q.

The interest of this property is that it allows involved induction schemes
on the height of the face lattice. As an example, we can establish the so-called
diamond property, namely that every sublattice of height 2 of the face lattice

consists of precisely four faces ordered as . Equivalently, this means that for

any two faces F and F ′ of a polytope P such that dim F ′ = dimF+2 and F ⊂ F ′,
there are precisely two faces between them (see Lemma diamond for the statement,
and Fig. 2 for an illustration). The proof exploits the closedness by sublattices,
and the subsequent isomorphism of any interval of height 2 with the face lattice
of a polytope P' verifying dim P' = 2. Lemma dim2P reduces it to the face lattice
of a segment [segm x; y], which is given by the following characterization:

Lemma face_set_segm (x y : 'cV_n) :

face_set [segm x; y] = [fset [poly0]; [pt x]; [pt y]; [segm x; y]].

The proof of the closedness by sublattices is done as follows. First, we reduce
to the case where Q' = P, since the face lattice of Q' is isomorphic to the sublattice
of the faces of P contained in Q'. We are left with the following statement:

Lemma closed_by_interval_r (Q : face_set P) :

exists (P' : 'compact_poly_n) (f : {omorphism '[< Q; P >] -> face_set P'}),

bijective f.

The proof is done by induction on the dimension of Q. We restrict the exposition
to the base case dim Q = 1, i.e. when Q corresponds to a vertex x of P, since
the general case is just handled by iterating the process. When dim Q = 1, the
construction of the polyhedron P' is achieved by the vertex figure method. It
consists in slicing the polytope P with a hyperplane [hp e] separating the vertex



200 X. Allamigeon et al.

x

P
H

P

Fig. 3. The vertex figure construction, illustrated on the vertex x of the polytope P.
The hyperplane H (light blue) separates x from the other vertices of the polytope.
In the sliced polytope P ′, the vertices (green) and edges (blue) are respectively in
one-to-one correspondence with the edges and facets of P containing x. (Color figure
online)

x from the other vertices (see Fig. 3 for an illustration). We define P' as the
sliced polytope. It has dimension (dim P)-1, and its face lattice can be shown to
be isomorphic to the sublattice '[< [pt x]; P >]. Once again, the isomorphism
is proved by exposing the polyhedron P to the subtype {poly base} for some
ambient representation base, and reducing to basic manipulations of sets {eq _}

of active inequalities of faces. Interestingly, two distinct ambient representations
are used in the proof: base for the original polytope P, and its union e +|` base

with the singleton {e} for the sliced polytope P'. Our use of canonical structures
still applies to this setting, and provides the proof that any face of P sliced
with the hyperplane [hp e] writes down over the base e +|` base of the sliced
polytope P'.

5 Related Work

Many software developments related with convex polyhedra have been motivated
by applications to formal verification. Several libraries have been developed for
this purpose, e.g. [4,20], and, despite being informal, it is worth noting that
they are also used by mathematicians to perform computation over polyhedra
and polytopes, for instance in [16,27]. Initiatives on the development of formally
verified polyhedral algorithms are more recent. The works of [26] and [8] in
Isabelle/HOL aim at providing a formally proven yet practical and efficient algo-
rithm to decide linear rational arithmetic for SMT-solving. The Micromega tac-
tics [5] relies on polyhedra to prove automatically arithmetic goals over ordered
rings in Coq. The Verified Polyhedral Library [9,15] targets abstract interpre-
tation, and brings the ability to verify polyhedral computations a posteriori in
Coq.

There are far fewer developments focusing on formal mathematics. Euler for-
mula, which relates the number of vertices, edges and facets of three-dimensional
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polytopes, has been proved in [14] in Coq and in [1] in Mizar. The generalization
to polytopes in arbitrary dimension, namely Euler–Poincaré formula, has been
formally proved in HOL-Light [19], together with several intermediate proper-
ties of polyhedra and faces. In the intuitionistic setting, we are not aware of any
work concerning faces and their properties. We point out that Fourier–Motzkin
elimination has been formalized in Coq by [22].

6 Conclusion and Future Work

In this work, we have formalized a substantial part of the theory of polyhedra
and their faces, which has allowed us to obtain some of the essential properties of
face lattices. Beyond the mathematical results formally proven, a special atten-
tion has been paid to the usability of the library. This goes through a mechanism
to bring the right representation of faces according to the context, and the auto-
matic proof that these representations are valid thanks to the use of canonical
structures.

This foundational work opens several perspectives. First, it has raised that an
important development over ordered structures is still needed, in particular for
the manipulation of ordered substructures such as sublattices, and the interplay
between them through morphisms. The formalization of finite groups and sub-
groups in [17] may provide a possible source of inspiration to solve this problem.
Second, there are many other interesting properties in relation with polyhedra
and their faces to be formalized, such as getting upper bounds on the diameter
of polytopes, or more generally, on the number of faces (the so-called f-vector
theory). However, beyond the interest of formalizing already known mathemati-
cal results, we are even more interested in using proof assistants to help getting
new ones. We think of mathematical results relying on computations that are
not accessible by hand. To this extent, we aim at providing a way to compute
with the objects introduced in this work, directly within the proof assistant, and
to introduce all the needed mechanisms for the design and development of large
scale reflection tactics. A basic goal is to compute the face lattice (or part of
it) of a polyhedron defined by a set of inequalities. This requires us to formalize
some algorithms based on faces, and to find a way to execute them on efficient
data structures, in the spirit of the approach of [11].

Acknowledgments. We are grateful to Assia Mahboubi for helpful discussions on
the subject. We thank the anonymous reviewers for their detailed comments and their
suggestions to improve the presentation of the paper.
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