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Abstract. We propose a general algorithm that treats cascade training
as a tree search process working according to the branch-and-bound tech-
nique. The algorithm allows to reduce the expected number of features
used by an operating cascade—a key quantity we focus on in the paper.
While searching, we observe suitable lower bounds on partial expecta-
tions and prune tree branches that cannot improve the best-so-far result.
Both exact and approximate variants of the approach are formulated.
Experiments pertain to cascades trained to be face or letter detectors
with Haar-like features or Zernike moments being the input informa-
tion, respectively. Results confirm shorter operating times of cascades
obtained owing to the reduction in the number of extracted features.

Keywords: Cascade of classifiers · Branch-and-bound tree search ·
Expected number of features

1 Introduction

Branch-and-bound technique is a useful tool in computer science. Multiple appli-
cation examples can be named—let us mention DNA regulatory motif finding [8]
and α-β pruning in games, just to give two examples from quite remote fields.
In this paper we adopt the technique to train cascades of classifiers.

Cascades were in principle designed to work as classifying systems operating
under the following two conditions: (1) very large number of incoming requests,
(2) significant classes imbalance. The second condition should not be seen as a
difficulty but rather a favorable setting that makes the whole idea viable. Namely,
a cascade should vary its computational efforts depending on the contents of an
object to be classified. Objects that are obvious negatives (non-targets) should
be recognized fast, using only a few features extracted. Targets, or objects resem-
bling, them are allowed to employ more features and time for computations.

Despite the development of deep learning, recent literature shows that cas-
cades of classifiers are still widely applied in detection systems or batch classifi-
cation jobs. Let us list a few examples: crowd analysis and people counting [1],
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human detection in thermal images [6], localization of white blood cells [4], eye
tracking [9,11], detection of birds near high power electric lines [7].

There exist a certain average value of the computational cost incurred by an
operating cascade. It can be mathematically defined as an expected value and,
in fact, calculated explicitly for a given cascade (we do this in Sect. 2.3) in terms
of: the number of features applied on successive stages, false alarm and detection
rates on successive stages, probability distribution from which the data is drawn.
Since the true distribution underlying the data is typically unknown in practice,
the exact expected value cannot be determined. Interestingly though, it can be
accurately approximated using just the feature counts and false alarm rates.

Training procedures for cascades are time-consuming, taking days or even
weeks. As Viola and Jones noted in their pionieering work [18], cascade training
is a difficult combinatorial optimization involving many parameters: number of
stages, number of features on successive stages, selection of those features, and
finally decision thresholds. The problem has not been ultimately solved yet.
Viola and Jones tackled it by imposing the final requirements the whole cascade
should meet in order to be accepted, defined by a pair of numbers (A,D), where
A denotes the largest allowed false alarm rate (FAR), and D the smallest allowed
detection rate (sensitivity). Due to probabilistic properties of cascade structure,
one can translate final requirements onto per-stage requirements as geometric
means: amax=A1/K and dmin=D1/K , where K is the fixed number of stages.

Many modifications to cascade training have been introduced over the years.
Most of them try out different: feature selection approaches, subsampling meth-
ods, or are simply tailored to a particular type of features [3,10,12,17] (e.g. Haar,
HOG, LBP, etc.). Some authors obtain modified cascades by designing new
boosting algorithms that underlie the training [14,15], but due to mathematical
difficulties, the expected number of features is seldom the main optimization
criterion. One of few exceptions is an elegant work by Saberian and Vasconcelos
[14]. The authors use gradient descent to optimize explicitly a Lagrangian rep-
resenting the trade-off between cascade’s error rate and the operating cost
(expected value). They use a trick that translates non-differentiable recursive
formulas to smooth ones using hyperbolic tangent approximations. The app-
roach is analytically tractable but expensive, because all cascade stages are kept
open while training. In every step one has to check all variational derivatives
based on features at disposal for all open stages.

