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Abstract. Porous media and conduit coupled systems are heavily used
in a variety of areas such as groundwater system, petroleum extraction,
and biochemical transport. A coupled dual porosity Stokes model has
been proposed to simulate the fluid flow in a dual-porosity media and
conduits coupled system. Data assimilation is the discipline that stud-
ies the combination of mathematical models and observations. It can
improve the accuracy of mathematical models by incorporating data,
but also brings challenges by increasing complexity and computational
cost. In this paper, we study the application of data assimilation methods
to the coupled dual porosity Stokes model. We give a brief introduction
to the coupled model and examine the performance of different data
assimilation methods on a finite element implementation of the coupled
dual porosity Stokes system. We also study how observations on different
variables of the system affect the data assimilation process.

Keywords: Data assimilation · Dual porosity · Stokes equation ·
Multiphysics

1 Introduction

Hou et al. [6] has proposed the Coupling of dual porosity flow with free flow
as a replacement of the widely used Stokes-Darcy family. The proposed model
has a better representation than the traditional Stokes Darcy model in model-
ing fractured porous media with large conduits. Potential applications of this
model include petroleum extraction, hydrology, geothermal systems, and carbon
sequestration. A finite element implementation of this model using FEniCS has
been developed and studied by the authors [8]. Data assimilation is the discipline
that studies the combination of mathematical models and observations. In this
paper, we will apply data assimilation methods to the implementation of the
coupled model to improve the accuracy of the model predictions [4,9].
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In Sect. 2, we give an introduction to the mathematical model of the coupled
dual porosity Stokes model proposed by Hou et al. [6]. In Sects. 3 and 4 we
illustrate the applications of data assimilation methods on the coupled dual
porosity Stokes model. We set up a data assimilation context from our model in
Sect. 3. We present the numerical results based on synthetic data in Sect. 4. In
Sect. 5 we draw conclusions and discuss future works.

2 A Coupled Dual Porosity Stokes Model

The dual porosity Stokes model proposed by Hou et al. [6] consists of a dual
porosity porous subdomain and a conduit subdomain. An example is show in
Fig. 1 where Ωd represents the porous subdomain and Ωc represents the conduit
subdomain. Each subdomain has its own set of boundary conditions, represented
by Γd and Γc respectively in the figure. The interface Γcd is the only place where
the two subdomains communicate with each other.
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Fig. 1. A simplified coupled model in 2D.

Barenblatt et al. [2] first proposed the dual porosity model in 1960. Later in
1963, Warren and Root [16] studied the model thoroughly. In a dual porosity
medium, two subsystems are assumed. One is the matrix subsystem, which has
high porosity and low permeability, and the other is the microfracture subsys-
tem, which has low porosity and high permeability. The dual porosity equations
governing the dual porosity subdomain Ωd in our coupled dual porosity Stokes
model are

φmCmt
∂pm

∂t
− ∇ · km

μ
∇pm = −Q, (1)

φfCft
∂pf

∂t
− ∇ · kf

μ
∇pf = Q + qp. (2)
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The constant μ represents the dynamic viscosity. The constants km and kf repre-
sent the intrinsic permeability, φm and φf the porosities, Cmt and Cft the total
compressibility, of the matrix and the microfracture subsystems respectively.
The variables pm and pf are the flow pressure of the matrix and the microfrac-
ture subsystems respectively. The coefficient function qp is the sink/source term.
The term Q denotes the mass transfer rate per unit volume from the matrix
subsystem to the microfracture subsystem and is defined as

Q =
σkm

μ
(pm − pf ), (3)

where the parameter σ represents the characteristic of the fractured rock and is
commonly known as the shape factor. Formulas for calculating σ can be found
in Warren and Root [16] and Mora and Wattenbarger [12].

We assume the flow in the conduit domain is Stokes flow and thus describe it
using the Stokes equation in (4) and (5). Note that the model can be extended
to other free flow models such as the incompressible Navier-Stokes model, as
proposed in [4].

