
Cache-Aware Matrix Polynomials

Dominik Huber1, Martin Schreiber1(B) , Dai Yang2, and Martin Schulz1

1 Department of Informatics, Technical University of Munich, Munich, Germany
{domi.huber,martin.schreiber}@tum.de, schulzm@in.tum.de

2 NVIDIA, Munich, Germany
daiy@nvidia.com

Abstract. Efficient solvers for partial differential equations are among
the most important areas of algorithmic research in high-performance
computing. In this paper we present a new optimization for solving lin-
ear autonomous partial differential equations. Our approach is based
on polynomial approximations for exponential time integration, which
involves the computation of matrix polynomial terms (Mpv) in every
time step. This operation is very memory intensive and requires tar-
geted optimizations. In our approach, we exploit the cache-hierarchy of
modern computer architectures using a temporal cache blocking app-
roach over the matrix polynomial terms.

We develop two single-core implementations realizing cache block-
ing over several sparse matrix-vector multiplications of the polynomial
approximation and compare it to a reference method that performs the
computation in the traditional iterative way. We evaluate our approach
on three different hardware platforms and for a wide range of different
matrices and demonstrate that our approach achieves time savings of
up to 50% for a large number of matrices. This is especially the case on
platforms with large caches, significantly increasing the performance to
solve linear autonomous differential equations.

Keywords: Cache-blocking in time dimension · Matrix
exponentiation · Higher-order time integration

1 Introduction

Solving time-depending partial differential equations (PDEs) on large-scale
supercomputers is extremely resource demanding, yet applications demand the
ability to operate on increasingly larger and more complex systems. Conse-
quently, the development of efficient parallel PDE solvers from the mathematical
side, as well as their efficient implementation on high-performance computing
(HPC) systems is an active area of research. In this work, we investigate opti-
mizations along the time dimension combining new approaches from mathemat-
ics and HPC research.

Our main application focus lies on linear autonomous PDEs that occur fre-
quently, e.g., in full waveform inversion problems [9] or as part of splitting meth-
ods that incorporate non-linear parts in a separate way [8]. In general, such
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12137, pp. 132–146, 2020.
https://doi.org/10.1007/978-3-030-50371-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50371-0_10&domain=pdf
http://orcid.org/0000-0002-2390-6716
https://doi.org/10.1007/978-3-030-50371-0_10

Cache-Aware Matrix Polynomials 133

PDEs are given by ∂U(t)
∂t = LU(t) with L being the linear operator and U(t) the

solution at time t.
In order to solve such systems numerically for a given initial condition U(0),

we must apply a discretization. In particular, our presented HPC algorithms tar-
get commonly used discretization methods leading to a linear operator directly
and explicitly given by a sparse matrix L. This is, e.g., the case when using
discretizations based on finite differences or radial basis functions.

Furthermore, the discrete state of the solution at time t is given by U(t),
leading to ∂U (t)

∂t = LU(t). Such a discretization typically results in sparse
matrices that are then used in matrix-vector-like computations LU , as it
is common in off-the-shelf time integration methods. To provide an exam-
ple, explicit Runge-Kutta (RK) methods rely on computations of the form
ki = L

(
tn + Δtci,U

n + Δt
∑

j ai,jkj

)
with Un being the approximated solu-

tion at time tn, kj related to the j-th RK stage, ai,j an entry in the Butcher table
(e.g., see [1]) and Δt the time step size as part of the time discretization. How-
ever, such a formulation targets non-autonomous systems with the assumption
of L(t) varying over time, e.g., by external time-varying forces, hence involving
the dependency on time via tn + Δtci.

In contrast, the linear PDEs we target in this paper do not involve any time-
depending terms and this is indeed the case for many other PDEs (Seismic waves,
Tsunami simulations, etc.). This opens up a new branch of matrix-polynomial-
based time integration methods of the form U(t + Δt) =

∑
n αn (ΔtL)n

U(t),
which we explore in this paper as the target for our algorithmic HPC optimiza-
tions. Similarly to the RK-based methods, these methods rely on matrix-vector
products.

