l‘)

Check for
updates

The Challenge of Onboard SAR
Processing: A GPU Opportunity

Diego Romano!®@®, Valeria Mele?®, and Marco Lapegna?

! Institute for High Performance Computing and Networking (ICAR), CNR,
Naples, Italy
diego.romano@cnr.it
2 University of Naples Federico II, Naples, Italy
{valeria.mele,marco.lapegna}@unina.it

Abstract. Data acquired by a Synthetic Aperture Radar (SAR),
onboard a satellite or an airborne platform, must be processed to pro-
duce a visible image. For this reason, data must be transferred to
the ground station and processed through a time/computing-consuming
focusing algorithm. Thanks to the advances in avionic technology, now
GPUs are available for onboard processing, and an opportunity for SAR
focusing opened. Due to the unavailability of avionic platforms for this
research, we developed a GPU-parallel algorithm on commercial off-the-
shelf graphics cards, and with the help of a proper scaling factor, we pro-
jected execution times for the case of an avionic GPU. We evaluated per-
formance using ENVISAT (Environmental Satellite) ASAR Image Mode
level 0 on both NVIDIA Kepler and Turing architectures.

Keywords: Onboard SAR focusing - GPU-parallel - Range-Doppler
algorithm

1 Introduction

In the domain of environmental monitoring, Synthetic Aperture Radar (SAR)
plays an important role. It is an active microwave imaging technology for remote
sensing, which can be employed for observations in all-day and all-weather con-
texts. Satellites and aircraft have limited space for a radar antenna, therefore a
SAR sensor creates a synthetic aperture by exploiting their motion. As a plat-
form moves along a direction (called azimuth direction), the sensor transmits
pulses at right angles (along range direction) and then records their echo from
the ground (see Fig. 1).

Thanks to its synthetic aperture, SAR systems can acquire very long land
swaths organized in proper data structures. However, to form a comprehensible
final image, a processing procedure (focusing) is needed.

The focusing of a SAR image can be seen as an inherently space-variant
two-dimensional correlation of the received echo data with the impulse response
of the system. Radar echo data and the resulting Single-Look Complex (SLC)

© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12139, pp. 46-59, 2020.
https://doi.org/10.1007/978-3-030-50420-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50420-5_4&domain=pdf
http://orcid.org/0000-0002-2640-157X
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0001-9953-1319
https://doi.org/10.1007/978-3-030-50420-5_4

The Challenge of Onboard SAR Processing: A GPU Opportunity 47

A 5\69\0"\5

_".____synthetic
.. aperture

,
N radar /
. aperture

Fig. 1. Representation of the synthetic aperture created by a moving platform provided
with a sensor.

image are stored in matrices of complex numbers representing the in-phase and
quadrature (i/q) components of the SAR signal. Several processors are available,
based on three main algorithms: Range-Doppler, wk, and Chirp Scaling [7].

Usually, this processing takes time and needs HPC algorithms in order to
process data quickly. Heretofore, considering the limited computing hardware
onboard, data had been transmitted to ground stations for further processing.
Nevertheless, the vast amount of acquired data and the severely limited down-
link transfer bandwidth imply that any SAR system also needs an efficient raw
data compression tool. Because of structures with apparent higher entropy, a
quasi-independence of in-phase and quadrature components showing histograms
with nearly Gaussian shape and identical variance, conventional image compres-
sion techniques are ill-suited, and resulting compression rates are low.

Thanks to advances in the development of avionic specialized computing
accelerators (GPUs) [1,12], now the onboard SAR processing with real-time
GPU-parallel focusing algorithms is possible. These could improve sensor data
usability on both strategic and tactical points of view. For example, we can
think of an onboard computer provided with a GPU directly connected to both
a ground transmitter and a SAR sensor through GPUDirect [13] RDMA [5]
technology.

Several efforts have been made to implement GPU SAR processors for dif-
ferent raw SAR data using CUDA Toolkit. In [4], the focusing of an ERS2
image with 26,880 x 4,912 samples on an NVIDIA Tesla C1060 was obtained
in 4.4s using a Range-Doppler algorithm. A similar result is presented in [14],
where a COSMO-SkyMed image of 16,384 x 8,192 samples has been processed
employing both Range-Doppler and wk algorithms in 6.7s. Another implemen-
tation of the wk algorithm, described in [20], focused a Sentinel-1 image with
22,018 x 18,903 in 10.87s on a single Tesla K40, and 6.48s in a two GPUs

48 D. Romano et al.

configuration. In [15], a wk-based SAR processor implemented in OpenCL and
run on four Tesla K20 has been used to focus an ENVISAT ASAR IM image of
30,000 x 6,000 samples in 8.5s and a Sentinel-1 IW image of 52,500 x 20,000
samples in 65s. All these results have accurately analyzed the ground station
case, where one or more Tesla GPU products have been used.