∂u

∂t
− ∇ · TTT (u, p) = f, (4)

∇ · u = 0. (5)

The two variables, the flow velocity vector u and the flow pressure p, together
describe the state of the flow. The constant ν represents the kinematic viscos-
ity. The vector valued function f is a general body force term. The operator
TTT (u, p) := 2ν DDD(u) − pIII is the stress tensor and DDD(u) := 1

2 (∇u + ∇T u) is the
deformation tensor, where III is the identity matrix.

Four interface conditions are imposed:

− km

μ
∇pm · (−ncd) = 0, (6)

u · ncd = −kf

μ
∇pf · ncd, (7)

− nT
cd TTT (u, p)ncd =

pf

ρ
, (8)

− PPP τ (TTT (uc, p)ncd) =
αν

√
N

√
trace(ΠΠΠ)

(
u +

kf

μ
∇pf

)
, (9)

where ncd is the unit normal vector of the interface Γcd, pointing toward Ωd.
The function PPP τ is the projection operator onto the local tangent plane of Γcd.
The constant α is dimensionless and depends on the properties of the fluid and
the permeable material. The constant ρ is the fluid density. The constant N is
the space dimension. ΠΠΠ := kfIII is the intrinsic permeability of the microfracture
subsystem.

Equation (6) represents the no mass exchange condition between the matrix
subsystem in Ωd and the conduit. This is an assumption based on of the huge
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difference in permeabilities between the matrix and the microfracture subsys-
tems. Equation (7) imposes conservation of mass exchange between the conduit
and the microfracture subsystem on the interface. Equation (8) balances the two
forces on the interface: the kinetic pressure in the microfracture subsystem and
the normal component of the normal stress in the free flow. Equation (9) is the
empirical Beavers-Joseph interface condition [3], which claims that the tangen-
tial component of the normal stress incurred by the free flow along the interface
is proportional to the difference of the tangential component of flow velocities
at two sides of the interface.

By introducing test function [ψm, ψf , vT , q]T , the coupled dual porosity
Stokes PDE system defined by (1)–(9) has the variational form,

∫

Ωd

(
φmCmt

∂pm

∂t
ψm +

km

μ
∇pm · ∇ψm +

σkm

μ
(pm − pf )ψm

)
dΩ

+
∫

Ωd

(
φfCft

∂pf

∂t
ψf +

kf

μ
∇pf · ∇ψf +

σkm

μ
(pf − pm)ψf

)
dΩ

+ η

∫

Ωc

(
∂u

∂t
· v + 2ν DDD(u) : DDD(v) − p∇ · v

)
dΩ

+ η

∫

Γcd

(
1
ρ
pfv · ncd +

αν
√

N
√

trace(ΠΠΠ)
PPP τ

(
u +

kf

μ
∇pf

)
· v

)

dΓ

+ η

∫

Ωc

∇ · uqdΩ −
∫

Γcd

u · ncdψfdΓ

= η

∫

Ωc

f · vdΩ +
∫

Ωd

qpψf .

(10)

A finite element implementation using the automated partial differential
equation (PDE) solving platform FEniCS [1,11] has been developed by the
authors [8]. The backward Euler time stepping scheme was used for time dis-
cretization.

3 A Data Assimilation Problem Based on the Coupled
Model

In order to apply data assimilation methods to the coupled dual porosity Stokes
model, we first convert the dual porosity Stokes model into a discrete dynamical
system, and define the observations on it.

Following the finite element analysis with backward Euler scheme, at timestep
t we solve the following equation system for the four variables in four finite
functional spaces,

A

⎡

⎢
⎢⎢
⎣

p
(t)
m

p
(t)
f

u(t)

p(t)

⎤

⎥
⎥⎥
⎦

= C

⎡

⎢
⎢⎢
⎣

p
(t−Δt)
m

p
(t−Δt)
f

u(t−Δt)

p(t−Δt)

⎤

⎥
⎥⎥
⎦

+ b.
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The matrix A is assembled from the bilinear form

a

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

p
(t)
m

p
(t)
f

u(t)

p(t)

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

ψ
(t)
m

ψ
(t)
f

v(t)

q(t)

