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Abstract. NFV is an important innovation in networking. It has many
advantages such as saving investment cost, optimizing resource con-
sumption, improving operational efficiency and simplifying network ser-
vice lifecycle management. NFV environments introduce new security
challenges and issues since new types of threats and vulnerabilities are
inevitably introduced (e.g. security policy and regular compliance failure,
vulnerabilities in VNF softwares, malicious insiders, etc.). The impact
of these threats can be mitigated by enforcing security policies over
deployed network services. In this paper, we introduce an access control
as a service model for NFV services. The proposed approach can deploy
several kinds of access control model policies (e.g. RBAC, ORBAC,
ABAC, etc.) for NFV services and can be easily scaled.

Keywords: Network Functions Virtualization (NFV) · Access
control · Policy enforcement · Domain type enforcement (DTE)

1 Introduction

Network Functions Virtualization (NFV) is a network architecture concept which
virtualises network functions (firewalling, DNS, intrusion detection, etc.). It cre-
ates a Virtualized Network Function (VNF) instance that is deployed over a
Virtualized infrastructure. Usually, a Virtualized infrastructure is able to host
many VNFs of different types. These VNFs can be chained to provide virtual
network services. NFV promises a number of advantages to network operators
such as reducing hardware costs, deployment in fast time and scalability. Despite
advantages, security concerns are an important obstacle for a wide adoption of
NFV. New threats and vulnerabilities are inevitably introduced such as security
policy violation [12], VNF softwares vulnerable to different kinds of software
flaws [18], and malicious insiders that can be a serious threat for user privacy
and can lead to data confidentiality exposure [12]. Solutions to enhance the
security of VNF network services are (1) to control the access to the different
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 100–117, 2020.
https://doi.org/10.1007/978-3-030-49669-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_6


Network Functions Virtualization Access Control as a Service 101

components of the VNF network service and (2) to control what information
is authorized to be transferred between the different components of the VNF
network service.

In this paper we propose a formal model that provides a software-defined
access control as a service capability for network services. First, it allows to
specify high-level access control requirements to be enforced over network ser-
vices. Second, it uses a provably correct method for transforming the high-level
access control requirement towards a domain type enforcement (DTE) specifica-
tion. Finally, our model defines an efficient enforcement method, as illustrated by
the different conducted experimental evaluations in Sect. 5. Compared to exist-
ing models, our model is: (1) generic since it takes into consideration any type of
access control policy such as RBAC [20], ORBAC [11], ABAC [9], etc., (2) com-
pliant with the ETSI-NFV infrastructure in the sense that it does not require
any modification of the latter for policy deployment, (3) and scalable thanks
to our enforcement method that allows to add as many enforcement points as
needed (e.g., for load balancing purposes) without impacting the functioning of
the network services.

The paper is organized as follows. Section 2 reviews previous related research
on existing security orchestrators and access control models for NFV infras-
tructure. Section 3 provides some background knowledge for understanding the
proposed architecture. Section 4 defines our proposed model. Section 5 provides
an overview of the implementation of our model and presents the evaluation
results. Finally, Sect. 6 concludes the paper and outlines future work.

2 Related Work

Policy management and deployment in NFV architecture have recently been the
topic of several researches. Many approaches have been proposed to define and
enforce security policies over NFV architecture to ensure their security. Basile et
al. propose in [4] an approach aiming to provide specific security properties over
Virtualized networks. This approach relies on a new software component called
Policy Manager to handle high-level security policies specified by the users and
refine them into configurations for specific VNF. Unfortunately, this approach
does not specify what kind of properties can be handled and how these required
security property are refined to deployable configurations. In [14], Montero et
al. propose a user-centric model named SECURED, allowing to express and
deploy security policies to protect users’ security in NFV. Due to its user-centric
characteristic, the proposed model is completely oriented to protect users’ secu-
rity when interacting with NFV network services and cannot be used to secure
NFV network services themselves. In FlowIdentity [24], a Virtualized network
access control function using OpenFlow protocol is proposed. It is a solution
for network access control in SDN architectures with policy enforcement over
a stateful role-based firewall on OpenFlow switches. Unfortunately, the pro-
posed approach is deeply dependent on the SDN architecture and thus cannot
be directly used in an NFV architecture. To overcome the previous limitations,
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Leopoldo, et al. propose ACLFLOW [13] that is a Network Functions Virtual-
ization (NFV)/Software-Defined Networking (SDN) security framework allowing
to translate regular ACL rules into OpenFlow filter rules. ACLFLOW optimizes
the evaluation of ACL rules by prioritizing the most popular rules to acceler-
ate switching operations. Unfortunately, ACLFLOW cannot be used to enforce
more advanced access control policy models such as Role Based Access Con-
trol (RBAC), Organization-Based Access Control (ORBAC), Attribute-Based
Access Control (ABAC), etc.

