
TeaMPI—Replication-Based Resilience
Without the (Performance) Pain

Philipp Samfass1(B), Tobias Weinzierl2, Benjamin Hazelwood2,
and Michael Bader1

1 Technische Universität München, 85748 Garching, Germany
{samfass,bader}@in.tum.de

2 Computer Science, Institute for Data Science, Durham University,
DH13LE Durham, Great Britain

tobias.weinzierl@durham.ac.uk, ben.hazelwood@featurespace.co.uk

Abstract. In an era where we can not afford to checkpoint frequently,
replication is a generic way forward to construct numerical simulations
that can continue to run even if hardware parts fail. Yet, replication often
is not employed on larger scales, as näıvely mirroring a computation
once effectively halves the machine size, and as keeping replicated simu-
lations consistent with each other is not trivial. We demonstrate for the
ExaHyPE engine—a task-based solver for hyperbolic equation systems—
that it is possible to realise resiliency without major code changes on the
user side, while we introduce a novel algorithmic idea where replica-
tion reduces the time-to-solution. The redundant CPU cycles are not
burned “for nothing”. Our work employs a weakly consistent data model
where replicas run independently yet inform each other through heart-
beat messages whether they are still up and running. Our key perfor-
mance idea is to let the tasks of the replicated simulations share some
of their outcomes, while we shuffle the actual task execution order per
replica. This way, replicated ranks can skip some local computations and
automatically start to synchronise with each other. Our experiments with
a production-level seismic wave-equation solver provide evidence that
this novel concept has the potential to make replication affordable for
large-scale simulations in high-performance computing.

1 Introduction

Supercomputing roadmaps predict that machines soon will suffer from hardware
unreliability [11]. A linear correlation between system size and the number of
failures has already been observed [27], as effects alike bias temperature insta-
bilities or hot carrier injection diminish the mean time between failures (MTBF)
for the individual components. For the next generation of machine sizes, a pre-
served or reduced MTBF however implies that codes have to be prepared for
parts of the machine going down unexpectedly, either through hard errors or
soft errors corrupting the code’s state. Alternatively, parts might become unac-
ceptably slow as hardware or software error correction [22] step in. We thus need
c© Springer Nature Switzerland AG 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 455–473, 2020.
https://doi.org/10.1007/978-3-030-50743-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_23


456 P. Samfass et al.

resilient codes. Numerical simulations will have to be at the forefront here. With
their massive concurrency going full speed and their strong causal dependencies
between intermediate results they are vulnerable to hardware failures.

For numerical simulations, we distinguish three strategies to inject resilience:
(i) Codes can be prepared algorithmically to recover from drop-outs of compute
nodes. (ii) Codes can checkpoint and restart if hardware fails. (iii) Codes can
run computations redundantly.

The first variant works only if the underlying problem allows us to recover
information even if data is “lost”. Elliptic equations fall into this category: If
we know the solution around a region that has dropped out, we can reconstruct
the solution within the domain [1,17]. Another example for algorithmic recovery
is the combination technique, where a drop-out of some data might (slightly)
reduce the solution accuracy but the overall algorithm can cope with it [18]. In
both cases, the numerical scheme itself has to be resiliency-ready.

Checkpointing works more in a black-box fashion, but the time to write a
checkpoint has to be significantly smaller than the MTBF. We also have to be
willing to spend CPU cycles and energy on I/O, which typically is costly [15].
For in-memory checkpointing which mitigates the speed and energy penalty, we
need “spare” storage. As checkpoints are costly one way or the other, partial
checkpoint-restart is a must. Containment domains [9] for example ask the pro-
grammer to decompose the application into task-similar constructs with manual
state preservation, error detection and recovery. Some tasking runtime systems
such as ParSEC [4] provide a framework for the “automatic” re-execution of
task sub-graphs in combination with checkpointing. A sophisticated example for
checkpointing is to run the recalculation with a different numerical scheme [22].
This realises a hybrid between an algorithmic approach and checkpoints.

If algorithmic resiliency is not at hand and checkpointing cannot be afforded,
replication of work, i.e., data redundancy, is the prime solution. If a node or
memory drops out, we simply swap in the replicated data. Cloud computing,
sensor networks, desktop grids, peer-to-peer networks, and almost every other
field that requires resilient computations [5] base their fault tolerance upon the
idea of replicating resources. Capability high-performance computing (HPC) in
contrast tends not to use replication. If we duplicate a computation, we effec-
tively half the machine—which renders the prime character of capability com-
puting absurd. Since supercomputers however tend to become so ill-balanced
w.r.t. I/O capabilities vs. compute resources that we cannot afford to check-
point frequently, we will eventually be forced to employ replication nevertheless
[12,13,24]. We therefore need to reduce its pain.

Our paper introduces a novel idea to do so, together with a prototypical
implementation of team-based MPI replication, called teaMPI. We demonstrate
its potential for a high-order discontinuous Galerkin code for hyperbolic equa-
tion systems, i.e., a solver for which we are not aware of any straightforward
algorithmic resiliency strategy. Our approach relies on replication on the MPI
rank level. Each rank is replicated K times, while the simulation per rank is
phrased in tasks. A task is an atomic unit, i.e., it has a well-defined input and



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 457

output and, once it becomes ready, can be executed without any further depen-
dencies. To benefit from our techniques, codes need not be task-based only,
but the heavy workload should be phrased as tasks. Furthermore, we require
that tasks allow us to send their outcome via MPI, and they should have some
slack, i.e., should not be part of the critical path. That is, there is some freedom
to move their startup time around, without immediately penalising the overall
time-to-solution.

