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Abstract. Estimation of the inner state of volcanoes are important
for understanding the mechanism of eruption and reduction of disas-
ter risk. With the improvement in observation networks, data assimila-
tion of internal magma state using time-history crustal deformation data
observed at the surface is expected to be suitable for solving such prob-
lems. Using finite-element methods capable of modeling complex geom-
etry is desirable for modeling the three-dimensional heterogeneous crust
structure, and nonlinear time-history analysis is required for consider-
ing the change in material properties due to the movement of magma.
Thus, many cases of large-scale finite-element analysis is required, and
the computational cost incurred is expected to become a bottleneck. As
a basic study towards data assimilation of internal magma state con-
sidering change in material properties of the crust, we demonstrated
that many case analyses of volcano deformation problems can be con-
ducted in a reasonable time frame by development of a crustal deforma-
tion analysis method accelerated by GPUs. For verification of the data
assimilation method, we estimated the magma trend in an actual three-
dimensional heterogeneous crust structure without temporal change in
material properties. We confirmed that the magma movement trend can
be reproduced using the model considering crust heterogeneity, while
models disregarding three-dimensional crust structure resulted in wrong
estimations. Thus, we can see that using finite-element methods capa-
ble of modeling three-dimensional heterogeneity for crustal deformation
analysis is important for accurate magma state estimation.
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1 Introduction

Estimating the state of magma inside volcanoes are important for understand-
ing the physical mechanism of volcanoes and predicting eruptions for disaster
mitigation purposes. Available observation data is increasing with the improve-
ment of observation networks by advance in sensor technology. For example,
ground surface deformation data is available by Global Navigation Satellite Sys-
tems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) obser-
vations conducted by a variety of satellites. GNSS data have high temporal
resolution, while InSAR data have high spatial resolution; thus, we can expect
obtaining high resolution crustal deformation information by using both of these
observation data. On the other hand, there is room for improvement in the
analysis methods used for inner state estimation using these observation data.
Using time-history observation data of crustal deformation, we target to estimate
three-dimensional movement of magma in the crust. Here, the crust has three-
dimensional heterogeneity with material property changing with the movement
of magma. For such problems, data assimilation of magma state based on crustal
deformation analysis using finite-element analysis which is capable of considering
three-dimensional heterogeneity is expected to be effective. However, the finite-
element analysis cost becomes huge and thus realization of such analysis is con-
sidered challenging. In such problems, cost for generating finite-element models
with 106−8 degrees of freedom and analyzing its linear response for 103−5 cases is
required. Thus, most methods approximate the heterogeneous three-dimensional
crust with a homogeneous half space in crustal deformation analysis of volcanoes
[10]. Crustal deformation analysis based on the finite-element method is started
to be used; however, the scale of the analysis remains up to 2 × 105 degrees-
of-freedom for 20 cases [13]. We can see that many-case finite-element analyses
required for reflecting the change in material properties is challenging.

Fast finite-element solvers capable of solving island-scale crustal deformation
analysis with fault slip at inter-plate boundaries have been developed [3,14].
We may be able to reduce the computational cost for volcanic crustal defor-
mation by extending this method. Thus, we improve the large-scale seismic
finite-element solver for application to volcano problems, and verify its appli-
cability in this study. Together, we measure the computational cost required in
many-case analyses. Furthermore, using the developed method, we conduct data
assimilation for a hypothetical problem with a three-dimensional heterogeneous
crust structure of an actual site to verify the estimation accuracy of time-history
underground magma distribution estimation. This paper targets basic study on
development of a method to estimate the movement of magma in the crust by
using time-history crustal deformation observation at the surface, with appropri-
ate modeling of the time-history change of the three-dimensional heterogeneous
crust structure. The main target is development of a crustal deformation analy-
sis method for volcanoes, and confirmation of its validity for many case analyses
and applicability to data-assimilation. The change in material property of crust
is slow in the target problem; thus, the characteristics of the problem is known to
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be constant in terms of the data assimilation. Considering the above, we neglect
temporal change in crust material properties in the hypothetical problem in this
study.

The rest of this paper is organized as follows. In Sect. 2, we explain the data
assimilation method used in this study, and then explain the fast finite-element
method developed for volcano problems. In Sect. 3, we verify the accuracy of the
solver and measure the computational cost. In Sect. 4, we validate the method
using a hypothetical problem with three-dimensional heterogeneous crust struc-
ture of an actual volcano Shinmoedake using GNSS and InSAR data. In Sect. 5,
we summarize the paper with discussions on future prospects.

