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Abstract. This paper proposes a line-search optimization method for
non-linear data assimilation via random descent directions. The itera-
tive method works as follows: at each iteration, quadratic approxima-
tions of the Three-Dimensional-Variational (3D-Var) cost function are
built about current solutions. These approximations are employed to
build sub-spaces onto which analysis increments can be estimated. We
sample search-directions from those sub-spaces, and for each direction,
a line-search optimization method is employed to estimate its optimal
step length. Current solutions are updated based on directions along
which the 3D-Var cost function decreases faster. We theoretically prove
the global convergence of our proposed iterative method. Experimental
tests are performed by using the Lorenz-96 model, and for reference, we
employ a Maximum-Likelihood-Ensemble-Filter (MLEF) whose ensem-
ble size doubles that of our implementation. The results reveal that,
as the degree of observational operators increases, the use of additional
directions can improve the accuracy of results in terms of �2-norm of
errors, and even more, our numerical results outperform those of the
employed MLEF implementation.

Keywords: Ensemble Kalman filter · Line-search optimization ·
Modified Cholesky decomposition

1 Introduction

Data Assimilation is the process by which imperfect numerical forecasts are
adjusted according to real observations [1]. In sequential methods, a numerical
forecast xb ∈ R

n×1 is adjusted according to an array of observations y ∈ R
m×1

where n and m are the number of model components and the number of obser-
vations, respectively. When Gaussian assumptions are made in prior and obser-
vational errors, the posterior mode xa ∈ R

n×1 can be estimated via the mini-
mization of the Three Dimensional Variational (3D-Var) cost function:

J (x) =
1
2

· ∥
∥x − xb

∥
∥
2

B−1 +
1
2

· ‖y − H (x)‖2R−1 , (1)
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where B ∈ R
n×n and R ∈ R

m×m are the background error and the data error
covariance matrices, respectively. Likewise, H(x) : R

n×1 → R
m×1 is a (non-)

linear observation operator which maps vector states to observation spaces. The
solution to the optimization problem

xa = arg min
x

J (x), (2)

is immediate when H(x) is linear (i.e., closed-form expressions can be obtained
to compute xa) but, for non-linear observation operators, numerical optimization
methods such as Newton’s one must be employed [2]. However, since Newton’s
step is derived from a second-order Taylor polynomial, it can be too large with
regard to the actual step size. Thus, line search methods can be employed to esti-
mate optimal step lengths among Newton’s method iterations. A DA method
based on this idea is the Maximum-Likelihood-Ensemble-Filter (MLEF), which
performs the assimilation step onto the ensemble space. However, the conver-
gence of this method is not guaranteed (i.e., as the mismatch of gradients cannot
be bounded), and even more, analysis increments can be impacted by sampling
noise. We think that there is an opportunity to enhance line-search methods in
the non-linear DA context by employing random descent directions onto which
analysis increments can be estimated. Moreover, the analysis increments can be
computed onto the model space to ensure global convergence.

This paper is organized as follows: in Sect. 2, we discuss topics related to
linear and non-linear data assimilation as well as line-search optimization meth-
ods. Section 3 proposes an ensemble Kalman filter implementation via random
descent directions. In Sect. 4, experimental tests are performed to assess the
accuracy of our proposed filter implementation by using the Lorenz 96 model.
Conclusions of this research are stated in Sect. 5.

