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Abstract. Relational algebra (RA) comprises a basis of important oper-
ations, sufficient to power state-of-the-art reasoning engines for Datalog
and related logic-programming languages. Parallel RA implementations
can thus play a significant role in extracting parallelism inherent in a
wide variety of analytic problems. In general, bottom-up logical inference
can be implemented as fixed-point iteration over RA kernels; relations
dynamically accumulate new tuples of information according to a set
of rules until no new tuples can be discovered from previously inferred
tuples and relevant rules (RA kernels). While this strategy has been quite
successful in single-node contexts, it poses unique challenges when dis-
tributed over many-node, networked clusters—especially regarding how
the work-load is balanced across available compute resources.

In this paper, we identify two fundamental kinds of load imbalance
and present a strategy to address each. We investigate both spatial load
imbalance—imbalance across each relation (across compute nodes)—and
temporal load imbalance–imbalance in tuples produced across fixed-point
iterations. For spatial balancing, we implement refinement and consolida-
tion procedures. For temporal balancing, we implement a technique that
permits the residual workload from a busy iteration to roll over to a new
iteration. In sum, these techniques permit fully dynamic load-balancing
of relational algebra that is robust to changes across time.

Keywords: Parallel relational algebra · Load balancing · Logic
programming · Message passing interface · All-to-all communication

1 Introduction

Relational algebra (RA) comprises an important basis of operations. It can be
used to implement a variety of algorithms in satisfiability and constraint solv-
ing [21], graph analytics [24], program analysis and verification [19], deductive
databases [16], and machine learning [22]. Many of these applications are, at
their heart, cases of logical inference; a basis of performant relational algebra
is sufficient to power state-of-the-art forward-reasoning engines for Datalog and
related logic-programming languages.

Quite recently, some efforts [5,14] have explored methods for exploiting the
massive parallelism available on modern clusters in a single relational-algebra
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operation, making it possible to extract data-parallelism across individual opera-
tions for relations at scale. Instead of only decomposing tasks in a broader logical
inference problem, such approaches could permit extreme scaling for problems
involving only a small number of distinct tasks in a principled manner. A funda-
mental problem such approaches must contend with is that of inherent imbalance
possible among the relation data. For example, a join of two relations (an oper-
ation that generalizes both Cartesian product and intersection by matching only
specified columns) may most naturally be decomposed across many processes or
threads by grouping like keys on like processes, permitting most of the join to
be parallelized completely. If a relation is imbalanced among its keys (exhibits
“key skew”), this imbalance will also be represented in the decomposition of the
join operation, which is highly undesirable for performance.

In this paper, we discuss both the problem of dynamic changes in spatial
imbalance, where operations on relations become imbalanced due to key skew
in the relation itself, and the problem of temporal imbalance, where operations
on relations may vary significantly in their output when repeated. While past
work has given mention of replication-based strategies for remediating spatial
imbalance [5] and has implemented static replication strategies [14], no existing
approach offers a solution that is robust to arbitrary changes in relation balance
across time, or to sudden explosions in operation output.

We make three novel contributions to the literature on effectively parallelizing
relational algebra:

– We explore spatial load imbalance in relational algebra and present two tech-
niques for dynamically balancing relations across MPI processes at scale.

– We explore temporal load imbalance in relational algebra and present an
iteration-buffering technique for mitigating against the effects of explosions
in workload and guarding against resultant failures.

– We present an evaluation of our two approaches, together and in isolation,
using random, real world, and corner-case relation topologies, illuminating a
space of tunings and demonstrating effectiveness using 256–32,768 processes.

In Sect. 2, we describe background and related work on relational algebra.
In Sect. 3, we discuss our implementation using MPI, describe two kinds of load
imbalance, and present three techniques for mitigating such load imbalance. In
Sect. 4, we present an evaluation of our approaches using the Theta supercom-
puter and discuss tuning the framework and our observations.

2 Parallel Relational Algebra

This section reviews some standard relational operations such as union, product,
intersection, natural join, selection, renaming, and projection, along with their
use in implementing algorithms for bottom-up logical inference engines. We dis-
cuss existing approaches to parallelizing relational algebra (RA) on single-node
systems, and then on many-node systems.
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We make a few typical assumptions about relational algebra that diverge
from those of traditional set operations. Specifically, we assume that all rela-
tions are sets of flat (first-order) tuples of integers with a fixed, homogeneous
arity. Although our approach may extend naturally to relations over any enu-
merable domains (e.g., booleans, symbols/strings, etc), we also assume that such
values are interned and assigned a unique enumerated identity. Several RA opera-
tions are especially standard and form a simple basis for computation. Cartesian
product is defined as for sets except it only yields flat first-order tuples and never
nested tuples. The Union and Intersection of two relations are defined as for sets
except that these operations require both relations to have the same arity.

Projection is a unary operation that removes a column or columns from a
relation—and thus any duplicate tuples that result from removing these columns.
Projection of relation R restricts R to a particular set of columns α0, . . . , αj ,
where α0 < . . . < αj , and is written Πα0,...,αj

(R). For each tuple, projection
retains only the specified columns. Renaming is a unary operation that renames
columns (i.e., reorders columns, as column names are just their index). Renaming
columns can be defined in different ways, including renaming all columns at
once. We define a renaming operator, ραi/αj

(R), to swap two columns, αi and
αj where αi < αj—an operation that may be repeated to rename/reorder any
number of columns. In practice, our implementation offers a combined projection
and reordering operation that generalizes these two operations more efficiently.

Πα0,...,αj
(R) �{(rα0 , . . . , rαj

) | (r0, . . . , rk) ∈ R}
ραi/αj

(R) �{(. . . , rαj
, . . . , rαi

, . . .) | (. . . , rαi
, . . . , rαj

, . . .) ∈ R}
G

0 1
A B
A C
B D
C D
D E

G joined with G
0 1 2
A B D
A C D
B D E
C D E

ρ0/1(ρ0/1(G) ��1 G)

Fig. 1. Graph G and the result of G-join-G.