2 Methodology

2.1 Data Assimilation

We model the change in excessive pressure and the resulting expansion and
contraction of the magma chamber using a spherical pressure source. In previous
studies [12], it has been shown that the surface response for a spherical source
can be approximated using a point source if the sphere is located in a depth
more than three times its radius. In a point source, magma can be expressed as
body forces. Thus, if the magma source is small compared to its located depth,
we can express the distribution of excessive pressure using a body force density
distribution without considering the material properties of the magma. Here, the
excessive pressure of the magma source can be expressed as a linear combination
of basis spatial distribution functions Bk(x) as

f(x, t) =
M∑

k=1

Bk(x)ck(t). (1)

Here, x, t denote spatial coordinate and time, M is the number of basis functions,
and ck(t) is the coefficient for each basis function. Using Eq. (1), we model the
surface displacement ur(x, t) as

ur(x, t) = Gr(f(x, t)) + e, (2)

where Gr is the Green’s function of surface displacement for excessive pressure
at magma source, and e is the observation error. Here, r denotes the coordinate
axis, where r = 1, 2, 3 corresponds to the North, East, and vertical directions.
By neglecting abrupt volcanic activities such as eruptions or change in material
properties due to movement of magma, we only need to consider long term
quasi-static deformation for analyzing crustal deformation due to underground
magma activity. Following this assumption, we approximate the crust as a linear
elastic body. Due to the linear properties of Green’s functions, applying Eq. (1)
to Eq. (2) leads to

ur(x, t) =
M∑

k=1

Hrk(x)ck(t) + e, (3)
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where

Hrk(x) = Gr(Bk(x)). (4)

In this study, we assimilate data observed by GNSS and InSAR. Three com-
ponent displacement is obtained at each GNSS observation point; thus, the obser-
vation vector y1 obtained by GNSS is expressed as

y1i(tj) = ur(xn1 , tj), i = 3(n1 − 1) + r, (5)

where tj is the time at j-th time step, and xn1(n1 = 1, ..., N1) are the coordinates
of the GNSS observation points. This observation vector consists of 3 × N1

displacement components. We can rewrite Eq. (4) by substituting x = xn1 as

H1
ik = Gr(Bk(xn1)). (6)

On the other hand, the InSAR data only consists of the difference between two
observations, with only a single displacement component parallel to the view
direction. Here, we assume that we obtain one displacement component at each
observation point via preprocessing. Thus, the observation vector y2 obtained
by InSAR is expressed as

y2i(tj) = nT
r ur(xn2 , tj), i = n2, (7)

where xn2(n2 = 1, ..., N2) are the coordinates of the InSAR observation points.
This observation vector consists of N2 displacement components. Here, nT

r =
(cos θ sinφ, sin θ sin φ, cos φ) is the normal vector parallel to the observation direc-
tion, where θ is the angle from the vertical direction to the satellite observation
direction, and φ is the counter clockwise angle from the moving direction of the
satellite measured from the North direction. In the case of InSAR, Eq. (6) is
expressed as

H2
ik = nT

r Gr(Bk(xn2)). (8)

By defining a combined observation vector y = {y1,y2},

yi(tj) =
M∑

k=1

Hikck(t) + e. (9)

where we define a combined observation matrix H = {H1,H2}. Although GNSS
and InSAR observation data includes observation errors (e.g., local GNSS bench-
mark motion, GNSS reference frame errors, InSAR planar correction) that must
be considered during data assimilation, we assume these are removed by prepro-
cessing.

A simple and high accuracy model for time-history evolution of excessive
pressure distribution of magma is not yet known. Thus, assuming that occurrence
of abrupt change is rare, we use the trend model

dX

dt
= X + vt, (10)
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in this paper. Here, X(t) = (c1(t), · · · , cM (t)) and vt is system error follow-
ing the Gauss distribution. Temporal discretization of Eq. (10) with the finite-
difference method leads to

Xit = Xit−1 + vit, where vit ∼ N(0,Qit). (11)

Here, it indicates the time step number. The observation equation becomes

yit = HXit + wit, where wit ∼ N(0,Rit). (12)

Using the scaling parameter α2, the covariance of the evolution equation can be
expressed as

Qit = α2ΔtI, (13)

where I is the identity matrix and Δt = tit−tit−1. The covariance of observation
noise becomes

Rit =
(

σ2
1Σ1 0
0 σ2

2Σ2

)
, (14)

where σ2
1 ,Σ1 and σ2

2 ,Σ2 are the covariance and correlation matrices of GNSS
and InSAR observation errors, respectively. As the state-space Eqs. (10) and (11)
are expressed as linear models following the Gauss distribution, we can use the
Kalman filter algorithm for data assimilation. We use a Kalman smoother with
length 200.