2 Preliminaries

2.1 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a sequential Monte-Carlo method for
parameter and state estimation in highly non-linear models [3]. The popularity
of the EnKF obeys to his simple formulation and relatively ease implementation.
In the EnKF, an ensemble of model realizations is employed to estimate moments
of the background error distribution [4]:

Xb
k =

[

xb[1], xb[2], . . . , xb[N ]
]

∈ R
n×N (3)

where xb[e] ∈ R
n×1 stands for the e-th ensemble member, for 1 ≤ e ≤ N , at time

k, for 0 ≤ k ≤ M . Then, the ensemble mean:

xb =
1
N

·
N∑

e=1

xb[e] ∈ R
n×1, (4)
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and the ensemble covariance matrix:

Pb =
1

N − 1
· ΔXb · [

ΔXb
]T ∈ R

n×n, (5)

act as estimates of the background state xb and the background error covariance
matrix B, respectively, where the matrix of member deviations reads:

ΔXb = Xb − xb · 1T ∈ R
n×N . (6)

Posterior members can be computed via the use synthetic observations:

Xa = Xb + ΔXa, (7)

where the analysis increments can be obtained via the solution of the next linear
system:

[[

Pb
]−1

+ HT · R−1 · H
]

· ΔXa = HT · R−1 · Ds ∈ R
n×N , (8)

and Ds ∈ R
m×N is the innovation matrix on the synthetic observations whose

e-th column reads y−H ·xb[e] +ε[e] ∈ R
m×1 with ε[e] ∼ N (0m, R). In practice,

model dimensions range in the order of millions while ensemble sizes are con-
strained by the hundreds and as a direct consequence, sampling errors impact the
quality of analysis increments. To counteract the effects of sampling noise, local-
izations methods are commonly employed [5], in practice. In the EnKF based
on a modified Cholesky decomposition (EnKF-MC) [6] the following estimator
is employed to approximate the precision covariance matrix of the background
error distribution [7]:

B̂−1 = L̂T · D̂−1 · L̂ ∈ R
n×n, (9)

where the Cholesky factor L ∈ R
n×n is a lower triangular matrix,

{

L̂
}

i,v
=

⎧

⎪⎨

⎪⎩

−βi,v , v ∈ P (i, r)
1 , i = v

0 , otherwise

, (10)

whose non-zero sub-diagonal elements βi,v are obtained by fitting models of the
form,

xT
[i] =

∑

v∈P (i, r)

βi,v · xT
[v] + γi ∈ R

N×1, 1 ≤ i ≤ n, (11)

where xT
[i] ∈ R

N×1 denotes the i-th row (model component) of the ensemble
(3), components of vector γi ∈ R

N×1 are samples from a zero-mean Normal
distribution with unknown variance σ2, and D ∈ R

n×n is a diagonal matrix
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whose diagonal elements read,

{D}i,i = v̂ar

⎛

⎝xT
[i] −

∑

v∈P (i, r)

βi,v · xT
[j]

⎞

⎠

−1

(12)

≈ var (γi)
−1 =

1
σ2

> 0, with {D}1,1 = v̂ar
(

xT
[1]

)−1

, (13)

where var(•) and v̂ar(•) denote the actual and the empirical variances, respec-
tively. The analysis equations can then be written as follows:

Xa = Xb +
[

L̃T · D̃−1/2
]−1

· E ∈ R
n×N , (14)

where

Â−1 = L̃T · D̃−1 · L̃ = B̂−1 + HT · R−1 · H (15)

= L̂T · D̂−1 · L̂ + HT · R−1 · H ∈ R
n×n,

is an estimate of the posterior precision covariance matrix while the columns of
matrix E ∈ R

n×N are formed by samples from a standard Normal distribution,
L̃T ∈ R

n×n is a lower triangular matrix (with the same structure as L̂), and
D̃−1 ∈ R

n×n is a diagonal matrix. Given the special structure of the left-hand
side in (14), the direct inversion of the matrix L̃ · D̃−1/2 ∈ R

n×n can be avoided
[8, Algorithm 1].