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

=
∫

Ωd

(

φmCmt
p
(t)
m

Δt
ψm +

km

μ
∇pm · ∇ψm +

σkm

μ
(pm − pf )ψm

)

dΩ

+
∫

Ωd

(

φfCft

p
(t)
f

Δt
ψf +

kf

μ
∇pf · ∇ψf +

σkm

μ
(pf − pm)ψf

)

dΩ

+ η

∫

Ωc

(
u(t)

Δt
· v + 2ν DDD(u) : DDD(v) − p∇ · v

)
dΩ

+ η

∫

Γcd

(
1
ρ
pfv · ncd +

αν
√

N
√

trace(ΠΠΠ)
PPP τ

(
u +

kf

μ
∇pf

)
· v

)

dΓ

+ η

∫

Ωc

∇ · uqdΩ −
∫

Γcd

u · ncdψfdΓ.

The vector b is assembled from the linear form

L

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

p
(t−Δt)
m

p
(t−Δt)
f

u(t−Δt)

p(t−Δt)

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

= η

∫

Ωc

f · vdΩ +
∫

Ωd

qpψf .

The matrix C is assembled from the bilinear form

c

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

p
(t−Δt)
m

p
(t−Δt)
f

u(t−Δt)

p(t−Δt)

⎤

⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

ψ
(t)
m

ψ
(t)
f

v(t)

q(t)

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

=
∫

Ωd

(

φmCmt
p
(t−Δt)
m

Δt
ψm + φfCft

p
(t−Δt)
f

Δt
ψf

)

dΩ

+ η

∫

Ωc

u(t−Δt)

Δt
· vdΩ,

and thus has the form

C =

⎡

⎢⎢
⎣

φmCmt

Δt IIIdm
φfCft

Δt IIIdf

IIIdu

0dp

⎤

⎥⎥
⎦ ,

where dm, df , du, and dp are the degrees of freedoms of pm, pf , u, and p,
respectively,
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If we let the state variable

vt =

⎡

⎢⎢⎢
⎣

p
(t)
m

p
(t)
f

u(t)

p(t)

⎤

⎥⎥⎥
⎦

,

the dynamical system can be expressed as

vt+Δt = Ψ(vt) + ξt, (11a)

Ψ(vt) = A−1Cvt + A−1b, (11b)

where ξt ∼ N (0, Σ) represents the model error. This dynamical system is linear.
Note that the coefficient matrix C is singular as is A−1C, the Jacobian of Ψ
defined in (11a), (11b). Since some smoothing algorithms involve in inverting
the Jacobian of the dynamical system, we need to avoid singularities.

In general we can use the singular value decomposition to get around with
singularities. In our case, we let our state variable

v∗
t =

⎡

⎢
⎣

p
(t)
m

p
(t)
f

u(t)

⎤

⎥
⎦ .

The dynamical system becomes

v∗
t+Δt = Ψ∗(v∗

t ) + ξt, (12a)

Ψ∗(v∗
t ) = (A−1)

∗
C∗v∗

t + (A−1)∗b∗, (12b)

where M∗ represents the matrix generated by removing the last dp rows and
columns from a matrix M, and b∗ is the vector from removing the last dp

components of a vector b. In fact (12a), (12b) can also be formed from applying
singular value decomposition to A−1C in (11a), (11b). Note that p(t) can still
be calculated from p

(t−Δt)
m , p

(t−Δt)
f and u(t−Δt), which in turn can be calculated

from p
(t)
m , p

(t)
f and u(t).

Similarly, the Dirichlet boundary conditions will also cause singularities as
they do not depend on previous boundary values. We remove all Dirichlet bound-
ary values from the state variable vt using the same technique.

