
Automatic Management of Cloud
Applications with Use of Proximal

Policy Optimization

W�lodzimierz Funika1(B) , Pawe�l Koperek1 , and Jacek Kitowski1,2

1 Department of Computer Science, Faculty of Computer Science, Electronics
and Telecommunication, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland

{funika,kito}@agh.edu.pl, pkoperek@gmail.com
2 ACC CYFRONET AGH, AGH, ul. Nawojki 11, 30-950 Kraków, Poland

Abstract. Reinforcement learning is a very active field of research with
many practical applications. Success in many cases is driven by com-
bining it with Deep Learning. In this paper we present the results of
our attempt to use modern advancements in this area for automated
management of resources used to host distributed software. We describe
the use of an autonomous agent that employs a policy trained with use
of Proximal Policy Optimization algorithm. The agent is managing a
cloud infrastructure used to process a sample workload. We present the
design and architecture of a complete autonomous management system
and explain how the management policy was trained. Finally, we com-
pare the performance to the traditional automatic management approach
exploited in AWS stack and discuss feasibility to use the presented app-
roach in other scenarios.

Keywords: Reinforcement learning · Cloud resources · Automatic
management · Proximal policy optimization

1 Introduction

Leveraging the cloud computing infrastructures is one of the currently dominat-
ing trends in the design of modern software systems. The main advantages of this
approach include high availability, increased security and flexibility in resource
allocation. In many cases the ability to adjust the amount of used resources
to the actual needs is the driver of the adoption. The promise to reduce the
costs of resources is very compelling. Unfortunately it requires implementing
special measures. The application needs in support for adding or removing more
cores, RAM, hard drives (vertical scaling) or more virtual or physical machines
(horizontal scaling) without breaking the core functionality. Furthermore one
needs to develop a policy under which the resources will be added or removed.
In certain scenarios, where the environment renders strong and stable seasonal
behavior patterns, the configurations and resources can be approximated by
human experience in advance. Nevertheless, in many other cases elasticity can

c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12137, pp. 73–87, 2020.
https://doi.org/10.1007/978-3-030-50371-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50371-0_6&domain=pdf
http://orcid.org/0000-0003-3321-7348
http://orcid.org/0000-0003-3613-2390
http://orcid.org/0000-0003-3902-8310
https://doi.org/10.1007/978-3-030-50371-0_6

74 W. Funika et al.

only be enabled by automatic scaling, which we can define as a dynamic process
[...] that adapts software configurations [...] and hardware resources provisioning
[...] on-demand, according to the time-varying environmental conditions [1].

Reinforcement learning techniques have been known for a long time [2,3].
Until recently they were mostly applicable to relatively simple problems, where
observing the whole environment was easy and the number of possible actions
was small. The new advancements in the area allow to tackle domains which
are much more complicated, like computer games [4], control of robots [5] or the
game of Go [6]. The state-of-the-art results can be obtained thanks to application
of Deep Learning, e.g. in form of Deep Q Learning [7], Asynchronous Actor-
Critic Agents (A3C) [8] or more recently Proximal Policy Optimization [9]. Those
methods enable learning complex behaviors by directly observing an environment
and interacting with it through pre-defined actions. In some cases this approach
allowed to achieve results surpassing human decisions based performance.

Such successes encourage experimenting with applying Deep Reinforcement
Learning (DRL) to other domains. One particular area, where this technique
might deliver a lot of benefits, is the auto-scaling of applications deployed to
compute clouds. The infrastructure used to host the application becomes the
environment in which the automatic agent operates. The state of the applica-
tion becomes the state which the agent alters and the operations which can
be executed through a cloud vendor API become the agent’s actions. Available
measurements and metrics are well defined: usually the technology choices help
to define which elements of the system should be observed and how. There is a
variety of available monitoring software which can be used. In this type of task
there are usually well defined goals (e.g. reducing request latency, average CPU
load, memory consumption or monetary cost of hosting). Such an optimization
goal can be translated into a reward function, which can be used by the agent
as a feedback mechanism. The agent can discover management policies without
any prior knowledge, by conducting experiments in the underlying infrastructure
through a process of trials and errors.