In order to conduct data assimilation of the above, computations of Green’s
functions for surface ground displacement response for each basis function is
required. We use the finite-element method for this computation in this study.

2.2 Computation of Green’s Functions Using the Finite-Element
Method

We target the linear elastic crustal deformation under volcano expansion. The
governing equation is

σij,j + fi = 0, (15)

where
σij = λεkkδij + 2μεij . (16)

Here, σ, f are stress and external force, λ, ε, δ, μ are the first Lame coefficient,
strain, the Kronecker delta and the shear modulus, respectively. By spatial dis-
cretization with the finite-element method, the governing equation becomes a
linear system of equations

Ku = f , (17)

where K,u,f are the global stiffness matrix, nodal displacement, and external
force vectors, respectively.
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We use the method in [2] for expressing external force, where an equivalent
displacement field for excessive pressure in a void in the magma chamber is
expressed using infinitesimal spheroidal pressure sources. This method expresses
body force as a sum of three perpendicular dipole moments. For an expansion
source with dipole moment of f0 at coordinate x′, the body force f c can be
expressed as

f c = f0∇xδ(x − x′), (18)

where δ(x) is the Dirac’s delta function. The sizes of the dipole moments are
given by Bonafede and Ferrari [1] as

f0 = a3ΔP
λ(x′) + μ(x′)

μ(x′)
π, (19)

where a and ΔP are the radius and the pressure increment of the spherical
pressure source. The external force vector in the finite-element analysis becomes

f =
∑

e

∫

Ωe

[N ]Te f cdΩ, (20)

where N and Ω are the shape functions and element domains. By applying
Eq. (18) to Eq. (20), the external force vector becomes

f =
∑

e

f0∇[N(x′)]e. (21)

The outer force for a basis function for spatial distribution Bk(x) becomes

fk =
∫ ∑

e

Bk(x)∇[Nk(x)]edV. (22)

By using this as the right-hand side vector of Eq. (17) and solving the linear
system of equations, we can obtain u which corresponds to the Green’s functions.

Most of the computation cost involved in finite-element analysis is genera-
tion of the finite-element model and the solver cost. We use the method of [8]
to robustly generate finite-element mesh from digital elevation maps of crust
structures. In our method, the spherical pressure sources are expressed with-
out explicit modeling of the void regions in magma chambers. Thus, we do not
require mesh that reflects the magma chamber geometry; we can use a single
mesh reflecting the crustal structure for analyzing any pressure source. On the
other hand, we need to solve the linear equation for each basis function. Thus,
we can expect that the number of solver computations becomes more than the
number of models to be generated. Thus, reduction of the time required for solv-
ing each of the linear set of equations becomes important for reduction of the
cost of the whole procedure.

We use the method developed by Yamaguchi et al. [14] for the finite-element
solver. This solver was originally developed for island-scale crustal deformation
analysis for a given inter-plate fault-slip on CPU based large-scale computing
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environments, and was ported to GPU environments using OpenACC. The solver
is based on the Adaptive Conjugate Gradient method, where the preconditioning
equation is solved roughly using another Conjugate Gradient solver [6]. Here we
call the iterations of the original solver as the outer loop, and the iterations of
the solver used in solving the preconditioning equation as the inner loop. As the
inner loop is only used as a preconditioner, we can solve it roughly. Thus, we
can implement methods that can reduce computational cost in the inner loop.
In this solver, we used mixed precision arithmetic and the multi-grid method.
While the outer loop is computed in double precision, the inner loop is computed
using single precision. By assigning suitable thresholds for the inner loop solvers,
we can move most of the computation to the low-precision arithmetic parts
which required less computational cost. The geometric multi-grid method and
the algebraic multi-grid method are used for the multi-grid preconditioning.
These methods lead to reduction in computation and data transfer; thus, it is
effective for reducing computational cost on both CPUs and GPUs.