Our idea is to exploit the onboard avionic GPU computing resources, which
are usually more limited than the Tesla series. For example, on the one hand,
the avionic EXK107 GPU of the Kepler generation is provided with 2 Streaming
Multiprocessors (SMs), each with 192 CUDA core. On the other hand, the Tesla
K20c, of the same architecture generation, has 13 SMs, also with 192 CUDA
core each.

Historically, the development of SAR processors has been characteristic of
the industrial sector, and therefore there is little availability of open-source pro-
cessors. This work is based on the esarp processor within the GMTSAR pro-
cessing system [17], a focuser written in C and implementing a Range-Doppler
algorithm (Fig.2) for ERS-1/2, ENVISAT, ALOS-1, TerraSAR-X, COSMOS-
SkyMed, Radarsat-2, Sentinel-1A /B, and ALOS-2 data. For testing convenience,
the GPU-parallel processor herein presented is limited to ENVISAT ASAR
Image Mode level 0 data [18], but with a reasonably little effort, it can be
adapted to other sensors raw data.

Parameters Raw Data

\/

Range Compression on each radar echo

l

Patch processing of range compressed echo

l

Range migration of range compressed and
processed patch

l

Azimuth compression along columns
of range migrated patch

l

Single Look
Complex (SLC)
image

Fig. 2. Range-Doppler Algorithm flow in esarp processor

The Challenge of Onboard SAR Processing: A GPU Opportunity 49

This paper shares the experiences gathered during the testing of a proto-
type HPC platform, whose details are subject to a non-disclosure agreement
and therefore excluded from this presentation. However, several insights can
be useful to discuss new approaches in the design of SAR processing procedures
and strategies. Indeed, from previous experiences in GPU computing, which also
included special devices ([8-11,16]), we can make some assumptions. Further-
more, the reasoning made when dealing with an off-the-shelf hardware solution
can be in some way translated to an avionic product, accepting that the algo-
rithmic logic does not change. In order to develop and test our algorithm, with
the intent to exploit the massive parallelism of GPUs, we applied the approach
proposed in [2].

In the next section, we provide a schematic description of the Range-Doppler
algorithm, and we focus on data-parallel kernels that can be efficiently imple-
mented on a GPU. Section 3 presents the actual kernels implemented and their
relative footprint in the perspective of avionic hardware. Testing is presented in
Sect. 4, with an estimation of the execution time on an avionic GPU. Finally, we
discuss results and conclude in Sect. 5.

2 Range-Doppler Algorithm and Identification
of Data-Parallel Kernels

The GMTSAR processing system relies on precise orbits (sub-meter accuracy)
to simplify the processing algorithms, and techniques such as clutterlock and
autofocus are not necessary to derive the orbital parameters from the data.

In the esarp focusing component, data are processed by patches in order not
to overload the computing platform. Each patch contains all the samples along
the range direction and a partial record along the azimuth direction. Several
patches are concatenated to obtain the image for the complete strip.

1. Range Compression — In the ENVISAT signal, there are 5681 points along
the range direction that must be recovered in a sharp radar pulse by deconvo-
lution with the chirp used during signal transmission. The operation is done
in the frequency domain: firstly, the chirp is transformed, then the complex
product of each row with the conjugate of the chirp is computed. A Fast
Fourier Transform (FFT) is therefore needed before and after the product. In
order to take advantage of the speed of radix-2 FFT, data are zero-padded to
the length of 8192. This procedure allows obtaining phase information for a
longer strip, which will be later reduced to 6144 points for further processing.

2. Patch Processing — In order to focus the image in the azimuth direction,
data must be transformed in the range-doppler domain, which means in the
frequency domain for the azimuth direction, by applying an FFT on the trans-
posed matrix representing the range compressed image. For the ENVISAT
radar, the synthetic aperture is 2800 points long. Again, to exploit the speed
of radix-2 FFT, 4096 rows are loaded and processed, consisting of a patch.
The last 1296 rows are overlapped with the following patch.