The main disadvantage of the described approach is the cost of creating of a
DRL policy. The policy needs to go through multiple iterations where it interacts
with the automatically scaled system and observes its reactions. Unfortunately,
since the decisions made at the beginning might be quite random, there is a
substantial risk of destabilizing the observed application and making it unusable
by the end users. Such a situation is unacceptable in a production system, what
suggests that creating a special, duplicate training environment might be help-
ful. Unfortunately, this introduces additional resource requirements and there-
fore increases the overall cost. This situation might be mitigated by modelling
the auto-scaled application and simulating it in an artificial environment. This
enables replaying the observed workloads multiple times and much faster than
they happened in reality. Since DRL usually can benefit from increasing the
number of training iterations, the simulation-based approach can help to create
more efficient policies.

Automatic Management of Cloud Applications 75

In this paper we present a novel auto-scaling software system which leverages
the simulation of a compute cloud. We present the Semantic-Based Automatic
Monitoring and Management (SAMM) system [10] extended by a decision mak-
ing component, which employs a DRL method for training - the Proximal Policy
Optimization. SAMM observes a cloud-based application, passes its observations
(metric measurements and information about the scheduled jobs) to the policy. In
case the policy decides to execute an action, that information is used by SAMM
to adjust the environment by e.g. creating or removing resources through cloud
API function invocations. Before being deployed to the live system, the policy is
trained in a simulator, what enables us to avoid potentially very costly bad deci-
sions made during the training phase. To the best of our knowledge, this is the first
attempt to use the PPO algorithm to control resources of a distributed application
deployed in a real-world cloud computing environment. We present a complete and
functioning implementation and share the results of experiments.

The paper is organized as follows: in Sect. 2 we present related work, Sect. 3
describes the design and architecture of the environment and the training of the
decision policy. Section 4 provides details of the experiments and the environment
in which they were being run. Section 5 summarizes our research and outlines
next steps.

2 Related Work

Managing an infrastructure in a way, which minimizes the monetary cost while
maintaining the business requirements, sometimes defined as Quality-of-Service
(QoS) objectives, is a very complex subject. There have been numerous attempts
to tackle this problem, which differ in many ways. One possible taxonomy has
been proposed by the authors of [1], where the following features were chosen to
classify auto-scaling systems:

– self-awareness - the ability to acquire and maintain knowledge about the
system’s state. It can be implemented in the form of: stimulus awareness,
time awareness, goal awareness, interaction awareness, meta awareness.

– self-adaptivity - the ability to change own behavior depending on the require-
ments. We include the variants of self-healing, self-configuring, self-optimizing,
self-protecting.

– architectural patterns - the structure of the auto-scaling process which
includes the definition of interactions between components and specification of
modules. The dominant approaches are: Feedback loop [11], Observe-Decide-
Act (ODA) [12], Monitor-Analysis-Plan-Execute (MAPE) [13].

– QoS modeling - the control primitives which are used to change the environ-
ment and the model which connects QoS metrics to the control primitives.
There are different types of models: static (the relationship between metrics
and how resources are reallocated is defined before the system begins to work)
[14], dynamic (resource allocation is determined based on statistical analysis
of workload traces) [15], semi-dynamic [16], based on machine learning [17]
or simulation [18].

76 W. Funika et al.

– granularity of control - specification of what is the basic entity to control:
virtual machine [19], container [20], application [21].

– decision making - definition of the process which produces a control decision,
including:

• the mechanism of reasoning and searching for the decisions
• objectives and their representations
• which control primitives need to be changed.

There are numerous different approaches, most notably:
• rule-based control [22,23] - classic approach in which the scaling actions

are executed when some pre-defined conditions occur, e.g. when the aver-
age CPU load reaches 0.9 a new VM is added to the pool of resources;

• control theory based - the process of making a decision to change the pool
of resources uses mechanisms described by the control theory, e.g. [24];

• search based optimization - the possible decisions are treated as a part
of a large but finite search space. The process of choosing among them
becomes a search problem. There were many different attempts which
have used this approach: [17,25,26]. The first attempts to exploit Deep
Reinforcement Learning [27] also fit in this category.