The sparse matrix-vector product Ku is the most time-consuming kernel in
the preconditioned conjugate gradient method. In the solver, we use the Element-
by-Element (EBE) method for the sparse matrix vector products except alge-
braic multi-grid. The multiplication of matrix K and vector u is obtained by
adding up element-wise matrix-vector products as

f ←
∑

e

QeKeQ
T
e u, (23)

where f is the resulting vector, Qe is the mapping matrix from the local node
number to the global node number, and Ke is the e-th element stiffness matrix.
By computing the element stiffness on the fly instead of storing it in memory,
we can reduce the amount of memory access, and thus improve computational
performance. As the matrix for algebraic multi-grid is generated algebraically,
the EBE method cannot be applied. Thus, we use 3 × 3 block compressed row
storage for this part. Although Qe is shown in matrix form in Eq. (23), it cor-
responds to random access in the actual code. Random read access to memory
is involved for the right-hand side vector u part, and random write access to
memory is involved for the left-hand side vector f part. Thus, the EBE method
consists of element multiplications and random memory access. Generally, the
performance on GPUs deteriorate with random memory access. Thus, in order
to reduce the randomness of data access, we solve several equations at the same
time. If the matrix is common, the EBE computations for several vectors can be
expressed as

[f1, ...,fn] ←
∑

e

QeKeQ
T
e [u1, ...,un]. (24)

Here, n vectors are solved at the same time. Randomness of memory access is
reduced as the read/write are conducted in consecutive address with the length
of the number of vectors. This is expected to remove the performance bottleneck
of the EBE kernel.

The approach of solving several vectors at the same time was originally devel-
oped for solving the crustal deformation to inter-plate fault-slip in a short time
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on GPUs. Although the target problem of this paper is different, it is the same
from the viewpoint that displacement response to several sources are solved.
Both of the discretized equations have the same stiffness matrix as the sources
are only reflected to the external force vectors. Thus, we can expect applying
the multiple vector method to our problem. Thus, we extended the multiple vec-
tor method such that point sources can be computed for the volcano expansion
problem. By computing multiple Green’s functions for multiple point sources,
we reduce the time required for computation of each Green’s function.

3 Verification

Using the developed method, we check the convergence of numerical solution
and performance of the solver. Here we use an IBM Power System AC922 with
2 16-core IBM POWER9 2.60 GHz CPUs and 4 NVIDIA Tesla V100 GPUs. We
use MPI to use all GPUs during computation, and use MPI/OpenMP to use all
cores in the case of CPU computation.

We compared the numerical solution with Mogi’s analytical solution [10]
corresponding to response of elastic half space for a spherical pressure source. The
compute domain is −50 km ≤ x ≤ 50 km, −50 km ≤ y ≤ 50 km, −100 km ≤
z ≤ 0 km, with the input source at (0 km, 0 km, −4 km). The dipole moment size
is 1.0×1016 Nm, with crust material properties of Vp = 5.0 km/s, Vs = 2.9 km/s,
and density of 2.60 g/cm3. The finite-element model is generated with resolution
of 500 m. From Fig. 1, we can see that the obtained solution follows the analytical
solution, with relative error less than 0.02 at coordinate (0, 0, 0) km. We can see
that the analysis method is converged to the correct solution.

Fig. 1. Comparison of analytical solution (solid line) and finite-element results (circles)
at horizontal and vertical directions at coordinate (x, 0, 0).

Next, we measure performance for solving 12 point sources using GPUs. For
comparison, we measured elapsed time for solving 1 vector at a time on GPUs,
and 1 vector at a time on CPUs. Fig. 2 shows the elapsed time per vector. We can
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see that with the use of GPUs and the method for computing multiple vectors at
the same time, we can accelerate computation by 35.5-fold from the CPU version.
The elapsed time for the developed method was 23 s per vector, which corresponds
to 23 s×104 = 2.66 days for computing 104 equations. We can see that many case
analyses can be conducted in practical time by use of the developed method.