2.2 Maximum Likelihood Ensemble Filter (MLEF)

To handle non-linear observation operators during assimilation steps, opti-
mization based methods can be employed to estimate analysis increments. A
well-known method in this context is the Maximum-Likelihood-Ensemble-Filter
(MLEF) [9,10]. This square-root filter employs the ensemble space to compute
analysis increments, this is:

xa − xb ∈ range {ΔX} ,

which is nothing but a pseudo square-root approximation of B1/2. Thus, vector
states can be written as follows:

x = xb + ΔX · w, (16)

where w ∈ R
N×1 is a vector in redundant coordinates to be computed later. By

replacing (16) in (1) one obtains:

J (x) = J
(
xb + ΔX · w

)
=

N − 1

2
· ‖w‖2 +

1

2
·
∥∥∥y − H

(
xb + ΔX · w

)∥∥∥
2

R−1
. (17)

The optimization problem to solve reads:

w∗ = arg min
w

J (

xb + ΔX · w)

. (18)
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This problem can be numerically solved via Line-Search (LS) and/or Trust-
Region methods. However, convergence is not ensured since gradient approxi-
mations are performed onto a reduce space whose dimension is much smaller
than that of the model one.

2.3 Line Search Optimization Methods

The solution of optimization problems of the form (2) can be approximated via
Numerical Optimization. In this context, solutions are obtained via iterations:

xk+1 = xk + Δsk, (19)

wherein k denotes iteration index, and Δsk ∈ R
n×1 is a descent direction, for

instance, the gradient descent direction [11]

Δsk = −∇J (xk) , (20a)

the Newton’s step [12],

∇2J (xk) · Δsk = −∇J (xk) , (20b)

or a quasi-Newton based method [13],

Pk · Δsk = −∇J (xk) , (20c)

where Pk ∈ R
n×n is a positive definite matrix. A concise survey of Newton based

methods can be consulted in [14]. Since step lengths in (20) are based on first
or second order Taylor polynomials, the step size can be chosen via line search
[15] and/or trust region [16] methods. Thus, we can ensure global convergence of
optimization methods to stationary points of the cost function (1). This holds as
long as some assumptions over functions, gradients, and (potentially) Hessians
are preserved [17]. In the context of line search, the following assumptions are
commonly done:

C1 A lower bound of J (x) exists on Ω0 = {x ∈ R
n×1, J (x) ≤ J (

x†)}, where
x† ∈ R

n×1 is available.
C2 There is a constant L such as:

‖∇J (x) − ∇J (z)‖ ≤ L · ‖x − z‖ , for x, z ∈ B, and L > 0,

where B is an open convex set which contains Ω0. These conditions together
with iterates of the form,

xk+1 = xk + α · Δsk, (21)

ensure global convergence [18] as long as α is chosen as an (approximated)
minimizer of

α∗ = arg min
α≥0

J (xk + α · Δsk) . (22)

In practice, rules for choosing step-size such as the Goldstein rule [19], the Strong
Wolfe rule [20], and the Halving method [21] are employed to partially solve (22).
Moreover, soft computing methods can be employed for solving (22) [22].
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3 Proposed Method: An Ensemble Kalman Filter
Implementation via Line-Search Optimization and
Random Descent Directions

In this section, we propose an iterative method to estimate the solution of the
optimization problem (2). We detail our filter derivation, and subsequently, we
theoretically prove the convergence of our method.

3.1 Filter Derivation

Starting with the forecast ensemble (3), we compute an estimate B̂−1 of the pre-
cision covariance B−1 via modified Cholesky decomposition. Then, we perform
an iterative process as follows: let x0 = xb, at iteration k, for 0 ≤ k ≤ K, where
K is the maximum number of iterations, we build a quadratic approximation of
J (x) about xk

Jk(x) =
1
2

· ‖x − xk‖2
̂B−1 +

1
2

·
∥
∥
∥y − Ĥk(x)

∥
∥
∥

2

R−1
, (23a)

where

Ĥk(x) = H (xk) + Hk · [x − xk] ,

and Hk is the Jacobian of H(x) at xk. The gradient of (23a) reads:

∇Jk(x) = B̂−1 · [x − xk] − HT
k · R−1 · [dk − Hk · x]

=
[

B̂−1 + HT
k · R−1 · Hk

]