The system presented in this paper can be classified as a self-optimizing and
interaction-aware, with a feedback-loop based architecture. It operates on the
container granularity level. The decision making process is based on the Deep
Reinforcement Learning (PPO algorithm) approach. To our best knowledge our
contribution is a first example of the complete system which implements such
an approach in a widely available public cloud environment.

2.1 Reinforcement Learning

Reinforcement Learning (RL) [2,28] is a machine learning paradigm which
focuses on discovering a policy for autonomous agents, which take actions within
a specific environment. The goal of the policy is to maximize a specific reward
whose value can be presented to the agent with a delay. The RL approach differs
from supervised learning : training the agent is based on the fact that knowledge
is gathered in a trial and error process, where the agent interacts with the envi-
ronment and observes results of its actions. There is no supervising entity, which
would be capable of providing feedback on whether certain actions are better
than others. RL is also different from unsupervised learning: it focuses on max-
imizing the reward signal instead of finding the structure hidden in collections
of unlabeled data.

There are multiple variants of Reinforcement Learning algorithms:

– Online and offline: the former approach assumes the agent’s policy is updated
based on the most recent data, after every step (e.g. every monitoring and
management iteration), in the latter one - after a full episode (i.e. after inter-
actions cease, the environment needs to restart and a complete reward is
given).

Automatic Management of Cloud Applications 77

– Model-based and model-free: the former approach assumes an explicit model of
the environment (state transitions and reward estimations) are created, in the
latter it is assumed a decision can be based only on a sample of information
about transitions.

The model-free approach has become very popular recently thanks to combin-
ing it with Deep Learning and creating so called Deep Reinforcement Learning
(DRL). Using this technique allowed to create autonomous agents which are
capable of achieving human-level performance across many domains.

Policy gradient methods are an approach to DRL, which is believed to render
good experimental results. The training process improves a vector of the pol-
icy parameters Θ based on the gradient of some estimated scalar performance
objective J(Θ) in respect to the policy parameters. These methods seek to max-
imize performance (measured as a reward obtained from interactions with the
environment) and as such they change the parameters according to an iterative
process in which the changes to parameters approximate a gradient ascent in J :

Θk+1 = Θk + α∇ΘJ(Θk) (1)

where Θk denotes policy’s parameters in the k-th iteration of the training
process.

There are many variants of policy gradient optimization methods, however
in this paper we focus on the Proximal Policy Optimization (PPO) [9].

The algorithm aims to compute a parameter update at each step, that on
the one hand minimizes the cost function, while at the same time ensures the
difference to the previous policy to be relatively small. This is achieved by mod-
ifying the objective in such a way that it ensures the updates to parameters are
not too big. The objective is therefore defined by the following function:

J(Θ) = LCLIP (Θ) = Et [min(rt(Θ)At, clip(rt(Θ), 1 − ε, 1 + ε)At)] (2)

where Et denotes calculating average over a batch of samples at timestamp
t, At is an estimator of the advantage function which helps to evaluate which
action is the most beneficial in a given state. rt marks probability ratio rt(Θ) =

πΘ(at|st)
πΘold

(at|st)
in which πΘ(at|st) denotes the probability of taking an action a in

state s by a stochastic policy and Θold are the policy parameters before the
update. The clip(rt(Θ), 1 − ε, 1 + ε) function keeps the value of rt(Θ) within
some specified limits (clips it at the end of the range) and ε is a hyperparameter
with a typical value between 0.1 and 0.3.

In our previous research [29] we experimentally verified that PPO gave the
best empirical results in automated resources management among the policy gra-
dient methods. Therefore have chosen this algorithm for experiments presented
in this paper.

78 W. Funika et al.

3 Proposed System Design

In this section we present the design of an experimental system, which allows to
employ DRL to create automatic management agents. These agents are meant to
manage resources of a distributed application deployed in a cloud infrastructure.
The system attempts to adapt itself to ever-changing environment conditions by
continuously improving the DL model used as an agent’s decision policy. To
avoid the costs of poor decisions while training a policy, a simulation is used as
a training environment.

We begin with presenting the components of the system’s architecture and
their responsibilities. In the following section we discuss details of how we trained
the policy used to make resource management decisions.