Two relations can also be joined
into one on a subset of columns
they have in common. Natural Join
combines two relations into one,
where a subset of columns are
required to have matching values,
and generalizes both intersection
and Cartesian product operations.

Consider a relation G, shown in
Fig. 1, as a table, and at the top of
Fig. 2, as a graph. Joining G on its second column with G on its first column
yields a new relation, with three columns, encoding all paths of length 2 through
the graph G, where each path is made of three nodes in order.

To formalize natural join as an operation on such a relation, we parameterize
it by the number of columns that must match, assumed to be the first j of each
relation (if they are not, a renaming operation must come first). The join of
relations R and S on the first j columns is written R ��j S and defined:

R ��j S � { (r0, . . ., rk, sj , . . . , sm)

| (. . . , rk) ∈ R ∧ (. . . , sm) ∈ S ∧
∧

i=0..j−1

ri = si }
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Fig. 2. Each iteration of
computing transitive clo-
sure for a small example
relation G.

Note that to compute the join of G on its second
column with G on its first column, we first have to
reverse G’s columns, computing ρ0/1(G), so we may
then compute a join on one column: ρ0/1(G) ��1 G.
To present the resulting paths of length two in order
again, we may use renaming to swap the join col-
umn back to the middle position, as shown in Fig. 1.
Our implementation (detailed in Sect. 3) provides
more general operations that make this administra-
tive renaming occur only implicitly, on the fly.

2.1 Motivation: Logical Inference

One of the simplest common algorithms that may
be implemented efficiently as a loop over high-
performance relational algebra primitives, is com-
puting the transitive closure (TC) of a relation or
graph. For example, consider our example graph
G ⊂ N

2 where each symbol A through E has
been encoded or interned as an integer: G =
{(0A, 1B), (1B, 3D), (0A, 2C), (2C, 3D), (3D, 4E)} (a
subscript shows each integer’s interpretation as a
symbol or vertex name). Renaming to swap the
columns of G, results in a graph, ρ0/1(G), where all
arrows are reversed in direction. If this graph is joined
with G on only the first column (meaning G is joined
on its second columns with G on its first column),
via ρ0/1(G) ��1 G, we get a set of triples (b, a, c)—
specifically {(1B, 0A, 3D), (2C, 0A, 3D), (3D, 1B, 4E),
(3D, 2C, 4E)}—that encode paths of length two in
the original graph where a leads to b which leads
to c. Projecting out the initial column, b, with
Π1,2(ρ0/1(G) ��1 G) yields pairs (a, c) encoding paths
of length two from a to c in the original graph G. (Note that this projection step
not only removes a column but a row as well, as (1B, 0A, 3D) and (2C, 0A, 3D)
are duplicates if not differentiated by their middle, b, node). If we compute the
union of this graph with the original G, we obtain a relation encoding paths of
length one or two in G. This graph, G ∪ Π1,2(ρ0/1(G) ��1 G), is second from the
top in Fig. 4 with new edges styled as dashed lines.

We can encapsulate this step in a function ExtendG which takes a graph T ,
and returns T ’s edges extended with G’s edges, unioned with G.

ExtendG(T ) � G ∪ Π1,2(ρ0/1(T ) ��1 G)

The original graph G, at the top of Fig. 4, is yielded for ExtendG(⊥), the
graph below it is returned for ExtendG

2(⊥), the graph below that is returned for



292 S. Kumar and T. Gilray

ExtendG
3(⊥), etc. As ExtendG is repeatedly applied from an empty input, each

result encodes ever longer paths through G, as shown. In this case for example,
the graph ExtendG

3(⊥) encodes the transitive closure of G—all paths in G reified
as edges. One final iteration, computing ExtendG

4(⊥), is required to check that
the process successfully reached a fixed point for ExtendG.

In the general case, for any graph G, there exists some n ∈ N such that
ExtendG

n(⊥) encodes the transitive closure of G. The transitive closure may be
computed by repeatedly applying ExtendG in a loop until reaching an n where
ExtendG

n(⊥) = ExtendG
n−1(⊥) in a process of fixed-point iteration. In the first

iteration, paths of length one are computed; in the second, paths of length one
or two are computed, and so forth. After the longest path in G is found, just
one additional iteration is necessary as a fixed-point check to confirm that the
final graph has stabilized in this process of path inference.

Computing transitive closure is a simple example of logical inference. From
paths of length zero (an empty graph) and the existence of edges in graph G, we
deduce the existence of paths of length 0 . . . 1. From paths of length 0 . . . n and
the original edges in graph G, we deduce the existence of paths of length 0 . . . n+
1. The function ExtendG above performs a single round of inference, finding paths
one edge longer than any found previously and exposing new deductions for a
next iteration to make. When the computation reaches a fixed point, the solution
has been found as no further paths may be deduced from available facts. In fact,
the function ExtendG is a quite-immediate encoding, in relational algebra, of
the transitivity property itself, T (a, c) ⇐= G(a, c) ∨ T (a, b) ∧ G(b, c), a logical
constraint for which we desire a least solution. T satisfies this property exactly
when T is a fixed-point for ExtendG and the transitive closure of G.

Solving logical and constraint problems in this way is precisely the strategy
of bottom-up logic programming. Bottom-up logic programming begins with a
set of facts (such as T (a, b)—the existence of an edge in a graph T ) and a
set of inference rules and performs a least-fixed-point calculation, accumulating
new facts that are immediately derivable, until reaching a minimal set of facts
consistent with all rules.