With such tasks, we can replicate each rank K times without a K× overhead
in compute time: We shuffle the task execution order per replication, i.e., we
make each rank process sets of ready tasks in a slightly different order. Further-
more, we let each rank offer its task outcomes to other replicas. Whenever a task
is about to be executed on a rank, this rank now can first check whether the task
outcome is already available from a replica. If so, it skips the execution. All tech-
niques affect the task runtime, i.e., can be invisible to the simulation [29]. To the
best of our knowledge, this is the first approach offering full simulation replica-
tion without a full multiplication of compute workload. It is thus a fundamental
contribution towards affordable replication-based resiliency in HPC.

While our paper focuses on speed of execution, we can detect certain hard
failures as well, using a concept called heartbeats. Since we keep redundant
copies of data, we could, similar to RAID systems, replace corrupt ranks. How-
ever, a discussion and presentation of such a swapping strategy is beyond the
scope of this paper. Furthermore, we do not yet link our work to MPI-based
run-through-stabilisation techniques [3,8,14], which inject further technical and
implementation difficulties. Finally, replication in HPC remains a double-edged
sword: While it offers fault-tolerance, it also requires to use more memory, net-
work bandwidth and compute units, i.e., CPU hours, per simulation run. Our
approach reduces the compute cost compared to näıve replication. We however
neglect the increased memory [2] and network stress. For many applications,
users will have to balance the replication-based resilience against these facets of
increased cost.

The remainder of the text is organised as follows: We establish our termi-
nology in Sect. 2 and sketch the replication mechanisms. Our core contribution
is the introduction of the task-based result sharing (Sect. 3) which eventually
reduces the workload per rank whenever results from a replica drop in on time.
The realisation and encapsulation of the whole idea is subject of discussion in
Sect. 4, before we study the method’s runtime implications (Sect. 5). A brief
conclusion and outlook in Sect. 6 wrap up the discussion.

2 Team-Based Resiliency with Heartbeats

We first introduce the terminology which underlies our algorithmic contributions.
The terminology is also adopted by our software teaMPI which realises the pro-
posed ideas. teaMPI plugs into the MPI standard profiling interface (PMPI).
By mapping physical ranks onto logical numbers and altering the MPI com-
municator size (number of ranks) exposed to SPMD user code, it transparently
reorganises and replicates MPI ranks in multiple teams:



458 P. Samfass et al.

Fig. 1. Illustration of a replication-based run with three teams, each hosting three
ranks. In the baseline code, ranks communicate only with their team members (solid
arrows), but they send heartbeats in regular time intervals to their replicas (dotted
arrows, only illustrated for the logical ranks 2).

Definition 1 (Team). All the ranks of an application (without any redun-
dancy) form a team. If we run a code with K-fold redundancy, the global set
of ranks is split into K teams. Each team consists of the same number of ranks,
sees only the ranks of its own team, and runs asynchronously from all the other
teams. Each team consequently hosts one application instance of its own.

With this definition, each rank belongs uniquely to one team. If there are K
teams, each rank has K − 1 replicas belonging to other teams. The teams are
completely autonomous, i.e., independent of the other teams, and therefore con-
sistent only in themselves: We run the code K times and each run completes all
computations and has all data. There is neither some kind of lockstepping nor
any data sharing in this baseline version of teaMPI.

With teaMPI, our team-based replication for SPMD is totally transparent:
An application neither does need to replicate data structures nor does it need to
be aware of the replication. Teams are formed from subsets of MPI ranks at the
simulation start-up. All subsequent communication calls to both point-to-point
and collective MPI routines are mapped by teaMPI to communication within
the teams. We work with both data and computation redundancy: Each team is
a complete application instance, and, due to SPMD, a send within team A from
rank r

(A)
1 to rank r

(A)
2 will have a matching send in team B from r

(B)
1 to r

(B)
2 .

Running an application with teaMPI logically means the same as using a
communicator decomposition and making each communicator run the whole
simulation. Teams do not have to be consistent all the time. They are weakly
consistent and fully asynchronous without added overhead for message consis-
tency checking. Instead of an in-built sanity check for MPI messages, we rely on
low-frequency consistency checks:

Definition 2 (Heartbeat).Each rank in each team issues a heartbeat after every
ΔtHB seconds. Heartbeats are sent to all replica of a rank (replication multicast)
and only carry the elapsed wall time since the last heartbeat. They are sent out in
a fire-and-forget fashion.



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 459

While all other MPI communication is restricted to intra-team only and
transfers data from the user space, heartbeats are simple non-blocking messages
exchanged between the replicas which do not carry any user data. We clearly
distinguish intra-team from inter-replica communication (Fig. 1). The latter is
hidden from the user code and is no arbitrary inter-team data exchange. It only
“couples” replicas. As mainstream HPC machines lack support for hard real-time
scheduling, we weaken the ΔtHB property: We launch a task which reschedules
itself all the time with a low priority and issues a heartbeat as soon as at least
ΔtHB seconds have expired since the last heartbeat task.

Definition 3 (Team divergence). A rank of a team diverges if the time in-
between two heartbeats increases compared to this in-between time in other teams.
A team diverges if at least one rank of this team diverges.

Divergence is a relative quantity. It results from a comparison of local in-between
times to the time stamps carried by arriving messages. If a rank is overbooked
with tasks and its heartbeat task thus is issued with Δt � ΔtHB, it is reason-
able to assume that any replica faces a similar delay of heartbeats as it “suffers”
from high workload, too. Divergence is also an observable property: A rank can
identify a slowing down replica, and a slow rank can identify itself as diverg-
ing by receiving faster heartbeats from other ranks. Finally, divergence is an
asynchronous property, as we use the timestamps written into the heartbeats to
compute in-between times. Local clocks do not have to be synchronised and we
try to eliminate MPI message delivery/progression effects.

Divergence nevertheless remains a statistic quantity: As we work in a multi-
tasking MPI+X environment, a single late heartbeat is not a reliable indicator
that a rank is suffering from errors or overheating and thus is going down. If
we observe divergence over a longer time span or define well-suited timeouts
ΔtHB ≥ Δttimeout, we can however spot failing ranks.