For their efficient implementation, though, we need to take modern HPC
architectures into account, in particular their cache and memory hierarchy. We,
therefore, design and implement a novel temporal cache-blocking scheme over
the linear operators L as part of such a matrix polynomial computation. This
increases both spatial and temporal locality and leads to a high utilization of
the cache resources, leading to a speed-up of up to 50% on some architectures.

Our main contributions are the development of these caching strategies in
Sect. 3, an analytical performance model which is presented in Sect. 4 as well as
the performance assessment in Sect. 5.

2 Related Work

The growing gap between computational performance and memory access laten-
cies and bandwidth, commonly referred to as the memory wall [12], is one of the
fundamental bottlenecks in modern computer architectures. Caches are com-
monly used to mitigate this problem, but require careful algorithm design to
achieve the needed temporal and spatial locality that makes their use efficient.
This is particularly true for PDE solvers, which we target in this paper. Algo-
rithm design and optimization is, therefore, an active and wide field of research.

134 D. Huber et al.

In the following we point out the most relevant related work and contrast it to
our approach.

We first discuss very common optimization approaches for spatial dimen-
sions. For matrix-vector and matrix-matrix multiplications, cache-blocking [6] is
a well established technique and considered an essential optimization on today’s
architectures with deep memory hierarchies. For regular grid structures, this
technique can be combined with tiling approaches, like spatial tiling [7], to fur-
ther increase its efficiency. However, so far such optimizations only targeted the
execution of a single operation, ignoring potential optimizations across multiple
operators.

When considering the time dimension, temporal tiling and wavefront compu-
tations, as a generalization of it, has been shown to provide significantly improved
performance on modern architectures [2,11,13]. In our work we build on this app-
roach of temporal tiling, used for individual SpMvs, and apply it to a series of
successive SpMvs, as they occur during the calculation of the matrix potentials
Mpv needed for our class of targeted PDEs.

Contrary to stencil computations, our algorithms do not perform blocking
over several time steps, but rather several sparse matrix-vector multiplications
(SpMvs) computing the polynomial terms (vectors) in every time step. Further-
more, our approach can also be applied out-of-the-box to non-uniform grids. For
temporal tiling, this would pose new requirements on data dependencies, as it
is based on the explicit use of the regular grid structure.

Within the scope of the project to develop “communication-avoiding Krylov
subspace methods” several publications focus on comparable approaches (see
Hoemmen [4] and references therein). One particular difference of our work is
the application of this technique in polynomial time integration. We also provide
two different implementations of this technique, which enable the cache blocking
naturally with a very small preprocessing overhead.

3 Cache-Aware Matrix Polynomials

In this section we present two cache-aware algorithms for the calculation of the
matrix polynomial terms Mpv: the Forward Blocking Method (FBM) and the
Backward Blocking Method (BBM). In particular, matrix-polynomial-based time
integration demands not only the vector Mpv to be calculated, but rather all
vectors Mkv, k ∈ {1, · · · , p}, which makes it infeasible to explicitly precompute
the matrices Mk before multiplying them with v. Therefore, these vectors are
computed by typically successive matrix-vector multiplications with the same
matrix M . With yn denoting the result vector of the calculation of Mnv, the
vector yn+1 is derived as yn+1 = Mn+1v = Myn. This leads to the intuitive way
to calculate Mpv by successive matrix-vector multiplications, i.e., the vectors y1

to yp are calculated one after the other. We refer to this as the naive approach.
However, for sufficiently large problem sizes this results in no data reuse

between the matrix-vector products, as the data is already evicted from the cache
before it can be used again in the next multiplication. To avoid this situation our

Cache-Aware Matrix Polynomials 135

two methods use a blocking technique that enables the reuse of data over multiple
matrix-vector calculations, which borrows some ideas from wavefront strategies
in stencil computations. We interpret the vectors y1 to yp as one-dimensional
domains at time steps 1 to p, similar to one-dimensional stencil computations.
While in such stencil computations the dependencies between the time steps are
given by the defined stencil. for our calculations these dependencies are defined
by the positions of nonzero entries in every row of the matrix. For matrices arising
from finite differences or radial basis function discretizations, these positions are
usually regionally similar in neighboring rows. Based on this observation, we
apply a blocking scheme to the matrix to describe dependencies between whole
blocks of the vectors. Our algorithms then construct two-dimensional space-
time tiles over the vectors that fit into cache, while simultaneously respecting
the dependencies between all blocks of the vectors.