The main contribution of this paper is an algorithm—or in fact a general
framework—for training cascades of classifiers via a tree search approach and
the branch-and-bound technique. Successive tree levels correspond to successive
cascade stages. Sibling nodes represent variants of the same stage with different
number of features applied. We provide suitable formulas for lower bounds on
the expected value that we optimize. During an ongoing search, we observe
the lower bounds, and whenever a bound for some tree branch is greater than
(or equal to) the best-so-far expectation, the branch becomes pruned. Once the
search is finished, one of the paths from the root to some terminal node indicates
the cascade with the smallest expected number of features. Apart from the exact
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approach to pruning, we additionally propose an approximate one, using suitable
predictions of expected values.

2 Preliminaries

2.1 Notation

Throughout this paper we use the following notation:

– K — number of cascade stages,
– n = (n1, n2, . . . , nK)—numbers of features used on successive stages,
– (a1, a2, . . . , aK)—FAR values on successive stages (false alarm rates),
– (d1, d2, . . . , dK)—sensitivities on successive stages (detection rates),
– A—required FAR for the whole cascade,
– D—required detection rate (sensitivity) for the whole cascade,
– F = (F1, F2, . . . , FK)—ensemble classifiers on successive stages (the cascade),
– Ak—FAR observed up to k-th stage of cascade (Ak =

∏
1�i�k ai),

– Dk—sensitivity observed up to k-th stage of cascade (Dk =
∏

1�i�k di),
– (p, 1 − p)—true probability distribution of classes (unknown in practice),
– D,V—training and validation data sets,
– #—set size operator (cardinality of a set),
– ‖—concatenation operator (to concatenate cascade stages).

The probabilistic meaning of relevant quantities is as follows. The final require-
ments (A,D) demand that: P (F (x)= + |y=−) �A and P (F (x)= + |y=+)�D,
whereas false alarm and detection rates observed on particular stages are, respec-
tively, equal to:

ak = P (Fk(x)= + |y=−, F1(x)= · · · =Fk−1(x)=+) ,

dk = P (Fk(x)= + |y=+, F1(x)= · · · =Fk−1(x) = +) . (1)

2.2 Classical Cascade Training Algorithm (Viola-Jones Style)

The classical cascade training algorithm given below (Algorithm 1) can be
treated as a reference for new algorithms we propose.

Please note, in the final line of the pseudocode, that we return (F1, F2, . . . , Fk)
rather than (F1, F2, . . . , FK). This is because the training procedure can poten-
tially stop earlier, when k < K, provided that the final requirements (A,D) for
the entire cascade are already satisfied i.e. Ak � A and Dk � D.

The step “Adjust decision threshold” requires a more detailed explanation.
The real-valued response of any stage can be suitably thresholded to obtain
either some wanted sensitivity or FAR. Hence, the resulting {−1,+1}-decision
of a stage is, in fact, calculated as the sign of expression

Fk(x) − θk,

where θk represents the decision threshold. Suppose (v1, v2, . . . , v#P) denotes a
sequence of sorted, vi � vi+1, real-valued responses of a new cascade stage Fk+1

obtained on positive examples (subset P). Then, the dmin per-stage requirement
can be satisfied by simply choosing: θk+1 = v�(1−dmin)·#P�.
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Algorithm 1. VJ-style training algorithm for cascade of classifiers
procedure TrainVJCascade(D, A, D, K, V)

From D take subsets P, N with positive and negative examples, respectively.
F := () � initial cascade — empty sequence
amax := A1/K , dmin := D1/K , A0 := 1, D0 := 1, k := 0.
while Ak > A do

nk+1 := 0, Fk+1 := 0, Ak+1 := Ak, ak+1 := Ak+1/Ak.
while ak+1 > amax do

nk+1 := nk+1 + 1.
Train new weak classifier f using P and N
Fk+1 := Fk+1 + f .
Adjust decision threshold θk+1 for Fk+1 to satisfy dmin requirement.
Use cascade F‖Fk+1 on validation set V to measure Ak+1 and Dk+1.
ak+1 := Ak+1/Ak.

F := F‖Fk+1.
if Ak+1 > A then

N := ∅.
Use cascade F to populate set N with false detections

sampled from non-target images.

k := k + 1

return F = (F1, F2, . . . , Fk).