3.1 Architecture

In our research we focused on utilizing some well known and tested frameworks
to reduce the amount of time needed to implement our ideas. As a foundation we
have chosen SAMM [10], a prototype monitoring system enabling experimenting
with automatic management of computer resources. It allows to easily extend
its monitoring capabilities by new types of resources to observe and integrate
with different technologies and new algorithms and observe their impact on the
observed system.

In our use case, SAMM is used to integrate other elements of the system
together to form a feedback loop:

– Periodically polls measurements which describe the current state of the sys-
tem (e.g. the average CPU utilization in the computation cluster, amount of
used memory etc.),

– Aggregates measurements into metrics used by the decision policy,
– Communicates with the Policy Evaluation Service. Provides the current state

of the system in a form of metric values and retrives decisions,
– Executes decisions through the cloud vendor API (e.g. Amazon Web Services

API) taking into account environment constraints (e.g. warm-up and cool-
down periods).

The raw measurements are being collected with use of the Graphite moni-
toring tool [30]. Every machine executing the computations is expected to auto-
matically start sending frequent reports through that tool as soon as it starts
operating. The measurements can be reported at different intervals, e.g. CPU
and memory statistics are sent every 10 s while the number of running virtual
machines (VM) is reported once per minute. To introduce a coherent view of the
environment, Graphite aggregates the values within a common interval, which
in our case is set to one minute.

The role of Policy Evaluation Service is straightforward: it evaluates the state
of the observed system with the use of the policy trained using the Proximal Pol-
icy Optimization. There are three possible results of the evaluation: do nothing

Automatic Management of Cloud Applications 79

(according to the policy a proper amount of resources is being used, there is
no need to change the environment), add another VM (there are not enough
resources in the current state of the system), remove a VM (there are too many
machines used, one of the currently running ones should be stopped).

The decisions of the agent are not always translated directly to changes of the
environment. Taking an action is always subject to the environment constraints:
starting or stopping a virtual machine takes some time. In order to observe the
effects of the previous interaction, we need to wait for some time, i.e. wait for a
warm-up (starting a new VM) or cool-down (stopping a VM) of the system. We
might also need to simply wait until the previous request gets fulfilled or handle
a request failure.

The presented system does not make many assumptions about the workload
for which the infrastructure is being controlled. It is required though that: a)
the work can be split into multiple, independent tasks, b) there is a concept
of a queue which can be monitored to check how many tasks are waiting for
processing, c) the VMs used for processing can be stopped, the tasks which would
be processed by them would be retried, d) executing the same job multiple times
does not carry a risk of system malfunction.

It is assumed that the process which generates workload is being run on a
machine which is not subject to automatic scaling. In order to fulfill monitoring
requirements it might be necessary to instrument that machine and the software
package which is responsible for generating tasks.

The complete diagram of the architecture, including the relationships of the
discussed components, is presented in Fig. 1.

Fig. 1. Components of the discussed system. Arrows denote interactions between them.

3.2 Training the Policy

Autonomous management systems face a serious risk of introducing unnecessary
costs while they are being trained. If they would start experimenting with exe-
cuting the actions with regard to a real live application, they could significantly
degrade its performance. This would in turn lead to business losses. A common
solution to such a problem is to simulate the cloud resources [31]. Thanks to this

80 W. Funika et al.

approach, we can train the model in a safe, isolated environment, where even
catastrophic events have no real consequences. There is also a number of other
advantages:

– The computational cost of the simulation is orders of magnitude lower than
running the actual system. We can potentially parallelize this process and
evaluate multiple agents in parallel.

– The time in the simulation can be easily controlled. In a relatively short
amount of time we can expose the agent to events from within a long period
of time.

– Results are repeatable: if we need to replicate the training of a policy, we can
rerun the simulation with the same set of parameters and we can expect the
simulator to behave exactly in the same way.

– We can safely try to fine-tune the policy by changing the training algorithm
parameters and re-running the simulation.

Unfortunately, there is one major downside: the simulator differs from the
real environment. It is very hard to include every factor which might potentially
affect how the real system behaves. Part of our research is to evaluate whether
this problem limits the ability of the agent to make optimal decisions, or the
effect can be reduced due to generalization done by the DNN.