Each team does exactly the same calculations and thus eventually reaches
the same state, but the heartbeats run asynchronously on-top and do not impose
any synchronisation. They can identify that a rank is going down as it becomes
slower, or they can identify complete drop-outs. They are ill-suited to spot
data inconsistency. However, we hypothesize that data inconsistencies eventually
manifest in corrupted data and thus in the drop-out of a complete team; which
we can detect again.

Our transparent replication is similar to the one used in RedMPI, e.g. [16].
RedMPI and other replication models however enforce a strong consistency
model among replicated ranks, i.e., make all replicas have exactly the same
state subject to temporal shifts. Individual MPI messages are double-checked
against replicas for soft errors. This adds synchronisation. Strong consistency on
the message level furthermore becomes particularly challenging when wildcard
MPI receive operations are used. We avoid this cliff.

To constrain overhead, many approaches do not replicate data and compu-
tations automatically and persistently, but enable replication on-demand. The
ARRIA distributed runtime system, e.g. [28] schedules and replicates tasks based



460 P. Samfass et al.

Algorithm 1. Wrap around the task scheduler with task sharing: We plug into
the transition from a ready task into a running task and skip the execution
if a task is already available from another team. In return, we send out our
task results whenever we have processed a task locally. This is done through
a special teaMPI routine, since teaMPI’s user interface does not support inter-
team communication. We assume the application has equipped the task with
MPI serialisation/deserialisation routines.
1: function runTaskIfNotReceived(task t)
2: id ← computeUniqueID(t)
3: if database.contains(id) then � id computed by other team, reuse outcome
4: copy received outcome into task’s output buffers
5: free task outcome
6: database.delete(id)
7: else � id not yet in database
8: runTask(t)
9: send (id) plus task outcome to all replicas

10: end if
11: end function

on predictions about their probability of failure, while the work in [23] allows
to spawn resilient tasks that use either replicated execution or checkpointing for
resilience depending on the programmer’s choice. Our replication is persistent.

3 Task Sharing

teaMPI makes both data as well as all computations redundant. In order to
save compute time, we however propose an algorithm where teams exchange
outcomes of tasks.

Definition 4 (Shareable task). The tasks of interest for this paper have four
important properties: (i) They are compute-heavy, i.e., exhibit a high arithmetic
intensity. (ii) They are not a member of the critical path. We can delay their
execution once they are spawned by some time without slowing down the appli-
cation immediately. (iii) They have an outcome with a relatively small footprint
relative to their compute cost, and the outcome is serialisable. We can send it
around through MPI. (iv) They have a globally unique id.

Uniqueness incorporates both the data the task is working on plus its action. As
we work with a time stepping solver, each task also is unique by the time step
it belongs to. Two tasks t(A) and t(B) from two different teams A and B thus
have the same id if and only if they perform the same action on the same data
of their respective application and are issued by the same time step.

From a user’s point of view, teaMPI allows ranks only to exchange data
within their team, while teaMPI itself exchanges heartbeats between teams. To
reduce the total cost despite the replication, we introduce further inter-team



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 461

Algorithm 2. Event handler that is invoked every time a task drops in from
another team’s rank.
1: function handleTaskReceive(task t)
2: id ← computeUniqueID(t)
3: if database.contains(id) then � id already in database, do nothing
4: deallocate t � happens if two teams compute id around the same time
5: else � id not yet in database
6: database.insert(id,t)
7: end if
8: end function

data flow from hereon. Both this further flow and the heartbeats however do not
introduce arbitrary point-to-point connections. They solely remain inter-replica.

Our extension is a straightforward augmentation of the task runtime
(Algorithm 1): The runtime on a rank sends the outcome of any shareable task
that it has completed to all replicas, i.e., all the corresponding ranks in the
other teams. They receive and store them in a database. For every ready share-
able task that is to be launched, we hence validate first that its outcome has not
yet been received. If this is not the case, we execute the actual task (and eventu-
ally distribute its result). If a task outcome is already in our database, we do not
have to compute the task any more. It is sufficient to roll over the received task
result and to skip the actual computation. To make this work, the scheduling is
complemented by a receive handler listening for task results (Algorithm 2).

The database is a map from task ids onto task outcomes. An entry in the
database indicates that a task outcome has been received. A database of received
tasks as sketched so far would grow monotonically, since tasks might drop in
while they are computed. We thus equip each database entry with a timeout and
run a garbage collection regularly. It removes all entries and cleans up buffers for
tasks which are considered to be too old. Such a timeout could rely on heartbeat
counts (“received more than x heartbeats before”). For explicit timestepping, it
is however more convenient to use the time step counter. Entries older than the
most recent time step won’t be used anymore and can safely be discarded.

The algorithmic blueprint so far saves compute cost whenever a team lags
behind. The team running ahead completes its tasks and sends out the results.
The team behind picks up the results and skips its own computations. If two
teams are roughly running in-sync, we have to modify the scheduling slightly to
benefit from the exchange between replicas:

Definition 5 (Task shuffling). Let {t1, t2, t3, . . .} be a set of tasks that are
issued as ready or released as ready in one rush by our application. The
first team A schedules {t

(A)
1 , t

(A)
K+1, t

(A)
2K+1, . . .} prior to {t

(A)
2 , t

(A)
K+2, t

(A)
2K+2, . . .}

and so forth. The second team B schedules {t
(B)
2 , t

(B)
K+2, t

(B)
2K+2, . . .} prior to

{t
(B)
3 , t

(B)
K+3, t

(B)
2K+3, . . .} and eventually {t

(B)
1 , t

(B)
K+1, t

(B)
2K+1, . . .}. This pattern con-

tinues for all teams.