To solve multi-propagation problems of the concept of NFV such as ver-
ification and authorisation issues, Guija and Siddiqui [7] use the NFV-based
SONATA Service Platform for authentication and authorisation mechanisms,
specifically for Identity and Access control of micro-services in 5G platforms
for services Virtualization, orchestration and management. This solution relies
mainly on OAuth 2 [8] and OpenID Connect [19] to form the implementation of
the user management module allowing Role Based Access Control and Identity
management to follow the centralized authorization approach. However, This
dependency on OAuth 2 and OpenID Connect makes this solution applicable
only on services where a HTTP-based communication is used between their dif-
ferent components.

The model proposed in the standard ETSI-NFV [6] describes the NFV Secu-
rity Monitoring and Management architecture. The proposed architecture intro-
duces two components: The NFV Security Controller that orchestrates system
wide security policies and acts as a trusted third party and the NFV Security
Monitoring Analytics System which performs secure Telemetry acquisition from
the NFV system and can derive threats and anomalies from the telemetry. How-
ever, only the model is defined and no specification of how all this work is done. In
addition, several interfaces that the architecture defines are not specified (e.g. the
connection between the controller and the Operating Support System/Business
Support System (OSS/BSS).

In the literature, several security orchestrators have been defined to control
the access in NFV infrastructure. In [10], Jaeger et al. propose an SDN based
security orchestrator which improves the ETSI NFV reference architecture with
an extensive management of trust and offer a global view for fast and efficient
topology validation. Unfortunately, no concrete use case and implementation of
the provided security requirements are given. The authors of [23] present an
architecture for NFV environments focusing on the automation of access con-
trol management deployment. Unfortunately, the authors do not provide any
information about how access control policies are deployed in a VNF network
service. In [15], Montida et al. develop a security orchestrator as an extension
of the MANO NFV orchestrator to manage the security properties of network
services in their entire lifecycles. They extend the Topology and Orchestration
Specification for Cloud Applications (TOSCA) model [5] with particular security
attributes that are required to create access control policies and finally enforced
in the cloud infrastructure. They instantiate the proposed security orchestrator
in [16,17] through the implementation of an access control model which con-
sists of deploying an access control policy over a network service. However, the
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proposed approach suffers from several limitations. First, it requires the modifi-
cation of the NFV infrastructure since specific agents has to be deployed on the
NFV that compose the considered network service to enforce the access control
policy. Second, the proposed access control model is not generic enough since it
can only handle policies specified using the RBAC model. Finally, it is not clear
how the high level access control policy is transformed into a concrete deployable
policy.

Compared to existing access control models, our model offers several advan-
tages. First, it is a generic model as it can handle most kind of access control
policy models such as RBAC, ORBAC, ABAC, etc. Second, it offers formal and
efficient methods for deploying access control policies at the concrete level. Third,
the deployment method proposed in our model does not require any modification
at the NFV infrastructure level.

3 Background

This section provides background material about all main technologies to enable
the deployment of our security policy.

VNF Forwarding Graph: ETSI defined the notion of a VNF forwarding graph
(VNFFG) [3] known also as Service Function Chaining (SFC). It is used to
manage a traffic through a sequence of network functions (NF) that should be
traversed in an order list of VNFs. VNFFG are described by VNF Forwarding
Graph Descriptors (VNFFGD). Each forwarding graph is composed of a set of
forwarding paths.

Network Service: A VNF service is composed of a set of VNFs that are repre-
sented using a deployment template VNF descriptor (VNFD) which define their
properties and a set of forwarding graphs that are defined using a deployment
template VNF FG Descriptor (VNFFGD).