We have decided to train the policy using a simulated environment which has
been implemented following the results of our prior research [29,32]. The main
simulation process utilizes the CloudSim Plus simulation framework [33] which
has been used in a wide range of studies [34]. It is wrapped with the interface
provided by the Open AI Gym framework [35]. This allows for decoupling the
simulation from other elements of the system, which in turn allows to easily
reuse the same environment in experiments with different algorithms. This also
helps to parallelize the execution of the simulation in situations where multiple
simulations need to be run simultaneously.

The agent observes the environment through the following metrics: number
of running virtual machines, average CPU utilization, 90th percentile of CPU
utilization, average RAM utilization, 90th percentile of RAM utilization, ratio
of all the jobs waiting in the queue to all the jobs submitted, ratio of the jobs
waiting in the queue submitted in the last monitoring interval to all the jobs
submitted in the last monitoring interval.

The architecture of our training environment is presented in Fig. 2.
During the training, the simulated environment consisted of a single data-

center which could host up to a 1000 virtual machines. Each virtual machine
could provide a 4 core processor with 16 GB of RAM, similar to xlarge Amazon
EC2 instances. The initial number of virtual machines was pre-configured to 100.
Each simulation was run until all tasks were processed.

The workload simulation was based on logs of the actual jobs executed on
IBM SP2 cluster working in the Swedish Royal Institute of Technology. It con-
sisted of 28490 batch jobs executed between October 1996 thru August 1997.
Jobs had varying time of execution and used different amounts of resources. The
configuration of the simulated CPU cores was adjusted to the configuration of

Automatic Management of Cloud Applications 81

Fig. 2. Components of the training system; arrows denote interactions between them.

the simulation execution environment. To reduce the training time, the time in
our simulation experiments was speeded up 1000 times.

The reward function was set up as the negative cost of running the infras-
tructure including some SLA penalties. This enabled us to formulate the training
task as maximization of the objective function (minimizing the cost of the run-
ning infrastructure). The cost of running virtual machines was set to $0.2 per
hour of their work. The SLA penalty was set to $0.00001 for every second of
delay in task execution (e.g. waiting in the queue for execution).

As discussed in [29], the policy resulting from such a training can be applied to
managing resources of workloads which are similar to the one used in simulations.

4 Experiments

We chose to use the pytorch-dnn-evolution tool [36] as an application for which
the infrastructure is automatically managed. The tool implements a co-evolution-
ary algorithm discovering an optimal structure of a Deep Neural Network to
solve a given problem [37]. This approach can be used for problems that can be
solved using supervised learning, i.e. there is a training set available. In many
such problems, however, due to the size of that dataset, evolutionary methods
for discovering the network structure are very costly to apply. Evolution requires
evaluating each candidate network by training it over this large dataset. In order
to workaround this problem, we assume that by training on a small subset of
the initial training dataset, neural networks can be still compared to each other.

Such an approach leads to an emergence of high number of relatively small
tasks, which can be processed independently on a cluster of machines. These
tasks are idempotent: they can be recalculated multiple times without a risk of
corrupting the main evolutionary process. This means that each virtual machine
used to conduct the training can be safely stopped at any point in time. Fur-
thermore, the pytorch-dnn-evolution tool explicitly creates a queue which can
be observed for monitoring the progress of the evolutionary process. Each iter-
ation may have a different number of tasks. This allows to potentially reduce
the amount of resources used and the cost of the evolution, if only we are able
to design a dynamic resource allocation policy which will be able to add and
remove VMs when necessary.

82 W. Funika et al.

As a workload to which we have applied automatic scaling policies, we have
chosen a simple evolutionary experiment which improves the architecture of a
network which recognizes hand written numbers (the MNIST dataset [38]). The
experiment consisted of executing 20 iterations of evolution over a population of
32 neural networks and 16 fitness predictors (subsets of 2000 samples from the
original training set). Every network evaluation included 20 training iterations
of a given fitness predictor.