462 P. Samfass et al.

Each team permutes its shareable tasks modulo the number of teams. In practice,
it is convenient to realise this through task priorities where high priority tasks
are scheduled prior to low priority tasks. We start from the application’s task
priorities but then add subpriorities with a modulo counter which realise the
shuffling. Such shuffling even works for applications which do not issue tasks
in a batch but fire them one by one. Shuffling weakens the task scheduling
consistency, and effectively the data consistency between the teams. The only
situation where it might not ensure a differing task execution ordering is when
ranks issue tasks non-deterministically. In this case, the randomness plus the
shuffling might yield similar task execution orders for different teams. Yet, this
is unlikely.

4 Implementation

teaMPI is implemented as a C++ library. Using the PMPI interface, teaMPI
intercepts the relevant MPI calls and redirects them onto communicators or dif-
ferent physical ranks, respectively. We mainly wrap blocking and nonblocking
point-to-point routines as well as collectives. Relying on PMPI makes teaMPI
portable. For a replication factor K, an application with R ranks is started
with a total of K · R ranks. This yields K teams with R ranks each. Within
MPI’s initialisation, teaMPI creates subcommunicators for all intra-team com-
munication. Each subsequent user MPI call is hijacked by teaMPI and internally
mapped onto an MPI call on the appropriate subcommunicator.

4.1 Implementation Decisions

Heartbeats Without a Hard Real-Time Environment. Issuing heartbeats during
the simulation requires particular care. If we make heartbeats dependent on the
progression of the numerical simulation (for example by posting a heartbeat after
every time step), a single slow rank would delay the heartbeats of other ranks
in its team: In classical domain-decomposition approaches (as in our example
application), point-to-point messages to “neighbour” ranks are required before a
new simulation time step can be started. A single slow rank will therefore delay
its neighbours, too. With a heartbeat after each time step, it would thus not
be possible to isolate an individual slow or failing rank. We could only identify
teams hosting a slow or dropped-out rank.

teaMPI’s heartbeats are issued by a special heartbeat task on each rank.
The heartbeat reschedules itself until program termination. It stores the time
stamp of the most recent heartbeat. Whenever invoked, the heartbeat task checks
whether at least ΔtHB seconds have elapsed since the last heartbeat. If so, a new
heartbeat message is issued and the stored time stamp is updated. We rely on two
assumptions: (i) Tasks run agnostic of MPI synchronization and the progression
of the numerical algorithm. That is, even if some ranks cannot proceed with their
next time step due to missing MPI messages, they will nevertheless process the
heartbeat task. (ii) If a rank crashes, it stops issuing heartbeats. If it slows



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 463

down significantly, also its heartbeat task will be triggered less often, resulting
in increased time intervals between two heartbeats. This allows us to single out
a failing rank. The ΔtHB ensures that the system is not flooded with heartbeat
messages and is not overly sensitive to small performance fluctuations [6].

In our implementation, we use Intel’s Threading Building Blocks (TBB), an
abstraction from the actual hardware threading. TBB lacks support for real-time
tasking. This introduces uncertainty. We do not know when exactly heartbeats
are triggered. We can not ensure that the time in-between two heartbeat sends
equals the prescribed ΔtHB. We might even end up with situations where a rank
r(A) sends more heartbeats to its replica r(B) than the other way around.

This challenge seems to be amplified when ranks deploy their results to repli-
cas. Any deployment moves computational load between replicas and thus, on
purpose, unbalances ranks belonging to different teams. Real-time heartbeats
would be agnostic of this. However, their usage would contradict our assump-
tion that hardware failures announce themselves often through a performance
degradation. We launch heartbeats with a fixed, reasonably high priority and
rely on the runtime to schedule the heartbeats fairly and, more importantly,
roughly with the same time intervals ΔtHB on all teams. It is obvious that a
more mature solution would use a burn-in phase without any replication data
sharing to determine a proper priority. The important implementation remark is
that we use a comparison of local heartbeat in-between times to the in-between
times of received heartbeats to identify slow downs.

On the receiver side, we rely on MPI polling for the heartbeats: Whenever a
heartbeat task becomes active, we both send out our heartbeat (multicast) and
probe on available incoming ones. If there are heartbeats in the MPI queue, we
dump them into a local array. Unexpected message arrivals should be avoided
in MPI. Yet, heartbeats do not induce a major runtime penalty. With only the
timestamp, their message footprint is small.

Task Sharing. For the inter-team data exchange, teaMPI does not hijack stan-
dardised MPI, but offers dedicated routines. These routines expose additional
inter-team communicators and teaMPI’s knowledge about the number of teams
to the application. This way, the application can circumvent native MPI commu-
nication which is wrapped by teaMPI and only designed for intra-team exchange.
Task outcome sharing is multicasts sending one piece of data to all replicas. To
use these routines, we make use of a previously developed communication infras-
tructure that relaxes the binding of tasks to their spawning rank [26]: tasks and
their outcomes can migrate dynamically at runtime to other processes. For this,
we add meta data (the unique ids) to the tasks and MPI sending/receiving wrap-
pers around both the meta data, input arguments and output. All the wrapping
is not for free: Task outcome sharing in the resiliency context pays off if the tasks
are of reasonable workload. We hence solely wrap compute-heavy tasks [7].

Runtime Wrapper Realisation. Whenever a task outcome has been computed,
it is buffered first before we distribute it among the replicas. This is because
we use non-blocking communication and the teams run asynchronously. A team
progresses its computation irrespectively of teaMPI’s communication. Without



464 P. Samfass et al.

task outcome buffering, outgoing data may become inconsistent, as the applica-
tion might already overwrite the send buffer with new data. To avoid some of
the overhead of the buffering, we wrap the sends into another condition clause:
We check before line 9 in Algorithm 1 once more whether the task outcome has
been received already. If so, we know that at least one replica is ahead and has
multicasted the task outcomes to the other teams while we computed locally.
There is no need to distribute the local outcome once more.