50 D. Romano et al.

3. Range Migration — As the platform moves along the flight path, the dis-
tance between the antenna and a point target changes, and that point appears
as a hyperbolic-shaped reflection. To compensate for this effect, we should
implement a remapping of samples in the range-doppler domain through a
sort of interpolator. Such a migration path can be computed from the orbital
information required by the GMTSAR implementation and must be applied
to all the samples in the range direction.

4. Azimuth Compression — To complete the focusing in the azimuth direc-
tion, a procedure similar to the Range Compression is implemented. In the
range-doppler domain, a frequency-modulated chirp is created to filter the
phase shift of the target. This chirp depends on: the pulse repetition fre-
quency, the range, and the velocity along the azimuth direction. As before,
after the complex product, the result is inversely Fourier transformed back
to the spatial domain to provide the focused image.

In the four steps described above, many operations can be organized appro-
priately, respecting their mutual independence [3]. As shown in Fig. 3, each sub-
algorithm corresponds to a GPU kernel exploiting possible data parallelism. The
several planned FFTs can be efficiently implemented through cuFFT batching.
If the raw data matrix is memorized in a 1-dimensional array with row-major
order, all the FFTs in range direction can be executed in efficient batches [19].
When the FFTs runs in the azimuth direction, a pre- and post-processing matrix
transpose becomes necessary.

STEPS GPU
Range Compression
Frequency domain transformation in Range direction (FFT) —f——» Batched cuFFT FW
Deconvolution (row-wise complex product of samples by chirp) —f——————— Point-wise Matrix operations
Spatial domain transformation in Range direction (IFFT) —f——» Batched cuFFT INV
Scaling —f——» Point-wise Matrix operations

Patch processing
Range-doppler domain transformation in Azimuth direction (FFT)— > Batched cuFFT FW

Range migration
Remapping of the samples in the Range direction (interpolation)—————— Point-wise Matrix operations

Azimuth compression

Filtering (point-wise complex product of samples by chirp) —— » Point-wise Matrix operations
Spatial domain transformation in Azimuth direction (IFFT) —+—— » Batched cuFFT INV
Scaling —f—— » Point-wise Matrix operations

Fig. 3. Steps of the Range-Doppler Algorithm and correspondence with possible data-
parallel GPU operations

The Challenge of Onboard SAR Processing: A GPU Opportunity 51

The filtering sub-algorithms can be easily organized as point-wise matrix
operations, assuming that the chirps are available in the device memory for
reading. This step is efficiently achievable by building the range chirp directly
on the GPU, as it consists of a mono-dimensional array with spatial properties,
and by subsequently transforming it in the frequency domain through a proper
FFT. Similarly, the azimuth chirp can be built and transformed directly on the
GPU, but this time it is a 2-D array.

About the mapping of the samples in the Range direction, assuming enough
memory is available for storing the migrated samples, it can be seen as point-wise
matrix operation, as each sample corresponds to a previously patch processed
data subject to operations involving orbital information.

3 GPU Kernels and Memory Footprint

In order to evaluate the feasibility of onboard processing, we present an analysis
of the resources needed.

Firstly, let us observe that cuFFT proposes a convenient function to get an
accurate estimate of the additional work area size needed to run a batched plan.
Since the dimensions used in the Range-Doppler algorithm for ENVISAT data
are a power of 2, that is 8192 complex numbers of 8bytes each in the range
direction for 4096 rows, the additional work area consists of 256 MBytes for the
batches in the range direction. Similarly, in the azimuth direction, the batches
are organized in 6144 columns of 4096 points, and the additional work area
required is about 192 MBytes.

In Algorithm 1, a GPU-parallel pseudo-code presents the kernels and the
cuFFT runs of the GPU-parallel version of esarp. In the following, we analyze
the kernels with their possible sources of Algorithmic Overhead [3] and their
memory footprint.

— d_orbit_coef: in order to remap the range samples and to compensate plat-
form movement within the range migration step, for each sample in the range,
there are 8 parameters describing the orbit characteristics and their influence
on the migration. These parameters are the same for each row of the patch,
and they are scaled considering the position in the synthetic aperture, that
is the position in the azimuth direction. They are also useful to put up the
chirp in the azimuth direction. To save useless recomputing, this kernel pre-
computes 8 arrays of 6144 elements with a corresponding memory footprint of
384 KBytes. Their values can be computed independently by 6144 threads in
an appropriate thread-block configuration that takes into account the number
of SMs in the GPU.