As our cloud environment we have decided to use Amazon Web Services Elas-
tic Compute Cloud (AWS EC2) [39]. The setup consisted of up to 20 instances
of m5a.large virtual machines from US East 2 (Ohio) region. All VMs have been
executed in the same availability zone to reduce the risk of introducing random
delays caused by the network communication latency. The first VM has been
used to host the workload driver, together with SAMM and Graphite. The Pol-
icy Evaluation Service has been deployed to a separate machine because of its
higher resource requirements. The management agent could run between 1 and
18 VMs as workers which actually performed the calculations.

To provide a comparison for the results of work of our policy, we also tried
to automatically manage the set of used virtual machines with an Auto Scaling
Group. This AWS EC2’s feature allows to automatically start and stop VMs
based on the average CPU usage of the already started machines. If that metric
becomes higher than a defined threshold, a new machine is started. Similarly,
if the metric drops below this threshold, one of the machines is stopped. For
our workload, the value of 80% average CPU usage allowed to achieve the best
results.

5 Experiment Results

Below we present the results of the automatic management of the resources with
use of the policy trained using the PPO algorithm, on the one hand and the
threshold-based AWS policy, on the other hand. Figure 3 presents the number
of virtual machines in the context of jobs waiting in the queue. The step shape
of the charts comes from the fact that after performing an action through the
API, the system needs to wait for 180 s. This is necessary to allow for startup of
newly added machines or shutdown of the stopped ones.

Under the management of the PPO-trained policy, the overall experiment
time was 598 min and the total cost of managed resources was $13.24. In the
case of the threshold-based approach it was respectively 642 min and $14.21.
The use of the first policy led to faster execution (by 42 min - 6.5%) and lower
resources cost (by $0.97–6.8%) execution. For a fair cost comparison in the case
of the first policy we need to include also the cost of the additional VM used to
generate decisions ($0.86). This reduces the cost difference to $0.11 (0.7%). If the
experiment would run for a longer period of time or more expensive resources
would be used, such an additional cost would become negligible. The resources
required to run the policy are constant, so they would become a very small
percentage of the overall cloud resources cost.

Automatic Management of Cloud Applications 83

Fig. 3. Number of started VMs in context of jobs waiting in the queue.

The PPO policy was quite conservative in introducing changes and main-
tained a similar amount of resources most of the time. From time to time it
tried to reduce the number of virtual machines after a slightly smaller number
of tasks were submitted in an iteration. Those drops were quickly compensated.

The threshold-based policy was more aggressive: after the first iteration it
reduced the number of used VMs to 1. Unfortunately, this leads to a slow-down
of the whole processing. The final task in this iteration was being picked up
subsequently by machines, which would get stopped after a couple of minutes.
This delayed its execution until there was only a single machine, which would
not get stopped. That single situation delayed the overall evolution process. It
is worth noting that after the initial attempts to reduce the amount of resources
used, that policy set the number of used resources to a maximum of 18 and
maintained this number till the completion of the experiment.

We acknowledge that it is not fully a fair comparison. It might be possible to
set the threshold in a way which will allow to avoid the slow-down described
above. Using a more complex policy using the same paradigm (a multiple-
threshold policy) might help to achieve even better results. Those experiments
prove however that the use of the PPO-trained policy renders results on-par
with other approaches. At the same time, in the new approach, one can take
multiple factors into account in the decision making process (e.g. amount of free
RAM), there is no need to set a fixed threshold. Furthermore, as demonstrated
in this experiment, it is possible to create a generic policy which can be used
also to manage resources for other workloads in which the resources are used in
a similar way.

84 W. Funika et al.

6 Conclusions and Further Research

In this paper we have presented a novel approach to autonomous resource man-
agement which uses recent advancements in the Deep Reinforcement Learning
area. We explained how to train a cloud resource management policy using the
Proximal Policy Optimization algorithm with use of a simulated cloud environ-
ment. Furthermore we demonstrated how to implement a system which enables
deploying such a policy to a real cloud infrastructure - the AWS Elastic Compute
Cloud. Finally, we showed that for a sample workload such a policy can manage
the infrastructure in a more efficient manner comparing to a threshold-based pol-
icy. The careful examination of reasons for such a result revealed issues which led
us to a different overall conclusion. Given more fine-tuning the threshold-based
policy might be able to allow to achieve even better results. On the other hand,
the DRL based approach offered slightly lower costs of infrastructure, while also
having a number of other advantages (considering multiple decision factors, no
requirement for setting the thresholds manually, re-using the policy across a
range of similar applications).