To achieve this, our two methods use two different concepts: FBM starts
at the first vector y1 and calculates successive blocks of a vector yn until the
dependencies for a block on the next vector yn+1 are fulfilled. BBM, on the
other hand, starts at the last vector yp and is stepping backwards through the
dependency graph in a recursive way to calculate exactly the blocks needed
to resolve the dependencies for the current block of yp. To realize these two
concepts, both methods demand distinct information about the dependencies
between the vector blocks. Therefore, we use different data structures for the
FBM and BBM, as discussed next.

3.1 Extended CSR Matrix Formats

As a basis for our cache-aware matrix polynomial scheme, we extended the CSR
matrix storage format to provide additional information about the non-zero
block structure of the matrix. The CSR format uses three arrays: the non-zero
entries of the matrix in the array val, the corresponding column indices in the
array colInd and the row information as pointers into the two other arrays in
the array rowPtr. We extended this format by (conceptually) partitioning the
matrix into blocks of size B × B, while keeping the underlying data layout of
the CSR format. The information about the non-zero block structure is then
stored in additional arrays. However, we use different formats for the two meth-
ods: while we store the positions of all non-zero blocks for the BBM, only the
position of one non-zero block per blockRow has to be stored for FBM.

Therefore, for FBM the CSR format is extended by only one additional array
of size � n

B � for an Mn×m matrix. In this array the maximum block-column index
of every block-row is stored (see maxBlockColInd array in Fig. 1). Hence, only a
relatively small overhead of additional data has to be stored and loaded.

The format used by BBM, on the other hand, provides the full information
about the non-zero block structure of the matrix. This information is stored in
two arrays similarly to the colInd and rowPtr arrays of the CSR format, but by
dealing with all block rows and columns instead of single ones (see Fig. 2). Thus,
the blockRowPtr array consists of offsets into the blockColumnIndex array,
indicating the start of a block row. The blockColumnIndex array contains the

136 D. Huber et al.

Fig. 1. Forward Blocking Method: This example shows the concept of the FBM
for the calculation of M3v with sparse matrix M (left), the dense source vector v/y0

(most left vector) and a block size of B = 2. The following vectors y1, y2 and y3 are
the destination vectors of the successive SpMv operations needed to calculate M3v.
The numbers inside the blocks of the destination vectors denote the order in which
they are calculated by the FBM. The arrows indicate the dependencies between the
vector blocks as encoded by the MaxBlockColInd array.

Algorithm 1. Forward Blocking Method: Calculates yp = Mpy0, where
M is partitioned into numBlocks slices represented in the format described in
Sec. 3.1
Require: y0 is the source vector → lastBlockOf(y0) = numBlocks and yi, i ∈ [1, p] are

empty vectors → lastBlockOf(yi)= −1, neededBlockFor(yi) = maxBlockColInd[0]
1: function FBM(numBlocks)
2: p0 ← 1
3: while neededBlockFor(yp) ! = −1 do
4: for i = p0 to p do
5: while lastBlockOf(yi−1) ≥ neededBlockFor(yi) and not (i + 1 <= p

and lastBlockOf(yi) >= neededBlockFor(yi+1)) do
6: SpMv(yi, lastBlockOf(yi)+1)
7: lastBlockOf(yi)++
8: if lastBlockOf(yi) < numBlocks −1 then
9: neededBlockFor(yi) = maxBlockColInd[lastBlockOf(yi)+1]

10: else
11: p0 + +
12: neededBlockFor(yi)=-1
13: break

Cache-Aware Matrix Polynomials 137

block-column indices of non-zero blocks in a block-row. If Br denotes the number
of non-zero B ×B blocks of an Mn×m matrix, the size of the two arrays is given
by � n

B � and Br.