· x − HT
k · R · dk ∈ R

n×1,

where dk = y − H(xk) + Hk · xk ∈ R
m×1. Readily, the Hessian of (23a) is

∇2Jk(x) = B̂−1 + HT
k · R−1 · Hk ∈ R

n×n, (23b)

and therefore, the Newton’s step can be written as follows:

pk(x) = −
[

B̂−1 + HT
k · R−1 · Hk

]−1

·
[[

B̂−1 + HT
k · R−1 · Hk

]

· x − HT
k · R · dk

]

,

= −x +
[

B̂−1 + HT
k · R−1 · Hk

]−1

· HT
k · R · dk. (23c)

As we mentioned before, the step size (23c) is based on a quadratic approx-
imation of J (x) and depending how highly non-linear is H(x), the direction
(23c) can poorly estimate the analysis increments. Thus, we compute U random
directions based on the Newton’s one as follows:

qu,k = Πu · pk (xk) ∈ R
n×1, for 1 ≤ u ≤ U, (23d)
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where the matrices Πu ∈ R
n×n are symmetric positive definite and these are

randomly formed with ‖Πu‖ = 1. We constraint the increments to the space
spanned by the vectors (23d), this is

xk+1 − xk = range {Qk} ,

where the u-th column of Qk ∈ R
n×U reads qu,k. Thus,

xk+1 = xk + Qk · γ∗, (23e)

where γ∗ ∈ R
U×1 is estimated by solving the following optimization problem

γ∗ = arg min
γ

J (xk + Qk · γ) . (23f)

To solve (23f), we proceed as follows: generate Z random vectors γz ∈ R
U×1,

for 1 ≤ z ≤ Z, with ‖γz‖ = 1. We then, for each direction Qk · γz ∈ R
n×1, we

solve the following one-dimensional optimization problem

α∗
z = arg min

αz

J (xk + αz · [Qk · γz]) , (23g)

and therefore, an estimate of the next iterate (23e) reads:

xk+1 = xk + Qk · [α∗
k · γk] , (23h)

where the pair (α∗
k, γk) is chosen as the duple (α∗

z, γz) which provide the best
profit (minimum value) in (23g), for 1 ≤ z ≤ Z. The overall process detailed in
equations (23) is repeated until some stopping criterion is satisfied (i.e., we let
a maximum number of iterations K).

Based on the iterations (23h), we estimate the analysis state as follows:

xa = xb +
K∑

k=1

Qk · [α∗
k · γk] = xK . (24)

The inverse of the Hessian (23b) provides an estimate of the posterior error
covariance matrix. Thus, posterior members (analysis ensemble) can be sampled
as follows:

xa[e] ∼ N
(

xa,
[∇2JK (xa)

]−1
)

. (25)

To efficiently perform the sampling process (25) the reader can consult [23].
Afterwards, the analysis members are propagated in time until a new observation
is available. We name this formulation the Random Ensemble Kalman Filter
(RAN-EnKF).

3.2 Convergence of the Analysis Step in the RAN-EnKF

For proving the convergence of our method, we consider the assumptions C1,
C2, and

∇J (xk)T · qu,k < 0, for 1 ≤ u ≤ U. (26)

The next Theorem states the necessary conditions in order to ensure global
convergence of the analysis step in the RAN-EnKF.
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Theorem 1. If (2.3), (2.3), and (26) hold, then the RSLS-RD with exact line
search generates an infinite sequence {xk}∞

u=0, then

lim
k→∞

[

−∇J (xk)T · Qk · γ∗

‖Qk · γ∗‖

]2

= 0 (27)

holds.