Buffering is also required on the receiver side. A zero-copy approach is impos-
sible, as the receiving rank might be slightly ahead of the sender and compute
the task already itself while it receives data. Alternatively, it might lag behind
and might not even have created the task including its output data fields.

4.2 Implementation Pitfalls

An efficient implementation of task migration between teams is technically del-
icate, as we are confronted with a highly dynamic communication pattern. We
cannot predict which team will be fast or how many tasks the teams exchange.
Instead, we receive unexpected MPI messages, as task outcomes arrive unexpect-
edly, while it is essential to fully overlap task sharing-related communication with
the application and to receive shared task outcomes as quickly as possible.

MPI Progression. Even though launched through non-blocking MPI, messages
may actually not be progressed internally by the MPI implementation [19].
Instead, communication request handles need to be checked for completion
repeatedly through MPI Test for example. Furthermore, standard MPI neither
triggers an interrupt if messages arrive unexpectedly nor supports a mechanism
to tell the runtime when investments into MPI progression calls actually pay off.

Too little investment into MPI progression would be lethal for our task
sharing approach. We are dealing with unexpected messages which might use
a rendez-vous protocol. If they are not detected in a timely manner, they are
useless for the replicas and even might delay the baseline application. We there-
fore need frequent MPI Iprobes. Probes detect (unexpected) incoming messages
and thus issue MPI Irecvs for pending incoming tasks which consequently are
progressed through MPI Test. Shared task outcomes consequently arrive timely.

Different to our previous work where we did interweave MPI progression with
the standard tasking [26], we found it vital for teaMPI to dedicate one core to
an asynchronously running communication thread [19], similar to our previous
work [20,25]. It is responsible for both the progression of MPI messages (using
MPI testing), MPI Iprobes for detecting messages, as well as the progression of
the task sharing algorithm (e.g., buffering received task outcomes and inserting
them into the task outcome database). It ensures that task sharing actually
overlaps and is hidden from the user code.

Memory and Communication Overhead. Task sharing runs risk to result in an
excessive memory footprint and to yield many outstanding MPI receive and send
handles. Due to the buffering, open communication requests do not allow us to



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 465

Fig. 2. Visualization of an example setup simulated with our code by courtesy of
Maurizio Tavelli [30].

free allocated buffers and handles. We therefore limit the number of open send
requests per process. This effectively constrains the memory overhead and also
the number of open data exchange handles.

For explicit time stepping, this artificial limitation makes it convenient to
drop incoming tasks immediately if they belong to a past time step. In our
algorithmic blueprint, it is rare that this happens: If a rank is significantly ahead
of a replica, it has fed the replica’s team with task outcomes which in turn makes
the replica skip all task outcome sharing. Once we limit the number of tasks, we
however might run into situations where ranks receive outdated task outcomes.
While the garbage collection would remove these as well, it is reasonable to pipe
the incoming data into a temporary buffer right away.

5 Results

Our tests are conducted on the SuperMUC-NG supercomputer operated by the
Leibniz Supercomputing Centre. SuperMUC-NG consists of Intel Skylake Xeon
Platinum 8174 nodes, where each node hosts 2 × 24 cores, running at a nominal
clock frequency of 2.3 GHz. Intel Omnipath serves as interconnect. We use Intel
MPI, Intel Compiler 2019, and Intel’s TBB for the multithreading.

We benchmark performance and functionality against a seismology simula-
tion for the LOH.1 setup [10]. The simulation relies on an engine for solving sys-
tems of hyperbolic partial differential equations (PDEs) and employs an explicit,
high order Discontinuous Galerkin scheme in space and time (ADER-DG). Its
spatial discretisation stems from dynamically adaptive Cartesian meshes, while
the code phrases its execution in tasks relying on TBB. Although we study a
benchmark, i.e., strip the code off many features such as the integration of real
geometries and subsurface data or extensive postprocessing and I/O, these core
features already make up a challenging setup characterising production runs. An
example visualization obtained with our framework is shown in Fig. 2.



466 P. Samfass et al.

Fig. 3. Time between heartbeats on 56 nodes on SuperMUC-NG if a single node is
increasingly delayed.

ADER-DG is a numerical scheme splitting up each time step into a space-time
prediction, a Riemann solve and a correction phase. We found the prediction to
be responsible for the majority of the runtime [6] and thus make only prediction
tasks migration-ready.

One core is sacrificed to a communication thread with task sharing. If not
stated differently, we do not take this additional core into account when we
compare the performance of teaMPI with task sharing to a baseline code without
task sharing: both the baseline as well as the task sharing versions use the
same number of cores for computations. We, however, also provide data for
one setup where both the baseline and the task sharing variant use the same
number of cores per process: i.e., the task sharing variant uses one core less for
computation than the baseline due to the core dedicated to the communication
thread. Readers may recalibrate all other data accordingly or agree that the
progression thread is a workaround for an MPI weakness.

5.1 Heartbeats

We first demonstrate how teaMPI can be used to identify failing or slow ranks
with ExaHyPE. Let 56 nodes of SuperMUC-NG host two teams, each consisting
of 28 MPI ranks. Each rank is responsible for one part of the three-dimensional
grid. It is evenly distributed, i.e., the setup is load-balanced. We configure each
rank to send a heartbeat every ΔtHB = 1 s, but artificially delay one rank in
the first team in order to simulate a failing node. This is achieved by repeatedly
pausing and resuming its process. A delay of 0.1 s kicks in after 100 s. From here,
the delays increase by 0.1 s every time. This resembles an anticipated scenario
where a failing node gradually decreases its clock frequency before it finally goes
down completely. teaMPI’s goal has to be to identify this situation on time.

A plot of the time in-between heartbeats over the first 20 timesteps (Fig. 3)
unmasks the failing rank. This rank delays its whole team 0. As a result,



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 467

Fig. 4. Team divergence for two teams for different initial delays.

team 0 finishes later and posts more heartbeats compared to the ranks in team
1. Although one heartbeat per second is chosen, the task-based heartbeat imple-
mentation makes the actual task timings become fuzzy and consistently exceed
1s, resulting in scheduling effects.