— d_ref rng: this kernel populates an array with the chirp in range direction
based on the pulse emitted by the sensor. The array is also zero-padded
to the length of the nearest power of 2 to exploit subsequent radix-2 FFT
efficiency. For the ENVISAT data, the array consists of 8192 complex numbers
of 8 bytes each, i.e., 64 Kbytes. The workload of this kernel is proportional to
the number of elements in the array. Moreover, each element can be processed

52 D. Romano et al.

Algorithm 1: esarp on GPU
Result: SAR focused image

initialization;

d_orbit_coef(coef) ; // kernel to create arrays with orbital info
d-ref_rng(r_ref) ; // kernel to set up range chirp
cuFFT(rref,FW) ; // transform range chirp in frequency domain
d_ref_az(a_ref) ; // kernel to set up azimuth chirp
cuFFT(aref,FW) ; // transform azimuth chirp in frequency domain

while patches to be focused do
receive patch;

// Range compression

cuFFT(patch,FW) ; // transf. freq. in range direction
d_mul_r(patch,r_ref) ; // kernel for deconvolution in range dir.
cuFFT(patch,INV) ; // transform back in spatial domain
d_scale(patch) ; // kernel for scaling partial results

// Patch processing
d_trans_mat(patch) ; // kernel to transpose patch
cuFFT(patch,FW) ; // transf. freq. in azimuth direction

// Range migration
d_intp_tot(patch,coef) ; // kernel to remap samples in range dir.

// Azimuth Compression

d-mul_a(patch,a_ref) ; // kernel for filtering in azimuth dir.

cuFFT(patch,INV) ; // transform back in spatial domain

d_scale(patch) ; // kernel for scaling results

d-trans_mat(patch) ; // kernel to transpose patch
end

independently of the others, meaning that the workload can be split among
threads. If those are organized in a number of blocks, which is multiple of the
number of SMs present in the GPU, we can have a good occupancy of the
devices. Also, the divergence induced by the zero-padding can be minimized
during thread-block configuration.

— d_ref_az: by using previously calculated orbital parameters, a 2-D array of
the same size of the patch is populated with the chirp in the azimuth direction,
which is different for each column. Hence, the memory footprint is 6144-4096 -
8 = 192 MBytes. Beforehand, the array is reset to zero values since not all the
samples are involved in the filtering. To limit divergence, each element in the
array can be assigned to a thread that populates the array if necessary, or it
waits for completion. Since the same stored orbital parameters are used for
each row, the threads can be arranged in blocks with column-wise memory
access in mind in order to limit collisions among different SMs. Hence, the
execution configuration can be organized in a 2-D memory grid with blocks
of threads on the same column.

The Challenge of Onboard SAR Processing: A GPU Opportunity 53

— d_mul_r: implements a point-wise multiplication of each row of the patch
by the conjugate of the chirp in the frequency domain. The workload can be
assigned to independent threads with coalescent memory accesses. Following
reasoning similar to d_ref_az, with the idea of limiting memory collisions, each
thread in a block can compute one column of the patch in a for cycle, realizing
a coalesced write of the results with the other threads in the same warp. This
kernel does not require additional memory occupation.

— d_scale: after the inverse FFT needed to transform the patch back to the
spatial domain, a point-wise scaling is needed. As before, independent threads
can work with coalescent memory accesses, and efficient workload assignments
can be configured.

— d_trans_mat: this kernel follows the highly efficient sample proposed in [6].
In this case, the memory footprint corresponds to a new array with the same
dimension of the patch, i.e., 192 MBytes.

— d_intp_tot: the remapping of the samples is carried on in a point-wise proce-
dure. The output patch must be in a different memory location, and therefore
the memory footprint consists again of an additional 192 MBytes. Making sim-
ilar reasoning on the memory accesses as we did for the d_ref_az kernel, we
can configure the execution to minimize global memory collisions, optimizing
block dimensions for occupancy.

— d_mul_a: this kernel filters the patch to focus the final image in the frequency
domain. The operations consist of element-wise matrix products and do not
need additional work area in memory. An efficient thread-block configuration
can follow the reasoning made for the previous kernel.