Our approach to the training of the policy delivered good results. Even
though we trained it by simulating a different, speeded up workload, our app-
roach enabled to successfully manage the infrastructure for a real, sample
machine-learning application. Simulations enabled us to avoid high costs of train-
ing. We were able to reduce the amount of time which was needed for a single
simulation. At the same time we were able to avoid the cost of poor management
decisions made by an untrained policy.

The presented system has a few limitations as well. Due to the grace period
and ability to start or stop only a single VM, our policy could not react to
environment changes fast enough. Furthermore, our policy was only able to effi-
ciently handle situations, which it was exposed to in a prior training. When new
jobs were being issued, the management decisions seemed reasonable, however
after the workload had stopped, the number of used resources was not reduced
immediately. In contrast, the threshold-based policy stopped all the machines
within a couple of minutes once the evolution had stopped.

We plan to continue extending the approach discussed in this paper and
mitigate the mentioned issues. We would like to extend the range of available
actions in order to allow the policy to add or remove more virtual machines
at once. Furthermore, we aim to modify the system to introduce a continuous
policy improvement loop.

Acknowledgement. The research presented in this paper was supported by the funds
assigned to AGH University of Science and Technology by the Polish Ministry of Sci-
ence and Higher Education. The experiments have been carried out on the PL-Grid
infrastructure resources of ACC Cyfronet AGH and on the Amazon Web Services Elas-
tic Compute Cloud.

Automatic Management of Cloud Applications 85

References

1. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-
adaptive cloud autoscaling systems. ACM Comput. Surv. 51(3), 61:1–61:40 (2018)

2. Sutton, R.S.: Temporal credit assignment in reinforcement learning. PhD thesis
(1984)

3. Kaelbling, L.P., et al.: Reinforcement learning: a survey. CoRR, cs.AI/9605103
(1996)

4. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

5. Gu, S., et al.: Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In: Proceedings 2017 IEEE International Conference
on Robotics and Automation (ICRA), Piscataway, NJ, USA, May 2017. IEEE
(2017)

6. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)

7. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602 (2013)

8. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Pro-
ceedings of The 33rd International Conference on Machine Learning, vol. 48, pp.
1928–1937. PMLR, 20–22 June 2016

9. Schulman, J., et al.: Proximal policy optimization algorithms. CoRR,
abs/1707.06347 (2017)

10. Funika, W., et al.: Towards autonomic semantic-based management of distributed
applications. Comput. Sci. 11, 51 (2013)

11. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

12. Hoffman, H.: Seec: a framework for self-aware management of goals and constraints
in computing systems (power-aware computing, accuracy-aware computing, adap-
tive computing, autonomic computing). PhD thesis, Cambridge, MA, USA (2013).
AAI0829261

13. An architectural blueprint for autonomic computing. Technical report, IBM, June
2005

14. Huber, N., et al.: Model-based self-adaptive resource allocation in virtualized envi-
ronments. In: Proceedings of the 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS 2011, pp. 90–99. ACM,
New York (2011)

15. Kim, S., et al.: An allocation and provisioning model of science cloud for high
throughput computing applications. In: Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference, CAC 2013, pp. 27:1–27:8. ACM, New York
(2013)

16. Kateb, D., et al.: Generic cloud platform multi-objective optimization leveraging
models@run.time, March 2014

17. Minarolli, D., Freisleben, B.: Distributed resource allocation to virtual machines
via artificial neural networks. In: Proceedings of the 2014 22Nd Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing, PDP
2014, pp. 490–499. IEEE Computer Society, Washington, DC (2014)

https://doi.org/10.1007/978-3-642-02161-9_3

86 W. Funika et al.

18. Wickremasinghe, B., et al.: Cloudanalyst: a cloudsim-based visual modeller for
analysing cloud computing environments and applications. In: 2010 24th IEEE
International Conference on Advanced Information Networking and Applications,
pp. 446–452, April 2010