This kind of logical inference forms the semantics of Datalog, a bottom-up
logic-programming language supporting a restricted logic corresponding roughly
to first-order HornSAT—the SAT problem for conjunctions of Horn clauses [3].
A Horn clause is a disjunction of atoms where all but one is negated: a0 ∨¬a1 ∨
. . . ∨ ¬aj . By DeMorgan’s laws we may rewrite this as a0 ∨ ¬(a1 ∧ . . . ∧ aj) and
note that this is an implication: a0 ← a1 ∧ . . . ∧ aj . In first-order logic, atoms
are predicates (in this case, with universally quantified variables). A Datalog
program is a set of such rules,

P (x0, . . . , xk) ← Q(y0, . . . , yj) ∧ . . . ∧ S(z0, . . . , zm),

and its input is a database of initial facts called the extensional database (EDB).
Running the datalog program makes explicit the intensional database (IDB)
which extends facts in the EDB with all facts transitively derivable via the
program’s rules. In the usual Datalog notation, computing transitive closure of
a graph is accomplished with two rules:
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T(x,y) <- G(x,y). T(x,z) <- T(x,y), G(y,z).

The first rule says that any edge, in G, implies a path, in T (taking the role
of the left operand of union in ExtendG or the left disjunct in our implication);
the second rule says that any path (x, y) and edge (y, z) imply a path (x, z)
(adding edges for the right operand of union in ExtendG). Other kinds of graph
mining problems, such as computing triangles or k-cliques, can also be naturally
implemented as Datalog programs [23]. Our primary motivation for developing
distributed RA is as a back-end for an Datalog-like logic-programming language.

Each Datalog rule may be encoded as a function Extend (between databases)
where a fixed point for the function is guaranteed to be a database that satisfies
the particular rule. Atoms in the body (premise) of the implication, where two
columns are required to match, are refined using a selection operation; e.g.,
atom S(a, b, b) is computed by RA σα1=α2(S). Conjunction of atoms in the
body of the implication is computed with a join operation: e.g., in the second
rule above, this is the second column of path joined with the first of edge, or
ρ0/1(path) ��1 edge. These steps are followed by projection to only the columns
needed in the head of the rule and any necessary column reordering. Finally,
the resulting relation is unioned with the existing relation in the head of the
implication to produce F ’s output, an updated database (e.g., with an updated
path relation in the examples above).

Each Datalog rule may be encoded as a monotonic function F (between
databases) where a fixed point for the function is guaranteed to be a database
that satisfies the particular rule. Once a set of functions F0 . . . Fm, one for each
rule, are constructed, Datalog evaluation operates by iterating the IDB to a
mutual fixed point for F0 . . . Fm.

2.2 Implementing Parallel Relational Algebra

In our discussion of both TC computation and Datalog generally, we have elided
important optimizations and implementation details in favor of formality regard-
ing the main ideas of both. In practice, it is inefficient to perform multiple
granular RA operations separately to perform a selection, reorder columns, join
relations, project out unneeded columns, reorder columns again, etc, when iter-
ation overhead can be eliminated and cache coherence improved by fusing these
operations. In practice, high-performance Datalog solvers perform all necessary
steps at once, supporting a generalization of the operations we have discussed
that can join, select, reorder variables, project, and union, all at once.

In addition, both transitive closure and Datalog generally, as presented above,
are using näıve fixed-point iteration, recomputing all previously discovered edges
(i.e., facts) at every iteration. Efficient implementations are incrementalized and
only consider facts that can be extended to produce so-far undiscovered facts. For
example, when computing transitive closure, another relation TΔ is used which
only stores the longest paths in T—those discovered in the previous iteration.
When computing paths of length n, in fixed-point iteration n, only new paths
discovered in the previous iteration, paths of length n−1, need to be considered,
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as shorter paths extended with edges from G necessarily yield paths which have
been discovered already. This optimization is known as semi-näıve evaluation [3].
Each non-static relation (such as T ) is effectively partitioned into three relations:
Tfull, TΔ, and Tnew. Tfull stores all facts discovered more than 1 iteration ago; TΔ

stores all facts that were newly discovered in the previous iteration, and is joined
with G each iteration to discover new facts; and Tnew stores all these facts, newly
discovered in the current iteration. At the end of each iteration, TΔ’s tuples are
added to Tfull, TΔ’s pointer is swapped with the pointer to Tnew, and Tnew is
emptied to prepare for the next iteration.

The state of the art evaluating Datalog is perhaps best embodied in the Soufflé
engine [9–11,19]. Soufflé systematically optimizes the RA kernels obtained from
an input Datalog program, partially evaluating and staging the resulting RA for
the task at hand. Soufflé also performs a strongly-connected-component analysis
to extract separate inference tasks connected in a dependency (directed, acyclic)
graph—stratifying SCC evaluation. RA itself is performed using a series of nested
loops that utilize efficient data-structures to iterate over the tuples of a relation,
iterate over tuples that match a subset of column-values, and insert new tuples.
Figure 3 shows a portion of the exact C++ code produced by Soufflé (v1.5.1) for
the two-rule TC program shown above (indentation and code comments have been
added by the authors to improve clarity).

To compute ρ0/1(TΔ) ��1 G, first the outer relation (the left-hand relation—
in this case TΔ) is partitioned so that Soufflé may process each on a separate
thread via OpenMP (line 1 in Fig. 3). For each partition, a loop iterates over each
tuple in the current partition of TΔ (line 2) and computes a selection tuple, key,
representing all tuples in G that match the present tuple from TΔ in its join-
columns (in this case the second column value, env0[1]). This selection tuple
is then used to produce an iterator selecting only tuples in G whose column-0
value matches the particular tuple env0’s column-1 value. Soufflé thus iterates
over each (x, y) ∈ TΔ and creates an iterator that selects all corresponding
(y, z) ∈ G. Soufflé iterates over all matching tuples in G (line 5), and then
constructs a tuple (x, z), produced by pairing the column-0 value of the tuple
from TΔ, env0[0], with the column-1 value of the tuple from G, env1[1], which
is inserted into Tnew (line 8) only if it is not already in Tfull (line 6).