Every rank observes its replicas through the heartbeats. We cannot directly,
i.e., in an unfiltered way, use the in-between time between heartbeats to identify
failures. Instead, time averages have to be used to assess the healthiness of a
replica. Although a slow rank affects all members of its team (and it is thus
difficult to identify a failing rank by measuring time per time step of a team),
our heartbeats are well-suited to identify which rank is to blame for a delay.

5.2 Robustness Against Temporary Delays

If a single rank and, hence, team is temporarily delayed through I/O or
non-persistent hardware deteriorations (overheating) for example, task sharing
should enable the delayed team to “catch up” with the faster teams. To validate
this hypothesis, we rerun the two-team setup but artificially delay the startup
of one rank of the first team: We pause the rank for a certain time t directly
at startup. To exclude stochastic effects, we make t ∈ [45 s, 65 s] uniformly dis-
tributed and run the code with and without task outcome sharing.

Let t
(A)
i be the timestamp of the start of the i–th timestep of team A. For

teams A and B, we can then quantify the divergence at the ith timestep as
d
(A,B)
i = |(t(A)

i −t
(B)
i )|. Without task sharing, an initial start offset between both

teams persists throughout the simulation (Fig. 4), while task outcome sharing
makes the divergence decrease rather quickly: the fast team “drags along” the
slow team, as it feeds it with task results.

We investigate this effect further by plotting the accumulated number of
reused tasks with task sharing for the two teams (Fig. 5). Initially, the undis-
turbed team reuses little to no task results from the replica team, as the disturbed



468 P. Samfass et al.

Fig. 5. Number of reused tasks per team per time step for different initial random
delays (with task sharing).

team cannot provide its results in a timely manner. At the same time, the dis-
turbed team reuses tasks starting from the first timestep. It catches up. For the
delayed team, the number of reused tasks per time step decreases over time as it
catches up. Accordingly, the number of reused tasks per time step increases for
the undisturbed team. Once the delayed team has catched up, the teams share
tasks evenly as a result of our shuffling approach.

5.3 Upscaling

We next study two strong scaling setups with two teams, where we gradually
increase the number of cores per rank or team, respectively (Fig. 6). We compare
the task sharing measurements to both a baseline that uses the same number
of cores for computation (Fig. 6a) and to a baseline that uses one additional
core for computation (the core that is sacrificed to a communication thread in
the task sharing variant, Fig. 6b). We start with a domain decomposition of the
computational grid that is well-balanced, using 28 partitions for example. These
28 partitions are mapped onto 28 ranks which are all deployed to one node.
Then we grant each rank more and more cores until the experiment eventually
spreads all 28 nodes. We do a similar experiment with 731 ranks or partitions,
respectively. This setup eventually employs 731 nodes and 35088 cores. Each
experiment is conducted for three polynomial orders of the underlying Discon-
tinuous Galerkin scheme. The polynomial order determines how expensive the
compute-heavy tasks for which we enable task sharing are relative to the total
runtime. The higher the order the more dominant these tasks.

Task sharing yields a speedup of up to 1.5× for most measurements. In fact,
task sharing can even compete with a baseline that uses an additional core for
computation in some cases, although at reduced speedups (compare Fig. 6a and
Fig. 6b). However, both experiments run into strong scaling effects at higher
core counts: If the number of cores per rank exceeds a certain threshold, the



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 469

(a) Same number of computation cores for
baseline and task sharing.

(b) Baseline uses one additional core for
computation compared to task sharing.

Fig. 6. Up-scaling of two teams to up to 731 nodes and 35088 cores for varying polyno-
mial orders: Green lines show the normalized times per degree of freedom update if task
sharing is enabled, while the red lines illustrate the vanilla variant where computation
is done redundantly. (Color figure online)

speedup induced by teaMPI’s replication breaks down. This breakdown occurs
the earlier the smaller the polynomial order, i.e., the smaller the relative cost of
the shared compute tasks is relative to the total compute time. In the breakdown
regime, the rate of reused task outcomes decreases significantly up to the point
where hardly any computed result can be picked up by another team and all
computations are effectively replicated. We invest twice the compute resources,
but obtain the time-to-solution of a run without any replication.

For most setups, our task outcome sharing however pays off. Our two teams
double the number of cores and thus compute cost, but we get replication plus
a significant speedup by means of walltime. The advantageous property is lost
if the balancing of cores per rank to compute cost of the shared tasks becomes
disadvantageous—which is a direct implication of “too many cores per rank”:
With too many, the pressure on the communication system increases as tasks
are processed and sent at a higher speed. The single communication thread and
the interconnect can no longer sustain a fast enough transfer rate of task results.
It just becomes cheaper to run all computations locally even though they are
done somewhere else, too.

We continue our experimental section with further experiments where we use
more than two teams (Table 1). The speedup behaviour persists, yet, we need
an even higher relative compute load per task to benefit from yet another team.
More than three teams does not lead to any significant improvement of the time to
solution anymore. As three teams are sufficient to implement resiliency where two
“valid” ranks overrule the outcome of a corrupted one, we conclude that any usage
of more than three teams is likely esoteric. To confirm this hypothesis, experiments
with validation routines however are required. This is out of scope here.



470 P. Samfass et al.

Table 1. Total cost (in CPU hours) and speedup (in time-to-solution) with task shar-
ing, each normalized to a single-team baseline at varying polynomial orders and number
of cores per team.