To summarize the analysis of the memory footprint for the whole procedure
to focus a patch: 192 x 2 MBytes are necessary to swap the patch for transposing
and remapping data in several kernels, 256 MBytes are necessary for the most
demanding FFT, and the preliminary computing of chirps and orbit data require
~192.5 MBytes. The total is less than 1 GByte of memory, which is a fair amount
available on every GPU.

4 Testing on Workstation and Reasoning on Avionic
Platform

As mentioned in the introduction, we had access to a prototype avionic platform
for testing purposes, and we had the opportunity to run our algorithm repeat-
edly. Even if we cannot disclose details about platform architecture and testing
outcomes due to an NDA, we can refer to the GPU installed, which is an Nvidia
EXK107 with Kepler architecture.

In this section, we will present the results collected on a workstation with a
Kepler architecture GPU (see Table 1), to propose some reasoning on the avionic
platform with the help of a scale factor, and on another workstation with a Turing
architecture GPU (see Table2) to evaluate the running time on a more recent
device.

54 D. Romano et al.

Table 1. Workstation used for testing on Kepler architecture

Workstation Kepler

(ON] Ubuntu 18.04

CPU |Intel Core i5 650 @3.20 GHz

RAM |6 GB DDR3 1333 MT/s

GPU | GeForce GTX 780 (12 SMs with 192 cores each)

Let us consider the execution time of our GPU version of the esarp processor,
excluding any memory transfer between host and device, i.e., considering data
already on the GPU memory. Such is a fair assumption since all the focusing
steps are executed locally without memory transfers between host and device. In
an avionic setting, only two RDMA transfers happen: the input of a raw patch
from the sensor, the output of a focused patch to the transmitter (Fig.4).

If we call £, the execution time for focusing a patch on the Workstation
Kepler, and t, the execution time to focus a patch on an avionic platform pro-
vided with an EXK107 GPU, from our testing we noticed a constant scale factor:

t
sp = tﬂ:o.zzz

a
It should not be considered a universal scale factor for whatever kernel run on
both devices. However, it is a constant behavior on the total execution time to
focus whatever patch from ENVISAT ASAR IM data using our GPU-parallel
version of the esarp processor. Therefore s; is useful to estimate the time needed
to focus a swath on an avionic platform using such application.

To verify the functionalities of the focusing algorithm, we used data freely
available from http://eo-virtual-archive4.esa.int. Measures presented in this
section are relative to the processing of the image in Fig.5 subdivided in 9
patches.

Table 2. Workstation used for testing on Turing architecture

Workstation Turing

OS | CentOS 7.6

CPU | Gold Intel Xeon 5215

RAM |94 GB

GPU | Quadro RTX 6000 (72 SMs with 64 cores each)

In Table3 we present the execution times of the GPU-esarp software, rela-
tively to the steps of the Range-Doppler algorithm, on Workstation Kepler. The
preliminary processing step, which includes the creation of arrays containing
orbital information and chirps in both range and azimuth direction, is executed

http://eo-virtual-archive4.esa.int

The Challenge of Onboard SAR Processing: A GPU Opportunity 55

just for the first patch, as the precomputed data do not change for other patches
within the same swath. The total execution time needed to focus the whole image
is tyr = 1.12s, excluding input-output overhead and relative memory transfers
between host and device.

We can, therefore, expect that the execution time needed on the avionic
platform is:

t
e = 2k — 4875

Sf
which is less than the ENVISAT stripmap acquisition time t;, ~ 16s for the
relative dataset. Moreover, if each sample of the resulting image consists of a
complex number of 16 bits, the total size of the output is ~ 295 MBytes. In a
pipelined representation of a hypothetical avionic system, as pictured in Fig. 4, all
data transfers are subject to their respective connection bandwidth. Considering
that the payload communication subsystem of the ENVISAT mission had a
dedicated bandwidth for SAR equipment of 100 Mbit/s, the time necessary to
transmit the result to the ground would be t,,; =~ 24s. That is, we can suppose
that:
ta < tin < tout

hence, we have an expected GPU-parallel focusing algorithm able to satisfy real-
time requirements on an EXK107 device.

If we consider the execution times on Workstation Turing (Table4), we see
that the total time needed to focus the whole image is t,,; = 0.208 s, excluding
input-output transfers, which is very promising for the next generation of avionic
GPUs. Moreover, considering the spare time available for further processing
during down-link transmission, we can think about computing Azimuth FM
rate and Doppler Centroid estimators. Those algorithms are useful to provide
parameters for Range Migration, and Azimuth Compression steps in case of
non-uniform movements of the platform, as it happens on airborne SAR.