2.3 Expected Number of Extracted Features

Definition-Based Formula. A cascade stops operating after a certain num-
ber of stages. It does not stop in the middle of a stage. Therefore the possible
outcomes of the random variable of interest, describing the disjoint events, are:
n1, n1 + n2, . . . , n1 + n2 + · · · + nK . Hence, by the definition of expected value,
the expected number of features can be calculated as follows:

E(n) =
∑

1�k�K

( ∑

1�i�k

ni

)
(

p
( ∏

1�i<k

di

)
(1−dk)[k<K]+(1−p)

( ∏

1�i<k

ai

)
(1−ak)[k<K]

)

,

(2)
where [·] is an indicator function.

Incremental Formula and Its Approximation. By grouping the terms in
(2) with respect to nk the following alternative formula can be derived:

E(n) =
∑

1�k�K

nk

⎛

⎝p
∏

1�i<k

di + (1 − p)
∏

1�i<k

ai

⎞

⎠ . (3)

Obviously, in practical applications the true probability distribution under-
lying the data is unknown. Since the probability p of the positive class is very
small (typically p < 10−4), the expected value can be accurately approximated
using only the summands related to the negative class as follows:
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Ê(n) =
∑

1�k�K

nk

∏

1�i<k

ai ≈ E(n). (4)

It is also interesting to remark that in the original Viola and Jones’ paper
[18] the authors proposed an incorrect formula to estimate the expected number
of features, namely:

EVJ(n) =
K∑

k=1

nk

k−1∏

i=1

ri, (5)

where ri represents the “positive rate” of i-th stage. This is equivalent to

EVJ(n) =
K∑

k=1

nk

k−1∏

i=1

(pdi + (1 − p)ai). (6)

Please note that by multiplying positive rates of stages, one obtains mixed terms
of form di · aj that do not have any probabilistic sense. For example for k = 3
the product under summation becomes (pd1 + (1 − p)a1) (pd2 + (1 − p)a2), with
the terms d1a2 and a1d2 having no sense, because a fixed data point does not
change its class label while traveling along the cascade.

3 Cascade Training as a Tree Search

In stage-wise training procedures, each stage, once fixed, must not be altered.
The paper [14], discussed in the introduction, represents an opposite approach,
where all stages can be extended with a weak classifier at any time. The approach
we propose is in-between the two mentioned above. It provides more flexibility
than stage-wise training and simultaneously avoids high complexity of [14].

We treat cascade training as a tree search process. The root of the tree repre-
sents an empty cascade. Successive tree levels correspond to successive cascade
stages. Each non-terminal tree node is going to have an odd number of children
nodes. They will represent variants of a subsequent stage with slightly different
number of features. The children will be processed recursively from left to right
until the stop condition is met. It should be understood that the nodes are not
simply generated mechanically but, in fact, trained as ensemble classifiers.

The size of the tree shall be controlled by two integer parameters L and C,
predefined by the user. To keep the tree fairly small, the branching of variants
shall take place only at L top-most levels, e.g. L = 2. At those levels the branch-
ing factor will be equal to C, an odd number, e.g. C = 5. At deeper levels the
branching factor will be one. Therefore, the actual branching shall affect only
initial stages having the largest impact on the expected number of features. Once
the tree search is finished, one of the paths from the root to some terminal node
shall indicate the best cascade i.e. having the smallest expectation.

For notation purposes, children nodes being variants of the same stage use an
additional subindex. For example, the classifier F1,0 denotes the main variant of
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the first stage (using a certain number of features) and is graphically represented
as the middle child. Its left siblings F1,−1, F1,−2, . . . denote classifiers using fewer
features (one less, two less, etc.). The right siblings F1,+1, F1,+2, . . . use more
features than the middle child (one more, two more, etc.). This notation will be
used only locally within single recursive calls (due to global ambiguity).