3.2 The Forward Blocking Method

We implemented FBM according to the pseudo code in Algorithm1. For a better
understanding of the underlying concept of this method, we present an example
in Fig. 1. Based on this example we describe the algorithm while referring to the
corresponding lines of code.

For each vector y1, y2 and y3 we track the information about its last cal-
culated block (starting at −1) and the maximum index of the block of the pre-
decessor vector that is needed to calculate the next block. For simplicity, in
Algorithm 1 we compute these values by the function calls lastBlockOf(yn)
and neededBlockFor(yn), respectively.

Starting at y1, FBM loops through the vectors (Line 2 & 3), thereby calcu-
lating blocks of vector yn by an arbitrary SpMv kernel (Line 5) until one of the
following two conditions is reached (Line 4):

– The forward pointer in the last calculated block points to an unfilled block
of yn+1: this indicates that the currently calculated data can be used to
calculate a block of vector yn+1 and, therefore, the loop jumps to the next
vector to propagate the new data forward.

– The forward pointer to the next block of yn to be calculated originates from
an unfilled block of yn−1: this indicates that there are more blocks of the
previous vector(s) needed, so the loop starts again at vector y1.

When a block of vector yn with index Bi is calculated, the value of
lastBlockOf(yn) has to be incremented (Line 7) and the new value of
neededBlockFor(yn) can be read from maxBlockColInd[Bi +1] (Line 9). Com-
pletely filled vectors are excluded from the loop (Line 11). This loop is repeated
until the last block of y3 is filled (Line 1).

The numbers in the vectors in Fig. 1 illustrate the order in which the blocks
of the vectors would be calculated by FBM in this example. This order exhibits
improved temporal locality on both the matrix and the vectors, compared to
successive matrix-vector products, as it traverses the dim×p-plane of the vectors
in wavefronts with a certain (constant) wavefront angle, resembling those in
stencil computation. It can be observed that the minimum tile size is dependent
on the distances between the lowest and highest column index in every row.
Hence, for very large distances FBM produces large space-time tiles to respect
these dependencies, which impedes cache usage and, among other issues, excludes
periodic boundary problems from the application domain of this method.

138 D. Huber et al.

Fig. 2. Backward Blocking Method: This example shows the concept of the BBM
for the calculation of M3v with sparse matrix M (left), the dense source vector v/y0

(most left vector) and a block size of B = 2. The following vectors y1, y2 and y3 are the
destination vectors of the successive SpMv operations needed to calculate M3v. The
numbers inside the blocks of these destination vectors denote the order in which they
are calculated by the BBM. The arrows indicate the dependencies between the vector
blocks as encoded by the arrays blockRowPtr and blockColInd. The BBM computes
a block of y3 by recursively computing all the (not already computed) blocks of the
previous vectors it depends on, e.g., to calculate the first block of y3 (y3[0]) the order
of calculated blocks is y1[0], y1[2], y2[0], y1[4], y2[2], y3[0].

Algorithm 2. Calculates block Bi of vector yn recursively
1: function lookupRec(yn, Bi)
2: if n > 1 then
3: for index=blockRowPtr[Bi] to blockRowPtr[Bi+1]−1 do
4: Brec =blockColInd[index]
5: if yn−1[Brec].isEmpty() then
6: lookupRec(vecyn−1, Brec)

7: SpMv(yn, Bi)

3.3 Concept of Backward Blocking

Figure 2 shows the concept of BBM. It loops over the blocks of the final result
vector yp (y3 in our example) and calculates the necessary blocks of the previ-
ous vectors recursively by calling the functions shown in Algorithm2. As input
parameters, this function takes a vector yn and the index Bi of the block of
this vector that will be calculated. To calculate this block yn[Bi], all the blocks
of yn−1 from which pointers lead to yn[Bi] are needed. The indices of these
blocks can simply be read from the entries blockColInd[blockRowPtr[Bi]] to