Proof. By Taylor series and the Mean Value Theorem we know that,

J
(

x(u) + α∗ · Qk · γ∗
)

= J (xk)

+ α∗ ·
∫ 1

0

∇J (xk + α∗ · t · Qk · γ∗)T

· Qk · γ∗ · dt,

and therefore,

J (xk) − J (xk+1) ≥ −α∗ ·
∫ 1

0

∇J (xk + α∗ · t · Qk · γ∗)T

· Qk · γ∗ · dt

for any xk+1 on the ray xk + α · Qk · γ∗, with α ∈ [0, 1], we have

J (xk) − J (xk+1) ≥ J (xk) − J (xk + α∗ · Qk · γ∗) ,

hence:

J (xk) − J (xk+1) ≥ −α∗ · ∇J (xk)T · Qk · γ∗

− α∗ ·
∫ 1

0

[∇J (xk + α∗ · t · Qk · γ∗) − ∇J (xk)]T

· Qk · γ∗ · dt,

by the Cauchy Schwarz inequality we have

J (xk) − J (xk+1) ≥ −α∗ · ∇J (xk)T · Qk · γ∗

− α∗ ·
∫ 1

0

‖∇J (xk + α∗ · t · Qk · γ∗) − ∇J (xk)‖
· ‖Qk · γ∗‖ · dt

≥ −α∗ · ∇J (xk)T · Qk · γ∗

− α∗ ·
∫ 1

0

L · ‖α∗ · t · Qk · γ∗‖ · ‖Qk · γ∗‖ · dt

= −α∗ · ∇J (xk)T · Qk · γ∗

− α∗ · L · ‖Qk · γ∗‖ ·
∫ 1

0

‖t · α∗ · Qk · γ∗‖ · dt

= −α∗ · ∇J (xk)T · Qk · γ∗ − 1
2

· α∗2 · L · ‖Qk · γ∗‖2 ,
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choose

α∗ = −∇J (xk)T · Qk · γ∗

L · ‖Qk · γ∗‖2 ,

therefore,

J (xk) − J (xk+1) ≥
[

∇J (xk)T · Qk · γ∗
]2

L · ‖Qk · γ∗‖2

− 1
2

·
[

−∇J (xk)T · Qk · γ∗
]2

L · ‖Qk · γ∗‖2

=
1

2 · L
·
[

−∇J (xk)T · Qk · γ∗

‖Qk · γ∗‖

]2

.

By (2.3), and (26), it follows that {J (xk)}∞
k=0 is a monotone decreasing number

sequence and it has a bound below, therefore {J (xk)}∞
k=0 has a limit, and

consequently (27) holds.

We are now ready to test our proposed method numerically.

4 Experimental Results

For the experiments, we consider non-linear observation operators, a current
challenge in the context of DA [6,24]. We make use of the Lorenz-96 model
[25] as our surrogate model during the experiments. The Lorenz-96 model is
described by the following set of ordinary differential equations [26]:

dxj

dt
=

⎧

⎪⎨

⎪⎩

(x2 − xn−1) · xn − x1 + F for j = 1,

(xj+1 − xj−2) · xj−1 − xj + F for 2 ≤ j ≤ n − 1,

(x1 − xn−2) · xn−1 − xn + F for j = n,

(28)

where F is external force and n = 40 is the number of model components. Peri-
odic boundary conditions are assumed. When F = 8 units the model exhibits
chaotic behavior, which makes it a relevant surrogate problem for atmospheric
dynamics [27,28]. A time unit in the Lorenz-96 represents 7 days in the atmo-
sphere. We create the initial pool ̂Xb

0 of N̂ = 104 members. The error statistics
of observations are as follows:

yk ∼ N
(

Hk (x∗
k) , [εo]2 · I

)

, for 0 ≤ k ≤ M,

where the standard deviations of observational errors εo = 10−2. The com-
ponents are randomly chosen at the different assimilation cycles. We use the
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non-smooth and non-linear observation operator [29]:

{H (x)}j =
{x}j

2
·

⎡

⎢
⎣

⎛

⎝

∣
∣
∣{x}j

∣
∣
∣

2

⎞

⎠

β−1

+ 1

⎤

⎥
⎦ , (29)

where j denotes the j-th observed component from the model state. Likewise,
β ∈ {1, 3, 5, 7, 9}. Since the observation operator (29) is non-smooth, gradients
of (1) are approximated by using the �2-norm. A full observational network is
available at assimilation steps. The ensemble size for the benchmarks is N =
20. These members are randomly chosen from the pool ̂Xb

0 for the different
experiments in order to form the initial ensemble Xb

0 for the assimilation window.
Evidently, Xb

0 ⊂ ̂Xb
0. The �2-norm of errors are utilized as a measure of accuracy

at the assimilation step k,

E (xk, x∗) =
√

[x∗ − xk]T · [x∗ − xk], (30)

where x∗ and xk are the reference and current solution at iteration k, respec-
tively. The initial background error, in average, reads εb ≈ 31.73. By conve-
nience, this value is expressed in the log scale: log(εb) = 3.45. We consider a
single assimilation cycle for the experiments. We try sub-spaces of dimensions
U ∈ {10, 20, 30} and number of samples from those spaces of Z ∈ {10, 30, 50}.
We set a maximum number of iterations of 40. We compare our results with
those obtained by the MLEF with N = 40, note that, the ensemble size in the
MLEF doubles the ones employed by our method.

We group the results in Figs. 1 and 2 by sub-space size and sample size (sub-
space dimension), respectively. As can be seen, the RAN-EnKF outperforms the
MLEF in terms of �2-norm of errors, for all cases. Note that the error differences
between the compared filter implementations are given by order of magnitudes.
This can be explained as follows: the MLEF method performs the assimilation
step onto a space given by the ensemble size; this is equivalent to perform an
assimilation process by using the sample covariance matrix (5) whose quality
is impacted by sampling errors. Contrarily, in our formulation, we employ sub-
spaces whose basis vectors rely on the precision covariance (9) and, therefore, the
impact of sampling errors is mitigated during optimization steps. As the degree
β of the observation operator increases, the accuracy of the MLEF degrades,
and consequently, this method diverges for the largest β value. On the other
hand, convergence is always achieved in the RAN-EnKF method; this should be
expected based on the theoretical results of Theorem 1. It should be noted that,
as the β value increases, the 3D-Var cost function becomes highly non-linear,
and as a consequence, more iterations are needed to decrease errors (as in any
iterative optimization method). In general, it can be seen that as the number
of samples Z increases, the results can be improved regardless of the sub-space
dimension U (i.e., for Z = 10). However, it is clear that, for highly non-linear
observation operators, it is better to have small sub-spaces and a large number
of samples.
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Fig. 1. �2-norm of errors in the log-scale for the 3D-Var Optimization Problem with
different degrees β of the observation operator and dimension of sub-spaces U . For the
largest β value, the MLEF diverges and therefore, its results are not reported.
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Fig. 2. �2-norm of errors in the log-scale for the 3D-Var Optimization Problem with
different degrees β of the observation operator and number of samples Z. For the largest
β value, the MLEF diverges and therefore, its results are not reported.

5 Conclusions

In this paper, we propose an ensemble Kalman filter implementation via line-
search optimization; we name it a Random Ensemble Kalman Filter (RAN-
EnKF). The proposed method proceeds as follows: an ensemble of model realiza-
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tion is employed to estimate background moments, and then, quadratic approx-
imations of the 3D-Var cost function are obtained among iterations via the lin-
earization of the observation operator about current solutions. These approxi-
mations serve to estimate descent directions of the 3D-Var cost function, which
are perturbed to obtain additional directions onto which analysis increments can
be computed. We theoretically prove the global convergence of our optimization
method. Experimental tests are performed by using the Lorenz 96 model and
the Maximum-Likelihood-Ensemble-Filter formulation. The results reveal that
the RAN-EnKF outperforms the MLEF in terms of �2-norm of errors, and even
more, it is able to achieve convergence in cases wherein the MLEF diverges.
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