3.1 Pruning Search Tree Using Current Partial Expectations—Exact
Branch-and-bound

During an ongoing tree search (combined with cascade training) one can observe
partial values for the expected value of interest — formula (4). Suppose a new
(k + 1)-th stage has been completed, revealing nk+1 features. The formula

Ê
(
(n1, . . . , nk+1)

)
=

∑

1�j�k

nj

∏

1�i<j

ai +nk+1

∏

1�i<k+1

ai = Ê
(
(n1, . . . , nk)

)
+nk+1

∏

1�i<k+1

ai.

(7)
expresses the partial expectation for the extended cascade in an incremen-
tal manner. It should be clear that whenever a partial expectation for some
tree branch is greater than (or equal to) the best-so-far exact expectation, say
Ê

(
(n1, . . . , nk+1)

)
� Ê∗, then there is no point in pursuing that branch fur-

ther down the tree. In other words, pruning can be applied because formula (7)
provides a lower bound on the final unknown expectation.

Figure 1 provides a symbolic illustration of a search tree with pruning. In
the figure, the subindexes E1, E2, . . . are meant to indicate chronologically the
partial expected values observed on the successive branches as the tree is being
traversed from left to right. Crossed-out lines represent the pruned branches.

Fig. 1. Cascade training as a tree search with pruning—example illustration.
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Algorithm 2 stated as a recursion. A single recursive call can be summarized
as follows. It takes as input a partial cascade F with k stages and trains the
new (k + 1)-th stage in its main variant Fk+1,0. We refer to it as the middle
child. Then, the algorithm “branches” the stage (if level not greater than L) by
creating clones of the middle child with fewer features: Fk+1,−1, Fk+1,−2, . . . (left
children), and with more features: Fk+1,+1, Fk+1,+2, . . . (right children). The
algorithm iterates over all children and performs recursive calls to train their
subsequent stages provided that the lower bound (7) on the final expectation is
not worse than the best expectation Ê∗ so far. A recursion path, representing
some cascade, reaches its stopping point when final requirements (A,D) are
satisfied and when its expected value is strictly less than Ê∗ (initially, set to ∞).
The outermost recursion call is

TrainTreeCascade (D, A,D,K, 0,V, (), L, C,null,∞)

yielding a pair of results: the best cascade F ∗ and its expectation Ê∗.
Inside the subroutine TrainStage we train a single ensemble using per-stage

requirements. They can be calculated a standard geometric means (classical
VJ-style), leading to constant per-stage requirements for the whole training, or
as updated geometric means (UGM): uniform or greedy. The formulas below
represent the three options.

VJ : amax,k+1 = A1/K , dmin,k+1 = D1/K . (8)

UGM : amax,k+1 =
(
A

/ ∏
1�i�k

ai

)1/(K−k)

, dmin,k+1 =
(
D

/ ∏
1�i�k

di

)1/(K−k)

. (9)

UGM-G : amax,k+1 = A(k+1)/K
/ ∏

1�i�k

ai, dmin,k+1 = D(k+1)/K
/ ∏

1�i�k

di.

(10)

3.2 Pruning Search Tree Using Expectation Predictions—
Approximate Branch-and-bound

Suppose we have completed the training of stage k + 1 and would like to make
a prediction about the partial expectation for stage k + 2 without training it.
Obviously, the training of any stage is time-consuming, hence a significant gain
would be benefited by not wasting time on a stage that is not going to improve
the best-so-far expectation. Observe that when the stage k + 1 is completed, we
get to know two new pieces of information: nk+1 and ak+1. That second piece
is not needed to calculate formula (7) for stage k + 1, but it is needed for stage
k + 2. Therefore, the only unknown preventing us from calculating the exact
partial expectation for stage k + 2 is nk+2. We are going to approximate it.
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As cascade experiments on real-data show, the counts of features (nk)k=1,...,K

typically form a non-decreasing sequence. There exist counter-examples, but in
the vast majority of cases it is true that nk+1 � nk. Therefore, to build our
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prediction it could potentially be sufficient to lowerbound nk+2 by nk+1. Instead,
we prefer to propose a safer parameterized approach — by assuming:

nk+2 � α nk+1, (11)

where parameter α could be selected e.g. from [0.5, 1.5] interval. The following
lines demonstrate explicitly the prediction we are going to apply:

Ê
(
(n1, . . . , nk+2)

)
= Ê

(
(n1, . . . , nk)

)
+ nk+1

∏

1�i<k+1

ai + nk+2

∏

1�i<k+2

ai

≈ Ê
(
(n1, . . . , nk)

)
+ nk+1

∏

1�i<k+1

ai + α nk+1

( ∏

1�i<k+1

ai

)
ak+1 ≡ Êα.(12)

The influence of parameter α can be described as follows. By lowering α,
one decreases the risk of pruning a branch incorrectly, but simultaneously one
strengthens the underestimation of the expected value, which can lead to training
continuation despite a negligible chance of improvement. In contrast, higher α
values lead to more pruning but with some risk of missing the optimum solution.
Additionally, it is worth to remark that the prediction we make is only for
one stage ahead, ignoring all subsequent stages. Since those stages shall too
contribute their summands to the final expectation then this suggests that high
α values should still be safe, especially for initial levels.

Algorithm 3 represents the described approach for cascade training based on
tree search and approximate pruning.
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4 Experiments

In all experiments we apply RealBoost+bins [13] as the main learning algorithm,
producing ensembles of weak classifiers as successive cascade stages. Each weak
classifier is based on a single selected feature.

Experiments on two collections of images are carried out. Firstly, we test
the proposed approach in face detection task, using Haar-like features (HFs) as
input information. Secondly, we experiment with synthetic images representing
letters (computer fonts originally prepared by T.E. de Campos et al. [5]) and we
treat the ‘A’ letter as our target object. In that experiment we expect to detect
our targets regardless of their rotation. To do so, we apply rotationally invariant
features based on Zernike moments (ZMs) [2]. In both cases, feature extraction
is backed with integral images (complex-valued for ZMs).

In experiments we used a machine with Intel Core i7-4790K 4/8 c/t, 8MB
cache. For clear interpretation of time measurements, we report detection times
using only a single thread [ST]. The software has been programmed in C#, with
key computational procedures implemented in C++ as a dll library.

Experiment: “Faces” (Haar-like features). Training faces were cropped
from 3 000 images, looked up using Google Images, yielding 7 258 face examples
described by 14 406 HFs. The test set contained 3 014 examples from Essex Face
Data [16]. Validation sets contained 1 000 examples. The number of negatives in
the test set was constant and equal to 1 000 000. To reduce training time, the
number of negatives in training and validation sets was gradually reduced for
successive stages, as described in Table 1. Detection times, reported later, were
determined as averages from 200 executions of the detection procedure.

Table 1. “Faces”: experimental setup.

Train data Validation data Test data Detection procedure

qty./parameter value qty./parameter value qty./parameter value qty./parameter value

no. of positives 7 258 no. of positives 1000 no. of positives 3014 no. of repetitions 200

no. of negatives 139 373 no. of negatives 40 000 no. of negatives 1 000 000 image resolution 600 × 480

” 2nd stage 42 742 ” other stages 24 000 total set size 1 003 014 no. of detection scales 5

” other stages 27 742 total set size 41 000 window growing coef. 1.2

total set size 146 631 ” other stages 25 000 smallest window 48 × 48

” 2nd stage 50 000 largest window size 100 × 100

” other stages 35 000 window jumping coef. 0.05

We start reporting results by showing some visual examples of detection out-
comes obtained by two best detectors (in terms of expected number of features)
trained to satisfy A = 10−4 and A = 10−5 requirements, respectively, see Fig. 2.