We base the dynamical model on a two dimensional dual porosity Stokes
model shown in Fig. 2. Let Ω = [−0.5, 0.5] × [0, 1] be a shifted unit square,
Ωc = {(x, y) ∈ Ω | x ≤ 0}, and Ωd = {(x, y) ∈ Ω | x ≥ 0}. The interface is
Γcd = {(x, y) ∈ Ω | x = 0}. The domain is partitioned uniformly into 1

16 × 1
16

squares.
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Dirichlet boundary conditions on Γc and Γd, initial conditions for all vari-
ables, and coefficients qp and f are constructed such that

pm = cos (πt) cos (x (−y + 1))

pf =
(
(x2 + y2 − 2y + 2) cos (πt) − 10π sin (πt)

)
cos (xy − x)

u =
[

2x cos (πt)
2x cos (πt) − 2y cos (πt)

]

p = −10π sin (πt) +
(
x2 + 2x + y2 − 2y + 6

)
cos (πt)

is the solution to our problem.

cdc

c

c

c

d

d

dd

(−0.5,0)

(−0.5,1)

(0,0) (0.5,0)

Fig. 2. The 2D example model with a shifted unit square domain Ω = [−0.5, 0.5]×[0, 1],
conduit subdomain Ωc = {(x, y) ∈ Ω | x ≤ 0} and dual porosity subdomain Ωd =
{(x, y) ∈ Ω | x ≥ 0}.

Also, we let Δt = 0.01, ξt ∼ N (0, 5III), v∗
0 ∼ N (0, 100III). The large variance

of v∗
0 indicates that we have little knowledge about the initial condition.
For the observations, we assume we have direct observations to every 4 com-

ponents of v∗
t at time t:

yt = h(v∗
t ) + ηt, (13a)

h(v∗
t ) = Hv∗

t , (13b)
ηt ∼ N (0, 5III), (13c)

where

H =

⎡

⎢⎢
⎣

1 0 0 0 0 0 0 0 0 . . .
0 0 0 0 1 0 0 0 0 . . .
0 0 0 0 0 0 0 0 1 . . .

. . .

⎤

⎥⎥
⎦ .

We observe every 0.01 time unit starting at t = 0.01. Equations (12a), (12b) and
(13a), (13b), (13c) together defines the data assimilation problem we are solving.
Data are generated synthetically.
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4 Numerical Results

We run the model against the three dimensional variational method (3DVAR),
the strong constraint four dimensional variational method (s4DVAR) with a time
window with length 0.04, the extended Rauch-Tung-Striebel smoother (ExtRTS)
[15], the extended Kalman Filter (ExtKF) [10], the ensemble Kalman Filter
(EnKF) [5,7] with 100 particles, and ensemble Rauch-Tung-Striebel smoother
(EnRTS) [13] with 100 particles. Note that since we have a linear data assimi-
lation problem, the extended methods ExtRTS and ExtKF are just the Rauch-
Tung-Striebel smoother (RTS) and the Kalman Filter (KF). We also use a base-
line filtering method Forward that only uses the mathematical model Ψ and
ignores all data. It starts at v∗

0 = 0 and then applies Ψ∗ to get an approximation
for v∗

t . Since the model is linear, we expect an optimal solution by ExtKF for
filtering and ExtRTS for smoothing.

All numerical experiments were run with the data assimilation package DAP-
PER [14] on the Teton computer cluster at the Advanced Research Computing
Cluster (ARCC) at the University of Wyoming.

The results of filtering on the model with such observations are in Table 1
and the results of smoothing are in Table 2. Since we have a linear system with
Gaussian errors, the Kalman Filter and the Kalman Smoother are expected to
have optimal data assimilation solutions for filtering and smoothing, respectively,
which is in accordance with our numerical results. We see that the Kalman Filter,
the Kalman Smoother and 3DVAR are efficient in our small linear model while
ensemble methods and s4DVAR are relatively slow.