Given this architecture, Soufflé achieves good performance by using fast
thread-safe data-structures, template specialized for common use cases, that
represent each relation extensionally—explicitly storing each tuple in the rela-
tion, organized to be amenable to fast iteration, selection, and insertion. Soufflé
includes a concurrent B-tree implementation [10] and a concurrent blocked
prefix-tree implementation [11] as underlying representations for relations along
with a global symbol table storing intern values. Soufflé does not support MPI
or distributed computation of Datalog programs.

2.3 Related Work on Distributed Relational Algebra

The double-hashing approach, with local hash-based joins and hash-based dis-
tribution of relations, is the most commonly used method to distribute join
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// Partition T_delta for a pool of OpenMP threads; iterate over parts
1 pfor(auto it = part.begin(); it<part.end();++it){

// Iterate over each tuple, env0, of T_delta (in each partition)
2 try{for(const auto& env0 : *it) {

// Construct an iterator selecting tuples in G that match env0
3 const Tuple<RamDomain,2> key({{env0[1],0}});
4 auto range = rel_1_edge->equalRange_1(key,

READ_OP_CONTEXT(rel_1_edge_op_ctxt));
// Iterate over matching tuples in G

5 for(const auto& env1 : range) {
// Has this output tuple already been discovered (is in T_full)?

6 if(!(rel_2_path->contains(Tuple<RamDomain,2>({{env0[0],env1[1]}}),
READ_OP_CONTEXT(rel_2_path_op_ctxt)))) {

// Construct the output tuple and insert it into T_new
7 Tuple<RamDomain,2> tuple({{static_cast<RamDomain>(env0[0]),

static_cast<RamDomain>(env1[1])}});
8 rel_4_new_path->insert(tuple,

READ_OP_CONTEXT(rel_4_new_path_op_ctxt));
9 }
10 }
11 }} catch(std::exception &e){SignalHandler::instance()->error(e.what());}
12 }

Fig. 3. The join of a TC computation, as implemented by Soufflé.

operations over many nodes in a networked cluster computer. This algorithm
involves partitioning relations by their join-column values so that they can be
efficiently distributed to participating processes [6,7]. The main insight behind
this approach is that for each tuple in the outer relation, all relevant tuples in
the inner relation must be hashed to the same MPI process or node, permitting
joins to be performed locally on each process.

Recently, radix-hash join and merge-sort join algorithms have been evaluated
using this approach [5]. Both these algorithms partition data so that they may
be efficiently distributed to participating processes and are designed to mini-
mize inter-process communication. One-sided RMA operations remotely coordi-
nate distributed joins and parallelize communication and computation phases.
Experiments for this work scaled join operations to 4,096 nodes, and reached
extremely high peak tuples/second throughput, but this work does not address
materializing and reorganizing relations for subsequent iterations—challenges
required to implement fixed-point algorithms over RA. In addition, this work
only considers uniform (perfectly balanced) relations, citing balancing of rela-
tions as future work and does not represent realistic workloads because each key
has exactly one matching tuple in each relation being joined. A key advantage
of this approach is that radix-hash join and merge-sort join, used on each pro-
cess, support acceleration via AVX/SIMD instructions and exhibit good cache
behavior [4,12].

Our recent approach proposes adapting the representation of imbalanced
relations by using a two-layered distributed hash-table to partition tuples over
a fixed set of buckets, and, within each bucket, to a dynamic set of subbuckets
which may vary across buckets [14]. Each tuple is assigned to a bucket based on
a hash of its join-column values, but within each bucket, tuples are hashed on
non-join-column values, assigning them to a local subbucket, then mapped to an
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MPI process. This permits buckets that have more tuples to be split across mul-
tiple processes, but requires some additional communication among subbuckets
for any particular bucket. Our previous work presents a static refinement strat-
egy that is used before fixed-point iteration to decide how many subbuckets
to allocate per bucket, and compares two approaches for mapping subbuckets
to processes. This implementation does not address dynamic refinement across
fixed-point iterations; as relations accumulate new tuples, the difference between
the largest subbucket and the smallest subbucket can grow or diminish.

Our implementation heavily relies on all-to-all communication. We use the
MPI Alltoallv function to transmit data from every process to every other pro-
cess. Our use is related to distributed hash tables more generally [17], which make
effective use of all-to-all communication, except that we co-locate multiple dis-
tributed hash tables for the purposes of performing efficient joins. MPI Alltoallv
is one of the most communication-intensive collective operations used across par-
allel applications such as CPMD [1], NAMD [18], LU factorization, parallel sort-
ing, fast fourier transform (FFT) and matrix transpose. Much research [13,20]
has gone into developing scalable implementations of collective operations; most
of the existing HPC platforms therefore have a scalable implementation of all-
to-all operations.

3 Balancing Distributed Relational Algebra

Buckets Processes

Bucket 0 Rank 0

Bucket 1 Rank 1

Bucket 2 Rank 2

Bucket 3 Rank 3

Bucket 4 Rank 4

Fig. 4. Round-robin
mapping of subbuckets
to processes.

In this section, we extend previous approaches to
efficiently distributing relational algebra by develop-
ing strategies that mitigate load-imbalance in a fully
dynamic manner. First, we describe the architecture of
our join operation in detail to ground this discussion.
Following [14], we distribute each relation across a fixed
number of logical buckets (chosen to match the number
of MPI processes in our experiments). Each bucket has
a variable number of subbuckets, that can increase as
needed for buckets containing disproportionately large
numbers of tuples. Each subbucket belongs to just one
bucket and is hosted by a single MPI process, but a sin-
gle MPI process may host any number of subbuckets.