Total cost (CPUh) Speedup (time-to-solution)

Order Cores/team 2 teams 3 teams 4 teams 2 teams 3 teams 4 teams

7 56 1.39 1.69 2.22 1.43 1.77 1.80

7 112 1.38 1.73 2.04 1.45 1.74 1.96

7 224 1.35 1.66 1.93 1.48 1.81 2.07

7 448 1.36 1.60 1.85 1.47 1.88 2.17

8 56 1.35 1.63 2.05 1.49 1.84 1.96

8 112 1.34 1.61 1.92 1.50 1.86 2.08

8 224 1.30 1.57 1.84 1.54 1.92 2.18

8 448 1.30 1.53 1.71 1.54 1.96 2.34

9 56 1.30 1.61 1.94 1.54 1.86 2.06

9 112 1.25 1.47 1.81 1.61 2.04 2.21

9 224 1.24 1.44 1.68 1.62 2.09 2.38

9 448 1.21 1.47 1.57 1.65 2.03 2.54

k-fold replication comes at the expense of k-times increased total memory
consumption plus increased communication needs. On top of this, the bookkeep-
ing of task outcomes requires further resources. We quantified the memory over-
head of task sharing by repeatedly sampling each rank’s memory consumption
during program execution (Fig. 7) after the computational grid has been allo-
cated. In conjunction with system noise, task sharing yields a variable memory
consumption pattern as task outcomes are allocated and freed dynamically. Yet,
the typical additional memory overhead of task sharing remains under control
at around 20% additionally used memory.

Fig. 7. Memory consumption of task sharing vs the baseline variant without task shar-
ing for a selected representative rank.



TeaMPI—Replication-Based Resilience Without the (Performance) Pain 471

6 Conclusion and Outlook

Our paper introduces teaMPI, an MPI wrapper/plugin which replicates a sim-
ulation multiple times. We call the replicas teams. The teams run completely
asynchronously. They do however exchange heartbeats. If the time in-between
the heartbeats received vs. the local heartbeats diverges, we consider this to
be a reliable indicator for faults. While any rank can spot any performance
degradation of a replica rank, it is important to note that the heartbeats do
not synchronise the replicas at all and, thus, do not introduce any performance
penalty. The actual compute cost of replicas is reduced as we make each rank
share its task outcomes with the replicas which, whenever these task outcomes
drop in on time, skip their local computations and instead use the results from
another rank from another team. This technique reduces the total CPUh cost,
as long as the computation is phrased in tasks, and as long as we do not work
in the strong scaling regime: Enough ready tasks have to be available, so we can
shuffle their order and do not make threads idle.

Our paper introduces an elegant, minimalist and powerful new idea render-
ing replication in HPC economically feasible. It is however a conceptional piece
of work. To translate it into a production environment, we need, on the one
hand, the integration with modern MPI versions which support resiliency. On
the other hand, we have to solve four further fundamental challenges: First,
our code lacks a mature communication performance model for task sharing.
Specifically, it would never share too many task outcomes such that the overall
performance suffers. Second, the task outcome sharing makes the whole simula-
tion more sensitive to soft faults (bit flips, e.g.) [22]: If a task yields an invalid
outcome, this outcome might corrupt all other teams. There is a need to develop
checksums or hash techniques that can spot such cases and veto the pollution of
a run with invalid data. The heartbeat messages might be canonical candidates
to carry such crossvalidation records. Third, we have to generalise our notion of
shareable tasks. Our strategy relies on the fact that a code yields many share-
able tasks, and that these tasks make up a significant part of the runtime. To
make the concept applicable to a wider range of code characteristics, we have to
develop mechanisms that can migrate and share whole task subgraphs such that
more fine granular tasking benefits from our ideas, too. Finally, our approach
increases the pressure on the MPI interconnects. It will be subject of future work
to analyse how this pressure can be reduced. To this end, we plan to investigate
whether emerging technologies such as SmartNICs can be exploited to offload
the task sharing fully to the network hardware and to guarantee sufficient MPI
progress.

Acknowledgements. This work received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
671698 (ExaHyPE), and from EPSRC’s Excalibur programme under grant number
EP/V00154X/1 (ExaClaw). It used the facilities of the Hamilton HPC Service of
Durham University. We particularly acknowledge the support of the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for providing computing time on the GCS

www.gauss-centre.eu


472 P. Samfass et al.

Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de). Thanks
are due to all members of the ExaHyPE consortium who made this research possi-
ble, particularly to Dominic E. Charrier for writing most of the engine code and to
Leonhard Rannabauer for development of the seismic models on top of the engine.
The underlying software, i.e. both ExaHyPE [21] and teaMPI, are open source (www.
exahype.org and www.peano-framework.org/index.php/teampi).

References

1. Altenbernd, M., Göddeke, D.: Soft fault detection and correction for multigrid. Int.
J. High Perform. Comput. Appl. 32(6), 897–912 (2018)

2. Biswas, S., de Supinski, B.R., Schulz, M., Franklin, D., Sherwood, T., Chong,
F.T.: Exploiting data similarity to reduce memory footprints. In: 2011 IEEE Inter-
national Parallel and Distributed Processing Symposium, pp. 152–163 (2011)

3. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recov-
ery of MPI communication capability: design and rationale. Int. J. High Perform.
Comput. Appl. 27(3), 244–254 (2013)

4. Cao, C., Herault, T., Bosilca, G., Dongarra, J.: Design for a soft error resilient
dynamic task-based runtime. In: 2015 IEEE International Parallel and Distributed
Processing Symposium, pp. 765–774 (2015)

5. Cappello, F.: Fault tolerance in petascale/ exascale systems: current knowledge,
challenges and research opportunities. Int. J. High Perform. Comput. Appl. 23(3),
212–226 (2009)

6. Charrier, D.E., et al.: Studies on the energy and deep memory behaviour of a
cache-oblivious, task-based hyperbolic PDE solver. Int. J. High Perform. Comp.
Appl. 33(5), 973–986 (2019)

7. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for discontinuous
Galerkin methods on dynamically adaptive meshes. SIAM J. Sci. Comput. 42(3),
C69–C96 (2020)