Cache-Aware Matrix Polynomials 139

blockColInd[blockRowPtr[Bi+1]-1] (Line 3). If such a block of yn−1 is not
calculated, yet, a recursive function call is performed for this block index and
vector yn−1 (Line 5 & 6). When all necessary blocks are filled, yn[Bi] can finally
be calculated using a SpMv kernel (Line 10). The algorithm is effectively step-
ping backwards through the dependence graph in a depth first traversal to reach
the needed filled blocks and is calculating exactly the required data on the way
backtracking forward through the dependence graph.

As above, the correct order of the calculations of the vector blocks improves
the temporal locality of the data accesses. For the shown example of a regu-
lar grid, BBM calculates blocks of vectors (after a short initialization phase) in
the same order as FBM. However, the additional information of the dependen-
cies between the blocks leads to a decisive advantage. As discussed above FBM
degenerates to nearly successive SpMv calculations for large distances between
non-zeros in one or multiple rows. BBM can “compensate” a small number of
such rows, if for a majority of rows these distances are small enough for the
space-time tiles to fit into cache. For such cases, BBM breaks the wavefront
analogy and only calculates exactly the needed data blocks. This is contrary to
FBM, which calculates all blocks of a vector up to the maximum needed block.

4 Analytical Best-Case Performance Model

In order to understand the quality of our proposed solution, we derive an analyt-
ical model showing the upper bound for the performance improvements possible
with our blocking methods. When calculating Mpv for large problem sizes with-
out cache blocking, the values of the matrix and vectors have to be loaded from
memory for every matrix-vector multiplication. Thus, the time for the naive cal-
culation is given by Tnaive(p) = p×Tmem, where Tmem denotes the time needed
for an SpMv with no values cached.

Our approaches use cache blocking, hence—in the ideal case—the matrix
and vector values are only loaded once from memory and then reside in cache
for the rest of the computation. Following this observation, we model the com-
putation time as Tblocked(p) = Tmem + (p − 1) × Tcache, where Tcache is the
time needed for in-cache SpMvs. The time savings through blocking can then
be calculated as Tsave(p) = 1 − Tblocked(p)

Tnaive(p)
. Consequently, for increasing expo-

nents of the matrix (p), the expected time savings through blocking converge to
limp→∞ 1 − Tmem+(p−1)×Tcache

p×Tmem
≈ 1 − Tcache

Tmem
.

The size of the data that has to fit into the cache to achieve full cache blocking
(SC) is heavily dependent on the specific matrix structure and the exponent of
the matrix. I.e., the relation can be described as SC ∝ Rnz ×Bw × p, where Rnz

is the number of nonzero values per row, Bw the distance between the lowest and
highest column index per row and p the exponent of the matrix. For regular grid
based matrices, the computation order in which the two methods compute the
blocks lead to a more accurate approximation of SC ≈ Bw

2 (p(Rnz(Sval +Sind)+
3Sval +Sind)+Sval), where Sval is the size of the data type of the matrix/vector
values and Sind the size of the data type used for the index and pointer array of
the CSR format.

140 D. Huber et al.

5 Evaluation

5.1 Targeted Hardware Architectures

To analyze the effectiveness of our approach, we evaluate our approaches on
three different hardware platforms: XeonBronze, XeonSilver and AMD. Both
XeonBronze and XeonSilver are based on the Intel Skylake Architecture; the
XeonBronze platform features an Intel Xeon Bronze 3106 8-core processor with
a total of 80 GiB of DRAM, and the XeonSilver platform is equipped with
two Intel Xeon Silver 4116 12-core processors and a total of 96 GiB of DRAM,
arranged equally across all available memory slots to allow for optimal band-
width. Our AMD platform is built with a single AMD Ryzen Threadripper
2990WX 32-core processor. It is based on the 2nd-generation AMD Zen archi-
tecture and features a total of 64 GiB of main memory.