Avionic Computer

Sensor Transmitter Ground Station
iy,
N GPU
Satellite
Data—Link
Optical 100 Mbit/s
Fibre
4 Gbit/s

Fig. 4. Transfer data rates in an avionic system: sensors are usually connected to the
computer unit through Optical Fibre, which allow rates of the Gbit/s magnitude or
more; within the Avionic Computer, GPUs allows transfers at rates with a magnitude
of Gbit/s; at the end of this pipeline, a data-link connection to the ground station can
transfer with a maximum rate of 100 Mbit/s with current technology.

56 D. Romano et al.

Fig. 5. Focused SAR image of Napoli area, consisting of 6144 samples in the range
direction and 25200 samples in the azimuth direction. The sampled area is 106 x
129 Km?, with an Azimuth resolution of 5m. For rendering purposes, here the image
is proposed with vertical range direction and with the azimuth direction squeezed to
map on square pixels.

Table 3. Execution times in milliseconds for each step of the GPU-esarp software on
the Workstation Kepler

Execution time in milliseconds

Preliminary processing | 21.7
Range compression 46.9 |46.2 |46.2]46.1 |46.3 |46 45.8 459 |46

Patch processing 4.8 4.8 4.8 |4.8 4.8 4.8 4.8 4.7 4.7
Range migration 478 1471 [46.9/46.9|47.2 |46.9 |47.1 (472 473
Azimuth compression |24.4 |24.1 24.1/24.2/24.3 |24.2 24.8 |24.1 |24.1
Total (excl. I/0O) 145.41122.2 1122 | 122 |122.6|121.9|122.5|121.9|122.1

Patch 1 2 3 4 5 6 7 8 9

The Challenge of Onboard SAR Processing: A GPU Opportunity 57

Table 4. Execution times in milliseconds of the GPU-esarp software on the Worksta-
tion Turing

Execution time in milliseconds
Total (excl. 1/O) | 28.524.322.9|22.3|22.322.2 (22|22 22
Patch 1 2 3 4 5 6 7 18 |9

5 Conclusions

When thinking about SAR sensing, a common approach is to consider it as an
instrument for delayed operational support. Usually, SAR raw data are com-
pressed, down-linked, and processed in the ground stations to support several
earth sciences research activities, as well as disaster relief and military opera-
tions. In some cases, timely information could be advisable, and onboard pro-
cessing is becoming an approach feasible thanks to advances in GPU-technology
with reduced power consumption.

In this work, we developed a GPU-parallel algorithm based on the Range-
Doppler algorithm as implemented in the open-source GMTSAR processing sys-
tem. The results, in terms of execution time on off-the-shelf graphics cards, are
encouraging if scaled to proper avionic products. Even if we did not present
actual results on an avionic GPU, thanks to some insights acquired during test-
ing of a prototype avionic computing platform and a constant scale factor, we
showed that onboard processing is possible when an efficient GPU-parallel algo-
rithm is employed.

Since this result is based on the algorithmic assumption that orbital informa-
tion is available, some processing techniques such as clutterlock and autofocus
have been avoided. That is the case for many satellite SAR sensors, but further
experiments must be carried on to verify the feasibility of onboard processing
on airborne platforms, where parameters like altitude and velocity may slightly
change during data acquisition. In this sense, as future work, we plan to imple-
ment a GPU-parallel algorithm for parameters estimation.

References

1. GRA112 graphics board, July 2018. https://www.abaco.com/products/grall2-
graphics-board

2. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel
component in a GPU-CUDA environment: a case study with the L-BFGS har-
well routine. Int. J. Comput. Math. 92(1), 59-76 (2015). https://doi.org/10.1080/
00207160.2014.899589

3. D’Amore, L., Mele, V., Romano, D., Laccetti, G.: Multilevel algebraic approach
for performance analysis of parallel algorithms. Comput. Inform. 38(4), 817-850
(2019). https://doi.org/10.31577 /cai_2019_4_817

4. di Bisceglie, M., Di Santo, M., Galdi, C., Lanari, R., Ranaldo, N.: Synthetic aper-
ture radar processing with GPGPU. IEEE Signal Process. Mag. 27(2), 69-78
(2010). https://doi.org/10.1109/MSP.2009.935383

https://www.abaco.com/products/gra112-graphics-board
https://www.abaco.com/products/gra112-graphics-board
https://doi.org/10.1080/00207160.2014.899589
https://doi.org/10.1080/00207160.2014.899589
https://doi.org/10.31577/cai_2019_4_817
https://doi.org/10.1109/MSP.2009.935383

58

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Romano et al.