To distribute subbuckets to managing processes, we
use a round-robin mapping scheme. The example in Fig. 4
shows the round-robin mapping of subbuckets to pro-
cesses where there are 5 buckets with 2 subbuckets each
and 5 MPI processes. This process requires a very small
amount of added communication, but ensures that no
process manages more than one subbucket more than any
other.

Locally, subbuckets store tuples using B-trees (an approach used by Soufflé),
which carries several advantages over the double-hashing approach’s use of hash
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tables. Crucially, hash-tables can lead to a resizing operation that delays syn-
chronization.

Figure 5 shows a schematic diagram of our join algorithm in the context of
an incrementalized TC computation. A join operation can only be performed
for two co-located relations: two relations each keyed on their respective join
columns that share a bucket decomposition (but not necessarily a subbucket
decomposition for each bucket). This ensures that the join operation may be
performed separately on each bucket as all matching tuples will share a logical
bucket; it does not, however, ensure that all pairs of matching tuples will share
the same subbucket as tuples are assigned to subbuckets (within a bucket) based
on the values of non-join columns, separately for each relation.

YES

Clique communication

Local join

All to all communication

Local inserts

Fixed point 
reached ?

Stop

Start 
(Initialize relations)

NO

Fig. 5. Major steps in our join
algorithm, in the context of
TC.

The first step in a join operation is there-
fore an intra-bucket communication phase within
each bucket so that every subbucket receives all
tuples for the outer relation across all subbuckets
(while the inner relation only needs tuples belong-
ing to the local subbucket). Following this, a local
join operation (with any necessary projection and
renaming) can be performed in every subbucket,
and, as output tuples may each belong to an arbi-
trary bucket in the output relation, an MPI all-
to-all communication phase shuffles the output of
all joins to their managing processes (preparing
them for any subsequent iteration). Finally, upon
receiving these output tuples from the previous
join, each process inserts them into the local B-
tree for Tnew, propagates TΔ into Tfull and Tnew

becomes TΔ for the next iteration along with a
empty Tnew. If no new tuples have been discovered, globally, a fixed point has
been reached and iteration may halt.

Intra-bucket communication (shown on the left of Fig. 6) uses MPI point-to-
point communication to shuffle all tuples from each subbucket of the outer rela-
tion (in the case of T-join-G in TC, TΔ) to all subbuckets of the inner-relation (in
the case of TC, G), which will subsequently perform local, per-subbucket joins.
It may seem appealing to fuse the final all-to-all communication phase among
buckets with the intra-bucket communication of the next iteration, sending new
tuples (for TΔ in the next iteration) directly to all subbuckets of G; however,
doing this fusion forgoes an opportunity for per-subbucket deduplication and
yields meaningful slowdowns in practice.

The local join phase proceeds in a fully parallel and unsynchronized fashion.
Each process iterates over its subbuckets, performing a single join operation for
each. Our join is implemented as a straightforward tree-based join as shown in
the center of Fig. 6. In this diagram, colors are used to indicate the hash value
of each tuple as determined by its join-column value. The outer relation’s local
tuples are iterated over, grouped by key values. For each key value, a lookup is
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Join        Project        Hash

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

TΔ

Rank 0

Rank 1

Rank2

Rank 3

Rank 4

TΔ MPI_Alltoallv

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Fig. 6. (Left) Intra-bucket communication; each subbucket of TΔ sends its data to
all subbuckets of G. (Center) Local, per-subbucket joins (including projection and re-
hashing). (Right) All to all communication.

performed to select a portion of the tree storing the inner relation’s local tuples
where all tuples have a matching key value (in this case on the first column of G).
For two sets of tuples with matching join-column values, we effectively perform
a Cartesian product computation, producing one tuple for all output pairs. Each
output tuple has any needed projection and renaming of columns performed on-
the-fly; in this case, the prior join columns that matched are projected away.
These output tuples are temporarily stored in a tree, to perform local dedu-
plication, and are then staged for transmission to new managing subbuckets in
their receiving relation. After the join, each output tuple belongs to Tnew (TΔ in
the next iteration) and must be hashed on the final column to determine which
bucket it belongs to, and on all other columns to determine which subbucket
within that bucket. While we follow Soufflé in implementing B-tree-based joins
on each process, other approaches may be able to take better advantage of AVX
instructions and on-chip caching [4,12]. We plan to investigate alternatives in
the future and believe them to be largely orthogonal to our paradigm for decom-
position, communication, and balancing of relations. Other future work includes
taking advantage of thread-level parallelism offered by multi-core nodes. In par-
ticular, we plan to parallelize sub-bucket joins across concurrent threads.
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Next, an all-to-all communication phase (shown on the right side of Fig. 6)
transmits materialized joins to their new bucket-subbucket decomposition in Tnew.
After being hashed on their new join column value to assign each to a bucket,
and on all non-join-column values to assign each to a subbucket, the managing
process for this subbucket is looked up in a local map and tuples are organized
into buffers for MPI’s All to allv synchronous communication operation. When
this is invoked, all tuples are shuffled to their destination processes.

A

B C

D E F G

E
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B

C

D

F G

H

I

J

K

Fig. 7. A complete binary tree with height 2 and down-directed edges (left); a bowtie
graph with width 4 and length 3 (right).

Finally, after the synchronous communication phase, TΔ is locally propagated
into Tfull, which stores all tuples discovered more than 1 iteration ago. New tuples
are checked against this Tfull to ensure they are genuinely new facts (paths in
G), and are inserted into a B-tree for Tnew on each receiving process to perform
remote deduplication. At this point, the iteration ends, Tnew becomes TΔ for
the subsequent iteration, and an empty Tnew is allocated. If no new tuples were
actually discovered in the previous iteration, a fixed-point has been reached and
no further iterations are needed as the database as stabilized.

3.1 Two Kinds of Load-Imbalance

We consider two kinds of load-imbalance and how they might occur and change
across iterations of a transitive closure computation: spatial load imbalance, when
a relation’s stored tuples are mapped unevenly to processes, and temporal load
imbalance, when the number of output tuples produced varies across iterations.