The Intel Skylake [3] features a classical 3-layer cache design (L1I/D, L2 and
L3), with each of the layers (L1I/D, L2 and L3) being non-inclusive. L1D and
L1I caches are 32 KiB large and 8-way associative, the L2 cache has a size of
1 MiB and is 4-way associative, and all three caches are exclusive to a particular
core. The L3, on the other hand, is a shared cache and has a size of 1.375 MiB
per core on our reference systems, resulting in a total of 11 MiB (Xeon Bronze)
and 16.5 MiB (Xeon Silver) L3 cache shared between the cores of a processor.

On AMD’s 2nd-generation Zen architecture (Zen+) the L1I caches are 64 KiB
and the L1D are 32 KiB per core and each core also has its own 256 KiB L2 cache.
Unlike on Skylake, the L1 caches are full inclusive with respect to the L2 caches.
A special design of Zen+ is the so-called CCX consisting of a cluster of 4 cores,
which each shares an 8 MiB L3 cache. Two CCXs are located on one die and our
reference platform (2990WX) features a total of 4 dies in its package. The dies
are interconnected with a high-speed interconnect named Infinity Fabric. On the
2990WX, two memory controllers are attached to two of the dies, resulting in 4
NUMA domains, in which two of the domains do not have direct memory access
and need to route accesses through another core.

5.2 Matrix Test Suite

The structure of the generated matrices depends on the particular grid, the finite
difference order and the boundary condition. To identify the interplay between
these parameters and our developed algorithms, we construct two matrix test
suites that cover a wide range of combinations of these parameters. We give an
overview of these matrices we used for our tests in Tables 1 and 2.

Cache-Aware Matrix Polynomials 141

Table 1. Overview of matrices in test suite 1

Test suite 1 (TS 1)

PDE ∂u
∂t

= α
(

∂2u
∂x2

1
+ · · · + ∂2u

∂x2
n

)
= α∇2u

FD orders 2, 4, 6, 8

Boundary condition Homogenous Dirichlet

TS 1a TS 1b

Matrix IDs 0–27 28–55

Dimensionality 2D 3D

Grid dimensions 224, 316, 447, 632, 775, 894, 1000 37, 46, 58, 74, 84, 93, 100

Table 2. Overview of matrices in test suite 2

Test suite 2 (TS 2)

Matrix IDs 56–136

PDE U(x, t) = c∇U(x, t) , c = 1

FD orders 2, 4, 6, 8

Boundary condition Periodic, U(x, 0) = sin(2π(x − x0))

Dimensionality 1D 2D 3D

Grid dimensions 2n , n ∈ [5, 10] 2n × 2n−1 , n ∈ [6, 10] 2n × 2n−1 × 2n−2 , n ∈ [7, 10]

5.3 Benchmark Description and Configuration

We investigate the behavior of our two methods for matrices of TS 1a and 1b. As
FBM is not suited for problems with periodic boundary conditions (see Sect. 3.2),
we test only BBM for matrices of TS 2.

We run tests using SSE4.2, AVX, AVX2 and AVX512 on the Intel sys-
tems and an AVX2 implementation on the AMD system, using block sizes of
B = 2i, i ∈ {6, · · · , 12}. We further use an affinity of the single-threaded pro-
gram to the core closest to the memory controller on each architecture. Our
findings show that the differences in the vector instruction sets and the underly-
ing micro architecture realizing them have a great impact on the performance of
SpMvs with the matrices of our test suites: using AVX512 consistently leads to
lower performance. Further, the performance of SSE, AVX and AVX2 instruc-
tions seem to be highly dependent on the specific matrix, making it difficult to
get to a general conclusion on which vector extensions to use. Hence, if not fur-
ther specified, we use the results of the best performing vector extension for our
implementation and the reference method, respectively. We compare the results
of our approaches to an implementation of the naive approach, which performs
the matrix-vector multiplications sequentially (see Sect. 3). For this, we use the
best performing block size evaluated per matrix and exponent. For all occur-
rences of SpMv calculations, we use the routine mkl sparse d mv() of the Intel
Math Kernel Library (MKL) [5].