Fig. 2. Performance comparison of the elapsed time for solving 1 vector

4 Data Assimilation of Magma Source of Shinmoedake

We conducted data assimilation of Shinmoedake mountain using the developed
method. Shinmoedake is an active volcano in the Kirishima-mountain range in
Kyushu region of Japan. Recently, supply of magma and contraction due to erup-
tion is repeated, and thus the state of magma chamber is changing. Thus, the
estimation of the state of magma source is of high demand. In this section, we
generate an artificial observation data of a magma eruption process, and use it to
confirm that data assimilation of magma source of Shinmoedake is possible. The
target region is of size −50 km ≤ x ≤ 50 km, −50 km ≤ y ≤ 50 km, −100 km ≤
z ≤ 1.4 km. Coordinate (x, y, z) = (0, 0, 0) is set to the position of Shinmoedake
according to the map of Geospatial Information Authority of Japan [5] with ele-
vation set to the reference ellipsoid of the World Geodetic System (GRS80). We
use the underground structure geometry and material properties given in the
Japan Integrated Velocity Structure Model by the Headquarters for Earthquake
Research Promotion [7]. The target region consists of 14 layers with material
properties in Fig. 3. Figure 4 shows the generated finite-element model with min-
imum element size of ds = 500 m. The total degrees-of-freedom was 4,516,032
and the total number of second-order tetrahedral elements was 2,831,842.

We express the distribution of magma source Bk(x) using a 12 noded inter-
polation function shown in Fig. 5. The coordinates of nodes are given in Fig. 6.
Nodes 5, 6, 7, and 8 models the volcanic vent, and the magma distribution in
these sections are interpolated with one-dimensional linear functions. The other
nodes at plane z = −6 km model the magma chamber; these sections are inter-
polated with two-dimensional linear functions. Each basis function is normalized
such that the integration

∫
Bk(x)dx over the domain becomes 1 N m. Horizontal

resolution is set based on resolution of GNSS station. We assume a hypothetical
trend in the magma source, and use this as the target for estimation. The target
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trend is shown in Fig. 8, where only nodes 2, 5, 6, 7, and 8 have non-zero values.
This trend is generated such that the magma pressure at the bottom of the vent
is increasing, and the magma is ascending through the vent. Considering that
displacement of 4 cm is observed in EBINO-MAKIZONO GNSS baseline length
in one year in 2011 [9], we set the trend such that the maximum displacement
becomes the order of 10 cm. We use time step increment of Δt = 0.25 day, and
total number of time steps as T = 1000. The scaling parameter for the system
noise in Eq. (13) is set to α2 = 4 × 1032 N2m2/day. This value is set such that
it becomes similar to the value of covariance at the abrupt change in the target
trend.

We obtain the observation data by applying the Green’s function to the
magma source. We assume that GNSS data is available every 6 h at 8 observation
points located near Shinmoedake (GEONET GPS-based Control Stations of
Geospatial Information Authority of Japan [4]), and assume that InSAR data is
available every 14 days at 60×60 km region with 500 m mesh resolution (total of
2001 observation channels). We assume that GNSS data is available every 6 h at
8 observation points located near Shinmoedake (GEONET GPS-based Control
Stations of Geospatial Information Authority of Japan [4]). The coordinates of
GNSS reference stations are given in Fig. 7. We also assume that InSAR data is
available every 14 days at 60×60 km region with 500 m mesh resolution (total of
2001 observation channels). The observation error is assumed to be σ1 = 1mm2,
σ2 = 5mm2. The correlation matrix Σ1, Σ2 are assumed to be identity matrices
with noise applied to the artificial observation data. We use the same observation
data and correlation matrix in the data assimilation process. We use θ = 30◦

and φ = 10◦ assuming a typical polar orbit satellite for the InSAR observation
directions. Although InSAR data is known to involve correlation between data,
we neglect this correlation for simplicity. In this section, we conduct estimation
for three cases with different observation data: case (a) using GNSS, case (b)
using InSAR, and case (c) using both GNSS and InSAR.

Figure 9 shows the estimated results for each case. While node 2 representing
the magma chamber is estimated for all cases, estimation at nodes 5 and 6
corresponding to the vent differs among the cases. We can see that the movement
of magma in the vertical direction is less sensitive compared to its horizontal
movement, and thus estimation of vertical distribution is more challenging. In
order to compare the results quantitatively, we use the root mean square error

RMSE =
√

1
TM

∑T
t=1 ‖Xt − X̂t‖2, where X̂1:T is the estimation obtained by

data assimilation, and M is the number of basis functions (M = 12). From
values in Fig. 9, we can see that RMSE is the smallest for case (c). From this, we
can see that the accuracy of inner state estimation is improved with combination
of available data when compared to using a single observation source.