Direction T G

0Up O(2H−D) O(1)
0Down O(D) O(1)

Fig. 8. Worst-case imbalance for T and
G in TC computation (for complete
binary tree topology).

Consider the class of relations that
encode complete binary trees of height H,
where directed edges face either strictly
downward or upward. The left side of
Fig. 7 shows an example of a downward-
facing complete binary tree with height
2. If a downward-facing relation in this
class is keyed on its first column, there is
no load imbalance as each key has exactly
two tuples (two children per parent); if it is keyed on its second column, there
is likewise no load imbalance as each key has exactly one tuple (one parent
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per child). If we use an up-directed binary tree instead, these are reversed; either
way, the relation is initially balanced. Now what happens when we compute its
TC?

The TC of a down-directed complete binary tree of height H (keyed on col-
umn 0) has significant spatial imbalance. The root node has O(2H) tuples (edges)
hosted on its process, while nodes at depth H − 1 have only 2. If the relation
is keyed on the second column (or if we use an up-directed tree), then there is
a natural imbalance that increases linearly with depth. In a TC computation,
as relation T is keyed on its second column, not the first, a down-directed tree
exhibits the more moderate imbalance; for an upward-facing complete binary
tree, T has a worst-case exponential imbalance ratio. The worst-case imbalance
ratios for T and G are summarized in Fig. 8.

The complete binary tree topology graphs are perhaps corner cases for rela-
tion imbalance, however such relations can occur in the wild, and even more
moderate degrees of imbalance can cause relational algebra to slow down or
crash in practice. Relational algebra that is suitable for arbitrary workloads
must handle arbitrary degrees of spatial imbalance gracefully, and if used within
a fixed-point loop (as is the case for general logical inference applications), rela-
tions must support dynamic spatial refinement that is efficient enough to handle
arbitrary changes in imbalance across time—both increases and decreases.

Now consider the bowtie topology shown on the right side of Fig. 7. Each
bowtie-topology graph has a width W and length L, and is formed by connecting
W nodes each to the starting node of a string of L nodes, connected on the far
side to another W nodes each. What happens when computing the TC of an
arbitrary bowtie relation? The first iteration, a join between a bowtie relation
and itself, yields 2W + L − 1 new edges; in fact, at every iteration until the last,
the worst-case join output is in O(W + L). At the final iteration, however, the
number of output tuples suddently becomes quadratic in the width of the bowtie,
O(W 2), as each of the leftmost nodes are paired with each of the rightmost nodes.
This illustrates a case of temporal imbalance—a large bowtie can produce fewer
than 100K tuples one iteration and more than 1B tuples the next.

A general-purpose system for relational algebra should also be robust to unex-
pected surges in the per-iteration workload, adapting itself to dynamic changes
in the overall workload across time. While bowtie graphs represent corner cases,
it is common to see join output change significantly from iteration to iteration
when computing TC of real-world graphs as well (see Table 1).

3.2 Three Techniques for Adaptive Load-Balancing

Now we describe three techniques that, used in conjunction, can remediate both
kinds of imbalance illustrated in the previous section: bucket refinement, bucket
consolidation, and iteration roll-over. Bucket refinement is a dynamic check for
each bucket to see if its subbuckets are significantly heavier than average, trig-
gering a refinement in which new subbuckets are allocated to support this larger
number of tuples. Bucket consolidation occurs only if there are a significant
number of refined buckets, and consolidates buckets into fewer subbuckets when
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spatial imbalance has lessened. Finally, iteration roll-over allows particularly
busy iterations to be interrupted part-way, with completed work being processed
immediately and with the residual workload from the iteration “rolling over”.

Bucket refinement is one of two techniques we use to address natural spa-
tial imbalance among the keys of a relation. Refinement is used to check for
disproportionately heavy subbuckets (those with more than the average num-
ber of tuples), and to spread this load across an increased number of subbuck-
ets. Checking for needed refinement is a lightweight, but non-trivial step, so we
only perform this imbalance check every N iterations (where N is an adjustable
parameter). In our experiments, we use both N = 2 and N = 10 but observed
only a small difference in performance. To check for refinement, the heaviest
subbucket in each bucket is compared with the average subbucket size across all
buckets; when the ratio is greater than 3-to-1, we refine this bucket, quadrupling
its subbucket count from 1 to 4, from 4 to 16, from 16 to 64, etc; the subbucket
count in each bucket is always maintained as a power of 4. This additional allo-
cation of subbuckets extends the round-robin mapping maintained in lock-step
on all processes by transmitting a small amount of meta-data during the global
all-to-all phase. An immediate point-to-point communication is triggered espe-
cially to distribute three-quarters of the tuples from each subbucket in a refined
bucket to processes hosting newly allocated subbuckets.

Intra-bucket comm

Local join

All to all comm

Local inserts

Fixed point 
reached ?

Stop

Threshold 
reached during 

itera�on ?

Start 
(Ini�alize rela�ons)

YES

NO

YES

NEVER

All to all 
comm

Local 
inserts

Fig. 9. The major steps in our
join algorithm with iteration roll-
over added.

Bucket consolidation is a complementary
technique for combining previously split sub-
buckets when spatial load imbalance has again
lessened. The imbalance check for bucket con-
solidation is guarded by a global check to see if
greater than 60% of buckets have been refined
to 4 or more subbuckets. When this is the
case, all buckets containing subbuckets with
a below-average tuple-count are consolidated
into 1

4 as many subbuckets. This process uses
the same communication machinery as bucket
refinement; a special point-to-point commu-
nication is used to redistribute tuples into a
smaller number of buckets, all of which are
freshly allocated using our round-robin allo-
cation scheme to prevent pathological cases.