Table 2 provides detailed information about cascades trained with A = 10−3

requirement. Every row contains a cascade, represented by two sequences: a
sequence of features counts nk on successive stages (top), and a sequence of false
alarm rates ak (bottom). The third column reports the expected value Ê(n) cal-
culated according to (4). The right-most columns provide information about the



28 D. Sychel et al.

Fig. 2. “Faces”: detection examples (false alarms marked in yellow).

effectiveness of tree pruning, showing how many nodes were in fact trained with
respect to the potential total. We allow ourselves to report approximate pruning
(for both α = 0.8 and α = 1.2) in the same row as exact pruning, because in
all experiments the approximate pruning has never led to a suboptimal solution.
The table shows clearly that in general the greater the “bushiness” of the tree
the better the expected value we try to minimize — an increase in either C or
L parameter lead to an improvement. Additionally, owing to pruning, the time
needed to train cascades involving wider trees did not increase proportionally to
the overall number of nodes. One should realize that nodes (stages) lying deeper
in the tree, with low effective FAR resulting from chain multiplication of ak

rates, require much time for resampling, since only a small fraction of negative
examples reaches those stages. That is why it is so important to prune redun-
dant nodes. In particular, for TREE-C3-L2-UGM-G an exhaustive search would
require 84 nodes, exact pruning reduces this number to 60, whereas approximate
pruning cuts it further down to 57 (for α = 0.8) and 55 (for α = 1.2).

Table 3 compares cascades trained traditionally (VJ) against selected best
cascades trained via tree search. The comparison pertains to accuracy and detec-
tion times. This time we show three variants of A requirement: 10−3, 10−4 and
10−5 (that last setting only for cascades with 10 stages). In addition, the theo-
retical expected value for cascades can be compared against an average observed
on the test set (column n̄). We remark that the tree-based approach combined
with greedy per-stage requirements — TREE-C3-L1-UGM-G — produced the
best cascades (marked with dark gray) having the smallest expected values. Sav-
ings in detection times per image with respect to VJ approach are at the level
of ≈ 7.5 ms (about 8% per thread). This may seems not large but we remind
that the measurements are for single-threaded executions [ST]. For example, if
8 threads are used this implies a reduction of ≈ 4 FPS.
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Experiment: “Synthetic A letters” (Zernike Moments). Table 4 lists
details of the experimental setup for this experiment. In train images, only
objects with limited rotations were allowed (±45◦ with respect to their upright
positions). In contrast, in test images, rotations within the full range of 360◦

were allowed. During the training 540 features were at disposal [2].

Table 4. “Synthetic A letters”: experimental setup.

Train data Validation data Test data Detection procedure

qty./parameter value qty./parameter value qty./parameter value qty./parameter value

no. of positives 20 384 no. of positives 1 000 no. of positives 20 000 no. of repetitions 200

no. of negatives 50 546 no. of negatives 10 000 no. of negatives 1 000 000 image resolution 600 × 480

total set size 70 930 total set size 11 000 total set size 1 020 000 no. of detection scales 5

window growing coef. 1.2

smallest window 100 × 100

largest window size 208 × 208

window jumping coef. 0.05

Figure 3 presents examples of detection outcomes obtained by best detectors
trained to satisfy 10−3 and 10−4 FAR requirements. As it turned out for this
data, the cascades did not need many stages nor features. Table 5 compares
VJ against tree-based cascades. One can note that despite small feature counts
(comparing to the previous experiment), the proposed method still allows to
reduce the expectations. The smallest were achieved by the TREE-C3-L1-UGM-
G variant, yielding 2.5682 and 2.9910, respectively for A = 10−3 and A = 10−4.

Fig. 3. “Synthetic A letters”: detection examples.
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5 Conclusion

Training a cascade of classifiers is a difficult optimization problem that, in our
opinion, should be always carried out with a primary focus on the expected num-
ber of extracted features. This quantity reflects directly how fast an operating
cascade is. Our proposition of the tree search-based training allows to ‘track’
more than one variant of a cascade. Potentially, this approach can be computa-
tionally expensive, but we have managed to reduce it with suitable branch-and-
bound techniques. Being able to prune some of the subtrees, we save both the
training and resampling time needed by later cascade stages. To our knowledge,
no such proposition regarding the cascade structure has been tried out before. In
our future research we plan to investigate more the approximate variant, trying
to predict partial expectations for more than one stage ahead.
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