19. Qu, C., et al.: A reliable and cost-efficient auto-scaling system for web applications
using heterogeneous spot instances. CoRR, abs/1509.05197 (2015)

20. Rodriguez, M.A., et al.: Containers orchestration with cost-efficient autoscaling in
cloud computing environments. CoRR, abs/1812.00300 (2018)

21. Fernandez, H., et al.: Autoscaling web applications in heterogeneous cloud infras-
tructures. In: Proceedings of the 2014 IEEE International Conference on Cloud
Engineering, IC2E 2014, pp. 195–204, Washington, DC, USA (2014)

22. Koperek, P., Funika, W.: Dynamic business metrics-driven resource provision-
ing in cloud environments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 171–180. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31500-8 18

23. Ferretti S., et al.: Qos–aware clouds. In: 2010 IEEE 3rd International Conference
on Cloud Computing, pp. 321–328, July 2010

24. Ashraf, A., et al.: Cramp: cost-efficient resource allocation for multiple web appli-
cations with proactive scaling. In: 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, pp. 581–586, December 2012

25. Xu, C.-Z., et al.: Url: a unified reinforcement learning approach for autonomic
cloud management. J. Parallel Distrib. Comput. 72, 95–105 (2012)

26. Xiong, P., et al.: Smartsla: cost-sensitive management of virtualized resources for
CPU-bound database services. IEEE Trans. Parallel Distrib. Syst. 26, 1 (2014)

27. Wang, Z., et al.: Automated cloud provisioning on AWS using deep reinforcement
learning. CoRR, abs/1709.04305 (2017)

28. Kitowski, J., et al.: Computer simulation of heuristic reinforcement learning sys-
tem for nuclear plant load changes control. Comput. Phys. Commun. 18, 339–352
(1979)

29. Funika, W., Koperek, P.: Evaluating the use of policy gradient optimization app-
roach for automatic cloud resource provisioning. In: Wyrzykowski, R., Deelman, E.,
Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043, pp. 467–478.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43229-4 40

30. Graphite Project. https://graphiteapp.org/. Accessed 28 Nov 2019
31. Rz ↪asa, W.: Predicting performance in a paas environment: a case study for a web

application. Comput. Sci. 18(1), 21 (2017)
32. Funika, W., et al.: Repeatable experiments in the cloud resources management

domain with use of reinforcement learning. In: Cracow Grid Workshop 2018, pp.
31–32. ACC Cyfronet AGH, Kraków (2018)

33. Filho, M.C.S., et al.: Cloudsim plus: a cloud computing simulation framework
pursuing software engineering principles for improved modularity, extensibility and
correctness. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 400–406, May 2017

34. Hussain, A., et al.: Investigation of cloud scheduling algorithms for resource uti-
lization using cloudsim. Comput. Inform. 38, 525–554 (2019)

35. Brockman, G., et al.: OpenAI Gym (2016). arxiv:1606.01540
36. PyTorch DNN Evolution. https://gitlab.com/pkoperek/pytorch-dnn-evolution.

Accessed 01 Dec 2019

https://doi.org/10.1007/978-3-642-31500-8_18
https://doi.org/10.1007/978-3-030-43229-4_40
https://graphiteapp.org/
http://arxiv.org/abs/1606.01540
https://gitlab.com/pkoperek/pytorch-dnn-evolution

Automatic Management of Cloud Applications 87

37. Funika, W., Koperek, P.: Co-evolution of fitness predictors and deep neural net-
works. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10777, pp. 555–564. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78024-5 48

38. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
39. Amazon Web Services Elastic Compute Cloud. https://aws.amazon.com/ec2/.

Accessed 30 Dec 2019

https://doi.org/10.1007/978-3-319-78024-5_48
https://doi.org/10.1007/978-3-319-78024-5_48
https://aws.amazon.com/ec2/

	Automatic Management of Cloud Applications with Use of Proximal Policy Optimization
	1 Introduction
	2 Related Work
	2.1 Reinforcement Learning

	3 Proposed System Design
	3.1 Architecture
	3.2 Training the Policy

	4 Experiments
	5 Experiment Results
	6 Conclusions and Further Research
	References