In order to discuss the effect of the crust structure, we finally conducted
data assimilation for the case disregarding the three-dimensional crust structure.
A finite-element model with flat surface and homogeneous material properties
is generated, and the same data assimilation procedure was conducted. Here,
material number 14 in Fig. 3 was used, and the surface elevation was set to the
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Layer Vp (km/s) Vs (km/s) ρ (g/cm3)
1 1.7 0.35 1.80
2 1.8 0.5 1.95
3 2.0 0.6 2.00
4 2.1 0.7 2.05
5 2.2 0.8 2.07
6 2.3 0.9 2.10
7 2.4 1.0 2.15
8 2.7 1.3 2.20
9 3.0 1.5 2.25
10 3.2 1.7 2.30
11 3.5 2.0 2.35
12 4.2 2.4 2.45
13 5.0 2.9 2.60
14 5.5 3.2 2.65

Fig. 3. Material properties of layers in the
target domain. Vp is P wave velocity, Vs

is S wave velocity, and ρ is density.

x

z y

(a) Whole view of FE model

(b) close-up view of  FE model

Fig. 4. Overview of the finite element
model.

mean elevation of the domain. The estimation results using both GNSS and
InSAR is shown in Fig. 9 (d). Even if both of the observation data is used, the
estimated trend was completely different from the input trend when disregarding
the crust structure. In addition, the estimation results vary with the observation
data; thus, periodic peaks appear when InSAR data is included. Note that the
homogeneous Green’s function works for qualitative estimation of single source,
as described in [11]. However, the error in Fig. 9 (d) was significantly larger
than the case considering the crustal structure; we can see that consideration
of the crust structure is important for high resolution estimation of the target
problem. From here, we can see that the use of Green’s functions computed by
finite-element modeling proposed in this paper is important.

5 Closing Remarks

In this paper, we conducted basic study towards magma state estimation using
time-history crust deformation data observed at the surface. As the crust involves
three-dimensional heterogeneity and that the material properties of the crust
changes with the state of magma, data assimilation using many-case three-
dimensional finite-element analysis is expected to be suitable. In this study,
we developed a fast GPU-accelerated solver for computing crustal deformation
for excessive pressure sources of the magma. The elapsed time for solving a
single Green’s function was 23 s; corresponding to solving 104 equations in 2.6
days. We can see that many case finite-element analysis has become possible
within a reasonable time frame. In the application example, we showed that the
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Fig. 5. Location of the input points. The
magma distribution is interpolated with
one-dimensional or two-dimensional lin-
ear functions, and input points represent
control point of the magma distribution.

node coordinate
1 (−10,−10,−6)
2 (−10, 0,−6)
3 (−10, 10,−6)
4 (0,−10,−6)
5 (0, 0,−6)
6 (0, 0,−4)
7 (0, 0,−2)
8 (0, 0, 0)
9 (0, 10,−6)
10 (10,−10,−6)
11 (10, 0,−6)
12 (10, 10,−6)

Fig. 6. Location of nodes in km shown
in Fig. 5

station name coordinate
KAGOSHIMAOOKUCHI (−27.2, 16.4)

EBINO (−2.0, 15.3)
NOJIRI (18.2, 6.2)
AIRA (−27.1,−9.4)

MAKIZONO (−12.0,−6.0)
MIYAKONOJOU2 (8.6,−3.5)

HAYATO (−14.3,−18.4)
MIYAKONOJOU (12.8,−18.8)

Fig. 7. Coordinates of GNSS reference stations in km. z is set to the surface level.

magma source trend in a three-dimensional heterogeneous crust structure can
be estimated using an artificial observation data set. Data assimilation based
on a homogeneous half space model resulted in wrong results; thus, we can see
the importance of considering the heterogeneous crust structure and the use
of finite-element method capable of modeling three-dimensional heterogeneity.
As the data assimilation results were shown to differ with the crust structure,
we plan to incorporate subsurface structure and topography with much more
heterogeneity than the stratified structure used in Sect. 4, and plan to estimate
the effect of uncertainty in the underground crust structure in our future work.
Furthermore, we plan to extend the method for application to problems with
material nonlinearity of the crust.
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Fig. 8. Target input trend in strength of each dipole. Nodes that are not indicated in
the figure are set to have zero dipoles.

Fig. 9. Estimated strength of each dipole (Nm) with the observation data (a) GNSS
alone (b) InSAR alone (c) GNSS & InSAR on the three-dimensional heterogeneous
models. (d) is the result using Half space model with GNSS & InSAR. The numbers in
the legend correspond to nodes shown in the Fig. 6. A result closer to the input trend
in Fig. 8; a lower RMSE is preferable.
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