Table 1. Average root mean square error for filtering (rmse f) and elapsed time

Forward 3DVAR ExtKF EnKF

rmse f 0.4717 0.2824 0.2604 0.2651

elapsed time 5 s 1 s 5 s 56 s

Table 2. Average root mean square error for smoothing (rmse s) and elapsed time

s4DVAR ExtRTS EnRTS

rmse s 0.3 0.1907 0.2033

elapsed time 121 s 32 s 62 s

The error of different data assimilation methods over time are shown in Figs. 3
and 4. Since Forward, 4DVAR, ExtKF, and EnKF all start with an initial guess
ṽ0 = 0, they all have the same predictions at t = 0.01. This is why they all have
the same error at t = 0.01 for forecasting as shown in Fig. 3. The predictions
are made every 0.01 time units. ExtKF has a smaller forecasting error than
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all the other methods except for 3DVAR. Our 3DVAR implementation utilizes
all true states to approximate the background covariance Bt. The exposure to
the true states enables the 3DVAR implementation to surpass the theoretical
optimal solution from the Kalman Filter. EnKF has a result very similar to
that of ExtKF. In EnKF, the calculations of mean and variance of the states
are approximated using the Monte Carlo method. Since the states follows a
Gaussian process, the approximations converge to the truths as the number of
particles increases. We can also see in Fig. 4 that by utilizing all observations,
the smoothing error at t = 0.01 is reduced by half, comparing to the forecasting
error in Fig. 3. Note that the Kalman Smoother ExtRTS achieves the best result
at all time, and the ensemble Kalman Smoother EnRTS has a very similar result
as ExtRTS, but consumes much more computation time as shown in Table 2.

Note that the baseline method Forward also has a decreasing error with
respect to time. This is caused by the characteristics of our dynamical system.
Because of the essential boundaries in our coupled model, solutions to the PDE
system with different initial conditions all converge to each other as t → ∞.
This can also be explained by the linear dynamical system. Consider a linear
dynamical system with Ψ (vt) =Mvt where ‖M‖ < 1. Then Ψ (n)(vt)→ 0 as
t → 0.

Fig. 3. Forecasting error of different filtering algorithms
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Fig. 4. Smoothing error of different smoothing algorithms

The results of smoothing at t = 0.01 from s4DVAR and ExtRTS are shown
in Fig. 5. The results of filtering at t = 0.02 from 3DVAR and ExtKF are shown
in Fig. 6. We can see from Fig. 5 that by using limited observations, 4DVAR and
ExtRTS are able to recover the state close to true state. Also in Fig. 6, we see
that by using only data at t = 0.01, 3DVAR and the Kalman Filter are able to
predict a state at t = 0.02 that is much closer to true state comparing to the
Forecast baseline method.

We also explore the importance of observations on different variables. With
the same settings on the dynamical system, we apply the Kalman Filter (ExtKF)
to observations on pm, pf , and u separately. We still observe from t = 0.01 and
observe every 0.01 time unit, but on all grid points. The results are presented in
Fig. 7
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Fig. 5. Results of smoothers at time t = 0.01 in the 2D model.

We can see from Fig. 7 that the data on the flow pressure pm in the matrix
subsystem in the dual porosity subdomain provides most of the information while
the other two variables provide little improvement over the Forward baseline
method, which uses no observation at all. This behavior exists in all our test
models with different boundary conditions, source terms and geometries. This
phenomenon needs further investigation. Here we conclude that in our limited
test cases, observations on pm provide significant information about the true
states while observations on pf and u do not.
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Fig. 6. Results of filters at time t = 0.02 in the 2D model.

Lastly we show the result of the Kalman Filter and the Kalman Smoother on
a 3D coupled dual porosity Stokes model introduced in [8], with the mesh size
h = 1/8 and observations on pm only. All the other settings are the same as in
the 2D model. The results in Fig. 8 validate the Kalman Filter and the Kalman
Smoother on our 3D models and real world applications.
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Fig. 7. Forecasting error of Kalman Filter with different observations.

Fig. 8. Forecasting and smoothing error of ExtKF and ExtRTS on the 3D model.

5 Conclusions and Future Work

In this paper, we introduced the coupled dual porosity Stokes model. We set up
a data assimilation problem based on the coupled model and applied different
data assimilations to solve the problem. Due to the linearity of the coupled dual
porosity Stokes model, the Kalman Filter and the Kalman Smoother achieve
optimal solutions for filtering and smoothing, respectively, as expected. From
our numerical experiments we have seen that observations of pressures in the
matrix subsystem contain most of the useful information for data assimilation.
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Future work includes exploring different data assimilation methods on the
nonlinear coupled dual porosity Navier-Stokes model, applying data assimilation
methods with experiment data and investigating the reason behind the uneven
distribution of information in different variables.
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