142 D. Huber et al.

We also use the same library on the AMD processor, although it often is
reported to not reach high performance on non-Intel CPU types. Several factors
led to this decision: by setting the environment variable MKL DEBUG CPU TYPE=5,
the library can be forced to choose the AVX2 code path instead of the default
SSE path to which it normally falls back to on non-Intel CPUs. Comparing the
performance of the AVX2 code path to other libraries on our AMD architecture,
e.g., OSKI [10], we found that for our cases the optimal library is dependent on
the specific problem type and size. Moreover, this paper focuses on exploring the
general potential of cache-aware algorithms for this type of calculation, rather
than achieving overall maximum performance in using SpMvs directly, motivated
further by the results in the following section. We therefore stick with MKL on
all architectures.

5.4 Results

In this section we present our results of FBM and BBM introduced in Sect. 3.
We measure the time needed for the calculation of Mpv, p ∈ {2, 3, 4, 5} and
compare it to the reference implementation without cache blocking. Our results
show improved performance of our blocking methods on all three architectures
for a large number of matrices in the test suites.

For the matrices of TS 1a and 1b, both FBM and BBM produce quite similar
performance behavior; consequently, these results are shown interchangeably in
Fig. 3. For most of the matrices in TS 1a, our approaches outperform the ref-
erence method. We achieve time savings of up to 25%/15% on the Intel Xeon
Bronze/Silver, respectively, and up to 50% on the AMD Ryzen Threadripper.
The matrices in TS 1b lead to slightly less improvements on the Intel processors,
but still produced time savings of up to ±15% and ±5%, respectively. On the
AMD, we measure greater performance improvements of 40% to 50% for many
of these matrices.

Regarding the periodic boundary problems of TS 2, BBM still achieves the
same kind of performance improvements as for some matrices resulting from 2D
FD grids (Figs. 4).

5.5 Evaluation Compared to the Analytical Model

On all three hardware platforms, we measure the in-L2/L3-cache and in-memory
performance for SpMvs with matrices similar to those in the test suites and
then use these values in our analytical model as described in Sect. 4. The upper
bounds for the time savings of our blocking approach derived from the model are
20%/12% on Intel Xeon Silver, 30%/15% on Intel Xeon Bronze and 55%/50%
on the AMD Ryzen Threadripper, which closely resembles our real measured
performance.

The performance of our approaches depends on size and structure of the
matrix as discussed in Sect. 4. Using cache blocking, these algorithms naturally
can only provide significant performance improvements if the matrix itself does
not fit into cache. Moreover, the matrix properties Bw and Rnz have to be small

Cache-Aware Matrix Polynomials 143

Fig. 3. Performance improvement of BBM/FBM on Xeon Silver (top), Xeon Bronze
(mid) and AMD Ryzen Threadripper (bottom) for matrices in TS 1a and 1b (Dirichlet
boundary condition): time reduction through blocking using best performing ISA for
both, BBM/FBM and the reference method. The number of floating-point operations
is 2 × p × number of non-zeros.

144 D. Huber et al.

Fig. 4. Performance improvement of BBM on Intel Xeon Bronze (top) and AMD Ryzen
Threadripper (bottom) for TS 2 (periodic boundary condition): time savings through
blocking using AVX2 for both, the BBM and reference method.

enough such that the space-time tiles do fit into cache. This explains the poor
performance of the methods for very small matrices (e.g., matrices 0, 1 and 2)
and matrices with large Bw and Rnz (e.g., matrices 53, 54 and 55), while they
perform well for large sparse matrices.

6 Summary and Discussion

In this paper we investigated the potential of using cache aware algorithms to
increase the performance of matrix polynomials in the context of higher-order
time integration of linear autonomous PDEs. We introduced two algorithms: the
Forward Blocking Method (FBM) and the Backward Blocking Method (BBM),
both using a cache blocking technique to allow data reuse during the calculation
of Mpv.