Franklin, D.: Exploiting GPGPU RDMA capabilities overcomes performance lim-
its. COTS J. 15(4), 16-20 (2013)

Harris, M.: An efficient matrix transpose in CUDA C/C++, February 2013.
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Hein, A.: Processing of SAR Data Fundamentals, Signal Processing, Interferometry,
1st edn. Springer, Heidelberg (2010)

Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for high-
dimensional integrals on heterogeneous CPU-GPU systems. Concurr. Comput.:
Pract. Exper. 31(19), e4945 (2019). https://doi.org/10.1002/cpe.4945. https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4945, e4945 cpe.4945

Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms
for numerical quadrature on heterogeneous GPU and multicore based systems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waséniewski, J. (eds.) PPAM
2013. LNCS, vol. 8384, pp. 704-713. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55224-3_66

Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 14-24. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2_2

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014). https://doi.org/10.1007/s10586-013-0341-0
Munir, A., Ranka, S., Gordon-Ross, A.: High-performance energy-efficient mul-
ticore embedded computing. IEEE Trans. Parallel Distrib. Syst. 23(4), 684-700
(2012). https://doi.org/10.1109/TPDS.2011.214

NVIDIA Corporation: Developing a Linux Kernel Module Using RDMA for
GPUDirect (2019). http://docs.nvidia.com/cuda/gpudirect-rdma/index.html, ver-
sion 10.1

Passerone, C., Sansoe, C., Maggiora, R.: High performance SAR focusing algorithm
and implementation. In: 2014 IEEE Aerospace Conference, pp. 1-10, March 2014.
https://doi.org/10.1109/AERO.2014.6836383

Peternier, A., Boncori, J.P.M., Pasquali, P.: Near-real-time focusing of ENVISAT
ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU tech-
nology. Remote Sens. Environ. 202, 45-53 (2017). https://doi.org/10.1016/j.rse.
2017.04.006. Big Remotely Sensed Data: Tools, Applications and Experiences
Rea, D., Perrino, G., di Bernardo, D., Marcellino, L., Romano, D.: A GPU
algorithm for tracking yeast cells in phase-contrast microscopy images. Int. J.
High Perform. Comput. Appl. 33(4), 651-659 (2019). https://doi.org/10.1177/
1094342018801482

Sandwell, D., Mellors, R., Tong, X., Wei, M., Wessel, P.. GMTSAR: an InSAR
processing system based on generic mapping tools (2011)

Schéttler, B.: ASAR level 0 product analysis for image, wide-swath and wave mode.
In: Proceedings of the ENVISAT Calibration Review. Citeseer (2002)

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
https://doi.org/10.1002/cpe.4945
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4945
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4945
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/s10586-013-0341-0
https://doi.org/10.1109/TPDS.2011.214
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://doi.org/10.1109/AERO.2014.6836383
https://doi.org/10.1016/j.rse.2017.04.006
https://doi.org/10.1016/j.rse.2017.04.006
https://doi.org/10.1177/1094342018801482
https://doi.org/10.1177/1094342018801482

19.

20.

The Challenge of Onboard SAR Processing: A GPU Opportunity 59

Strelak, D., Filipovi¢, J.: Performance analysis and autotuning setup of the cuFFT
library. In: Proceedings of the 2nd Workshop on AutotuniNg and ADaptivity
AppRoaches for Energy Efficient HPC Systems, ANDARE 2018. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3295816.
3295817

Tiriticco, D., Fratarcangeli, M., Ferrara, R., Marra, S.: Near real-time multi-GPU
wk algorithm for SAR processing. In: Agency-Esrin, E.S. (ed.) Big Data from Space
(BiDS), pp. 277-280, October 2014. https://doi.org/10.2788/1823

https://doi.org/10.1145/3295816.3295817
https://doi.org/10.1145/3295816.3295817
https://doi.org/10.2788/1823

	The Challenge of Onboard SAR Processing: A GPU Opportunity
	1 Introduction
	2 Range-Doppler Algorithm and Identification of Data-Parallel Kernels
	3 GPU Kernels and Memory Footprint
	4 Testing on Workstation and Reasoning on Avionic Platform
	5 Conclusions
	References