8. Chen, Z., et al: Fault tolerant high performance computing by a coding approach.
In: Proceedings of 10th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 213–223. ACM (2005)

9. Chung, J., et al.: Containment domains: a scalable, efficient, and flexible resilience
scheme for exascale systems. In: SC 2012: Proceedings of the International Con-
ference for HPC, Networking, Storage and Analysis, pp. 1–11 (2012)

10. Day, S.M., et al.: Tests of 3D elastodynamics codes: final report for lifelines program
task 1A02. Technical report (2003)

11. Dongarra, J., et al.: Applied mathematics research for exascale computing. Tech-
nical report, Lawrence Livermore National Lab (2014)

12. Engelmann, C., Ong, H.H., Scott, S.L.: The case for modular redundancy in large-
scale high performance computing systems. In: Proceedings of 8th IASTED Inter-
national Conference on Parallel and Distributed Computing and Networks, vol. 1,
pp. 189–194 (2009)

13. Engelmann, C.: Scaling to a million cores and beyond: using light-weight simulation
to understand the challenges ahead on the road to exascale. Future Gener. Comput.
Syst. 30, 59–65 (2014)

14. Fagg, G.E., et al.: Process fault tolerance: semantics, design and applications for
high performance computing. Int. J. High Perform. Comput. Appl. 19(4), 465–477
(2005)

www.lrz.de
www.exahype.org
www.exahype.org
www.peano-framework.org/index.php/teampi


TeaMPI—Replication-Based Resilience Without the (Performance) Pain 473

15. Ferreira, K., et al.: Evaluating the viability of process replication reliability for
exascale systems. In: 2011 International Conference for HPC, Networking, Storage
and Analysis (SC), pp. 1–12 (2011)

16. Fiala, D., Mueller, F., Engelmann, C., Ferreira, K., Brightwell, R., Riesen, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: Proceedings of 25th IEEE/ACM International Conference on HPC,
Networking, Storage and Analysis, pp. 78:1–78:12. ACM, November 2012

17. Göddeke, D., Altenbernd, M., Ribbrock, D.: Fault-tolerant finite-element multigrid
algorithms with hierarchically compressed asynchronous checkpointing. Parallel
Comput. 49(C), 117–135 (2015)

18. Heene, M., Hinojosa, A.P., Bungartz, H.-J., Pflüger, D.: A massively-parallel, fault-
tolerant solver for high-dimensional PDEs. In: Desprez, F., et al. (eds.) Euro-Par
2016. LNCS, vol. 10104, pp. 635–647. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58943-5 51

19. Hoefler, T., Lumsdaine, A.: Message progression in parallel computing - to thread
or not to thread? In: IEEE International Conference on Cluster Computing, pp.
213–222 (2008)

20. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.: Chameleon:
reactive load balancing for hybrid MPI+OpenMP task-parallel applications. J.
Parallel Distr. Comput. 138, 55–64 (2020)

21. Reinarz, A., et al.: ExaHyPE: an engine for parallel dynamically adaptive simula-
tions of wave problems. Comput. Phys. Commun., 107251 (2020)

22. Reinarz, A., Gallard, J.M., Bader, M.: Influence of a-posteriori subcell limiting
on fault frequency in higher-order DG schemes. In: IEEE/ACM 8th Workshop on
Fault Tolerance for HPC at eXtreme Scale, FTXS@SC 2018, pp. 79–86 (2018)

23. Rezaei, A., Khetawat, H., Patil, O., Mueller, F., Hargrove, P., Roman, E.: End-to-
end resilience for HPC applications. In: Weiland, M., Juckeland, G., Trinitis, C.,
Sadayappan, P. (eds.) ISC High Performance 2019. LNCS, vol. 11501, pp. 271–290.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20656-7 14

24. Riesen, R., Ferreira, K., Stearley, J.: See applications run and throughput jump: the
case for redundant computing in HPC. In: Proceedings of International Conference
on Dependable Systems and Networks, pp. 29–34 (2010)

25. Samfass, P., Klinkenberg, J., Bader, M.: Hybrid MPI+OpenMP reactive work
stealing in distributed memory in the PDE framework sam(oa)2. In: IEEE Inter-
national Conference on Cluster Computing, pp. 337–347, September 2018

26. Samfass, P., Weinzierl, T., Charrier, D.E., Bader, M.: Lightweight task offloading
exploiting MPI wait times for parallel adaptive mesh refinement. In: Concurrency
and Computation: Practice and Experience (2020, to appear)

27. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. IEEE Trans. Depend. Secur. Comput. 7(04), 337–350 (2010)

28. Simon, T., Dorband, J.: Improving application resilience through probabilistic task
replication. In: ACM Workshop on Algorithmic and Application Error Resilience,
June 2013

29. Subasi, O., Yalcin, G., Zyulkyarov, F., Unsal, O., Labarta, J.: Designing and mod-
elling selective replication for fault-tolerant HPC applications. In: 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp.
452–457 (2017)

30. Tavelli, M., Dumbser, M., Charrier, D.E., Rannabauer, L., Weinzierl, T., Bader,
M.: A simple diffuse interface approach on adaptive Cartesian grids for the linear
elastic wave equations with complex topography. J. Comput. Phys. 386, 158–189
(2019)

https://doi.org/10.1007/978-3-319-58943-5_51
https://doi.org/10.1007/978-3-319-58943-5_51
https://doi.org/10.1007/978-3-030-20656-7_14

	TeaMPI—Replication-Based Resilience Without the (Performance) Pain
	1 Introduction
	2 Team-Based Resiliency with Heartbeats
	3 Task Sharing
	4 Implementation
	4.1 Implementation Decisions
	4.2 Implementation Pitfalls

	5 Results
	5.1 Heartbeats
	5.2 Robustness Against Temporary Delays
	5.3 Upscaling

	6 Conclusion and Outlook
	References