Our evaluation on three different architectures showed both methods profit
from larger and faster caches. Further, our approaches showed improved per-
formance for a large number of matrices of our test suites. These are matrices

Cache-Aware Matrix Polynomials 145

not fitting into cache, while the generated space-time tiles do. We showed that
the ratio of in-cache and in-memory SpMv is a good indicator for upper bounds
of the performance improvements of our method to be expected on a specific
architecture. This is also the deciding factor, why better results can be observed
especially on AMD by blocking for the L3 cache.

Our experiments showed that BBM is the more flexible approach. While FBM
is (by design) not suited for periodic boundary problems, our results showed
BBM also achieved improved performance for such matrices.

Overall, our results showed promising time savings of both methods com-
pared to the standard approach of successive sparse matrix-vector multiplica-
tions. Therefore, our approach is a significant step towards further reducing the
wallclock time of higher-order time integrators for linear autonomous partial
differential equations.

Future work will extend these algorithms to exploit multi-core architectures.
Here, various new challenges will arise, such as possible data races, which ulti-
mately show up for such unstructured problems. However, also opportunities
such as the exploitation of additional caches can lead to further performance
boosts. Additionally, future work will leverage the performance boosts of the
presented algorithms in the context of time integrating PDEs.

References

1. Butcher, J.C.: Implicit runge-kutta processes. Math. Comput. 18, 86 (1964)
2. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization

and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009). http://www.jstor.org/stable/20454196

3. Doweck, J., et al.: Inside 6th-generation intel core: new microarchitecture code-
named skylake. IEEE Micro 37(2), 52–62 (2017)

4. Hoemmen, M.F.: Communication-avoiding Krylov subspace methods. Ph.D. thesis,
EECS Department, University of California, Berkeley (2010). http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.html

5. Intel: Intel R© Math Kernel Library Developer Reference, revision: 023 edn. (2019)
6. Nishtala, R., Vuduc, R., Demmel, J., Yelick, K.: When cache blocking sparse matrix

vector multiply works and why. Appl. Algebr. Eng. Commun. Comput. 18, 297–311
(2007). https://doi.org/10.1007/s00200-007-0038-9

7. Rivera, G., Tseng, C.W.: Tiling optimizations for 3D scientific computations. In:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC 2000, p.
32–es. IEEE Computer Society, USA (2000)

8. Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave
splitting. SIAM J. Sci. Comput. 38(4), A2535–A2557 (2016)

9. Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A., Zhou, W.: 6.
An introduction to full waveform inversion (2014)

10. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: a library of automatically tuned
sparse matrix kernels. J. Phys. Conf. Ser. 16, 521–530 (2005)

11. Wellein, G., Hager, G., Zeiser, T., Wittmann, M., Fehske, H.: Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization, vol.
1, pp. 579–586 (2009)

http://www.jstor.org/stable/20454196
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.html
https://doi.org/10.1007/s00200-007-0038-9

146 D. Huber et al.

12. Wulf, W., McKee, S.A.: Hitting the memory wall: implications of the obvious.
Technical report, USA (1994)

13. Yount, C., Duran, A., Tobin, J.: Multi-level spatial and temporal tiling for efficient
HPC stencil computation on many-core processors with large shared caches. Future
Gener. Comput. Syst. 92, 903–919 (2019)

	Cache-Aware Matrix Polynomials
	1 Introduction
	2 Related Work
	3 Cache-Aware Matrix Polynomials
	3.1 Extended CSR Matrix Formats
	3.2 The Forward Blocking Method
	3.3 Concept of Backward Blocking

	4 Analytical Best-Case Performance Model
	5 Evaluation
	5.1 Targeted Hardware Architectures
	5.2 Matrix Test Suite
	5.3 Benchmark Description and Configuration
	5.4 Results
	5.5 Evaluation Compared to the Analytical Model

	6 Summary and Discussion
	References