Iteration roll-over guards against severe
cases of temporal imbalance which can slow
evaluation, through thrashing of memory, or
crash a process. As in the case of our bowtie
topology, the shape of a graph can cause a sud-

den explosion of work in a single iteration. This requires our algorithm to be on-
guard for temporal imbalance at every iteration, as opposed to spatial imbalance
where we may avoid some overhead by checking for imbalance intermittently. As
each local join is processed, grouped by key-column values, a count of output
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tuples is maintained and at each new key-column value we check to see if it has
passed some fixed threshold value (a tunable parameter—we experiment with
several threshold values). When the threshold has been exceeded, we stop com-
puting the join and transmit the partial join output to destination processes for
remote deduplication early.

This step is shown in Fig. 9. When a threshold value is reached during the
local-join phase, an all-to-all communication is triggered, followed by local inserts
in each destination subbucket. Then, instead of the iteration ending (with prop-
agation from each RΔ to Rfull and from each Rnew to RΔ), the previous iteration
continues exactly where it left off. We may also think of this an inner iteration as
opposed to the normal outer iterations of semi-näıve evaluation. Each inner iter-
ation batches the threshold value in output tuples to promote cache coherence
and prevent overflow.

4 Evaluation

1.04165 1.13179 3.41761 3.4618

15.033 15.2228

67.9861 68.9167

0

10

20

30

40

50

60

70

80

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

Depth 21 Depth 23 Depth 25 Depth 27

Ti
m

e 
(s

ec
on

ds
)

Balanced binary tree, direction: down

Intra-bucket comm
Local Join
All to all comm
Local inserts
Load balancing

6.57371 3.88005
27.11 13.9169

113.925

54.8406

463.372

209.114

0

50

100

150

200

250

300

350

400

450

500

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

No load
balancing

Spatial load
balancing

Depth 21 Depth 23 Depth 25 Depth 27

Ti
m

e 
(s

ec
on

ds
)

Balanced binary tree, direction: up

Intra-bucket comm
Local Join
All to all comm
Local inserts
Load balancing

Fig. 10. TC computation for complete binary
trees (depths 21, 23, 25 and 27) for up (top) and
down (bottom) pointing edges with and without
load balancing.

We begin by studying the
impact of spatial and tempo-
ral load balancing in isolation.
Following this, we analyze the
impact of both forms of load
balancing, jointly, on real-world
graphs and at scale.

We performed our experi-
ments for this work on the
Theta Supercomputer [2] at the
Argonne Leadership Comput-
ing Facility (ALCF). Theta is
a Cray machine with a peak
performance of 11.69 petaflops,
281,088 compute cores, 843.264
TiB of DDR4 RAM, 70.272 TiB
of MCDRAM and 10 PiB of
online disk storage. We per-
formed our experiments using
the SuiteSparse Matrix Collec-
tion [8].

4.1 Spatial Load
Balancing

We evaluate the performance
of spatial load-balancing, in
Fig. 10, by computing the tran-
sitive closure of eight balanced binary-tree graphs (depths: 21, 23, 25, 27, for each
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edge direction: up and down). We run all these experiments at 512 cores, both
with and without spatial load balancing turned on. The transitive closure for
the graphs (in order of increasing tree depth) generated 39,845,890, 176,160,770,
771,751,938 and 3,355,443,202 edges, respectively (taking 21, 23, 25 and 27 iter-
ations to converge). Note that both up-directed (UP) and down-directed (DOWN)
graphs (of equal depth) produce the same number of edges.

We observed dynamic load balancing lead to a roughly 2× improvement for
UP graphs. As an example, for the graph with depth 27, load balancing led the
total runtime to go down from 463 s to 209 s. In our experiments, we set the load-
imbalance check to be performed every other iteration, as this is the sole feature
under consideration; for all four graphs, however, actual re-balancing (refinement
of buckets) occurred only five times each, with the cumulative number of sub-
buckets increasing dynamically from 512 to 1088 in every case.

On the other hand, load balancing does not yield any improvement for DOWN
graphs. This is despite the fact that computing the TC UP and DOWN graphs
produces the same number of edges and takes the same number of iterations
to converge in both cases. What differs is how tuples are distributed among
keys (values for the join column); with linear imbalance in the DOWN case and
exponential imbalance in the UP case. We note that TC for UP graphs can be
computed as efficiently as DOWN graphs if we change our iterated join from T-
join-G to G-join-T, but this optimization requires a priori knowledge of the final
graph’s topology, which is likely unavailable. Our approach aims to be as relation
agnostic as is possible, so that arbitrary logical inference tasks may be scaled
effectively.

It may be surprising that DOWN graphs do not show some lesser need for
dynamic re-balancing as they evolve from being perfectly balanced to being
linearly imbalanced. This would be the case if each key were mapped to a unique
bucket. Since keys are hashed to a smaller number of buckets, however, we only
observe a 1.001 imbalance ratio for height-25 DOWN trees and we observe a 204.8
inter-bucket imbalance ratio for height-25 UP trees. This means hashing keys to
buckets has a modest ameliorating effect on imbalance that can be sufficient,
but not in cases of severe imbalance.

4.2 Temporal Load Balancing

Temporal load balancing is a key safety feature, without which it can become
impossible to make meaningful progress due to continuous page faults. We
demonstrate this particular use case for an extreme scenario, where thresholding
acts as a critical component. We use a very large graph Hardesty3 [8] (40,451,631
edges) that generates an overwhelming number of edges at an accelerating pace.
Without thresholding, a process gets overwhelmed by the computational work-
load and runs out of memory. We applied a modified version of the transitive
closure problem where, instead of trying to reach the fixed point, we restricted
our computation to run only 20 iterations. (At the end of iteration 20, we have
computed all paths of up to length 20.) We ran our experiments at 32,768 cores,
both with and without temporal load balancing. Without load balancing, we
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Fig. 11. Breakdown of time taken to finish 20 iterations (paths of length 20) using
temporal load balancing.

were only able to complete iteration 16, whereas with load balancing we were
able to finish all 20 iterations. The number of edges generated at the end of
20 iterations was 913,419,562,086 (13.3 Terabytes). We have plotted a break-
down of time taken during every iteration in Fig. 11. We observed temporal load
balancing was used for all iterations after the 14th iteration, the 19th and 20th

iterations, for example, were broken into 11 and 16 inner iterations respectively.
Also, it can be seen that the aggregate time taken increases significantly with
every iteration. For these experiments, we used a threshold of 8,000,000. It took
1,256 s to finish running 20 iterations.
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Fig. 12. Time to compute TC for bow-tie topology
graph with varying thresholds.

Temporal balancing can
also be used as an optimiza-
tion technique for extreme
topology graphs such as
the bowtie (see Fig. 7). To
demonstrate this, we used a
bow-tie graph with a width
of 10,000 vertices and length
of 10 vertices. This graph
generates 10,000 × 10,000
edges in the 10th iteration,
when all vertices on the left
side of the bowtie each dis-
cover paths to all vertices on
the right side of the bowtie.
For the first 10 iterations,
the number of edges pro-
duced every iteration is roughly 20,000 whereas the number of edges generated
in the 10th iteration is 100,000,000, leading to a temporal imbalance ratio of
about 5,000. We run our experiments at 256 cores with 5 different threshold
values: 10,000, 100,000, 1,000,000, 10,000,000, and 100,000,000. The transitive
closure of the graph generated 400,440,055 edges. While the number of outer iter-
ations is 10 for all thresholds, the number of inner iterations varied as 20,020,
3,343, 402, 49 and 13. Note that small threshold values lead to an unnecessarily
increased number of inner iterations and hence an increased number of all to all
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communication epochs. Smaller threshold values also lead to more-optimized
local join phases, as the nested B-tree data structures holding relations do not
grow very large, leading to better cache coherence while performing lookups and
inserts.

We plot our results in Fig. 12. We observe a best timing of 516 s for a thresh-
old of 1,000,000 tuples. At this threshold, we achieve a good balance between the
extra time taken for all-to-all communication phases versus the time saved during
each local join phase. Lower thresholds make the problem bounded by commu-
nication (all-to-all phase) whereas higher thresholds make the problem bounded
by computation (local join phase). At larger process counts, we observed better
performance for larger threshold values. For example, at 8,192 cores the transi-
tive closure of graph sgpf5y6 with edge count 831,976 took 384, 559 and 590 s
for threshold values 100,000,000, 10,000,000 and 1,000,000 respectively. We use
temporal load balancing primarily as a safety check, although it is also a practi-
cal optimization for corner-case topology graphs. We believe that our design is
flexible enough to be tuned to different scales and different degrees in imbalance
in the input graph.

4.3 Transitive Closure at Scale

We also performed experiments to study the impact of load balancing on real-
world and random graphs. We compute the transitive closure of six real world
graphs [8] and two random graphs generated via RMAT [15]. All our experiments
were performed at 8,192 processes with both temporal and spatial load-balancing
enabled. In these experiments we check for spatial imbalance every tenth itera-
tion and temporal imbalance at every iteration—the roll-over threshold is set at
8,000,000 tuples. Our results are shown in Table 1. All graphs except TSC OPF 300
make use of spatial load balancing. We also note that graphs sgpf5y6, RMAT 1,
and RMAT 2 make use of temporal load balancing, as the number of edges gener-
ated for these graphs grow at a rapidly increasing rate (respectively, 76, 2, and
9 billion edges in the first 20 iterations).

Table 1. List of eight (6 real world + 2 random) graphs used in our evaluation.

Name Edges Time

(seconds)

Spatial

balancing

Temporal

balancing

Iterations TC Edges

lhr34 764,014 64.3391 � 30 1,233,554,044

nemeth13 241,989 28.8445 � 310 45,186,771

sgpf5y6 831,976 578.641 � � 20 76,382,533,943

rim 1,014,951 46.7834 � 30 508,931,041

TSC OPF 300 415,288 2.11 30 1,876,367

RMAT 1 200000 68.8143 � � 20 2,502,341,599

RMAT 2 400000 220.993 � � 20 9,481,998,719
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Fig. 13. Strong-scaling plots for lhr34, sgpf5y6,
TSC OPF 300, and rim graphs. Numbers in red shows
scaling efficiency. (Color figure online)

We also performed strong
scaling studies for the graphs
in Table 1, we report the
performance numbers for
four graphs lhr34, sgpf5y6,
TSC OPF 300, and rim in
Fig. 13. For graph lhr34
we observe 7× improve-
ment in performance while
going from 512 processes
to 8,192 processes. Further
breakdown shows that we
achieve a scaling efficiency of
74% while going from 512
processes to 2048 processes
and an efficiency of 60%
while going from 2048 to 8192 processes. For graph rim we observe an over-
all improvement of 5× (scaling efficiency shown in figure). Graph TSC OPF 300
demonstrates a trend reversal, with performance worsening with increased pro-
cess count. Our observation shows that the degree of extractable parallelism
varies across graphs, depending on the connectivity, topology and the size of the
graph. For example, TSC OPF 300 is sparsely connected (as seen from the small
TC size), requires very few iterations to converge and thus, is not suitable for a
large process run.

We also make the observation that for a given workload, there is a range
of processes that exhibits good scaling and beyond which performance starts to
suffer due to workload scarcity and increased communication costs.

5 Conclusion

In this paper, we have explored the issue of inherent imbalance in relations, and
across iterations of fixed-point computations. We have described three techniques
for mitigating these issues dynamically in parallel relational algebra, distributed
in a data-parallel manner across many cores, and have evaluated our approach by
computing the transitive closures of real world, random, and corner-case graphs.
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