Domain and Type enforcement (DTE): The technique Domain and Type
Enforcement (DTE) protects the integrity of military computer systems. It was
designed to be used in combination with other access control techniques. As with
many access control schemes, DTE views a system as a collection of active enti-
ties (subjects) accessing a collection of passive entities (objects) based on rules
defined in an attached security context and groups processes into domains, files
into types and restricts access from domains to types as well as from domains
to other domains.

4 The Proposed Model

4.1 Adversary Model

To understand the scope of the problem and assess the risks, we have to develop
an adversary model. The adversary model considered in this paper is composed
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of an attacker, a NFV infrastructure hosting the multiple VNFs that compose
the network services to be deployed, and an access control engine that is used
to deploy the access control policy. In our model, the objective is to allow users
including the likely attacker to perform operations that a normal VNF infras-
tructure user can do. It means that the attacker can generate and modify a flow,
attack to try to compromise a VNF. We suppose that the adversary will be able
to interact with the VNF composing the deployed network service but he cannot
control or modify the behavior of the access control engine as well as the VNF
that will be used to enforce the access control policy. This later is supposed to be
hardened, i.e., keeping the operating system up to date, minimising the installed
packages to minimize vulnerabilities, enable and correctly configure a firewall,
etc.

4.2 New Enforcement Model

In this section, a formal modelization of the security policy to be deployed is
proposed. The proposed model defines what is an access query and how it can
be evaluated. Since DTE has made its evidence for the enforcement of access
control policies at operating system level, a method for transforming an access
control policy towards a DTE specification is proposed. The proposed transfor-
mation allows us to benefit from the advantages of DTE. In particular, it allows
entities having the same access requirements to be collected into domains and
types which allows to find an appropriate balance between security and policy
deployment complexity. We prove that the proposed transformation method is
correct and we show how the DTE policy is enforced.

Security Policy Specification

Definition 1 (Security Policy). A security policy SP is composed of a set of
access control rules {r1, · · · , ri}. Each rule ri comprises:

– A subject Si that represents one or many entities that want to access
the object, these entities are characterized by a set of properties PS

i =
{ps1, · · · , psn}.

– An action Ai that represents the operation that is going to be performed by Si

on Oi, each action is characterized by a set of properties PA
i = {pa1 , · · · , pal }.

– An object Oi represents one or many resources over which the action Ai is
going to be performed. Oi are characterized using two types of properties: (1)
a set of properties PE

i that characterises the entities (e.g., VNF) and (2) a
set of properties PR

i that characterises the resources inside those entities and
over which the action Ai will be performed.

– A context Ci under which the rule can be invoked.
– A decision Di indicating whether it is a permission or denial rule.

In our model, each rule ri in the security policy will be represented as follows:

ri = 〈Si, Ai, Oi, Ci,Di〉
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We note that the properties that characterize the entities representing the sub-
ject Si (resp. the object Oi) may include: attributes of Si (resp. Oi) in the consid-
ered system (e.g., the IP address of a network to which the subject belongs, etc.),
functional attributes representing the provided functionalities (e.g., routing, deep
packet inspection, firewalling, etc.), and security attributes that represent the
security properties that is associated to Si (resp. Oi) (e.g., the security level,
trust level, etc.). These properties are to be retrieved from the VNF descriptors
that compose the service to be deployed. For instance, the rule saying that any
VNF providing web client functionalities and having a high security level can
read the content of any web page on a VNF providing a web server functionality
and having a high security level if the client is using https, can be specified using
the following notation:

〈S = {func : web client, sec level : high}, A = Action : read, proto = https,O =

{PE = {func : web server, sec level : high},PR = file name : any},
C = {between 8am and 8pm}, D = allow〉

Our specification of the security policy represented in Definition 1 can be
used to represent many access control model policies such as RBAC and ABAC.
First, RBAC is based on the notion of subject, permission that is represented by
a relation between an action and an object, and a specific attribute representing
a role. The first three notions (i.e., subject, object and action) can be straight-
forwardly translated to our model. The notion of role can be seen in our model
as a specific property of the subject. Similarly, the attributes used in the ABAC
model can be translated in our model to properties that characterize a subject,
an object, a context, or an action.

Definition 2 (Access Query). An access query AQ is represented by the
quadruplet 〈Sq, Oq, Aq, Cq〉 where Sq represents the subject performing the query,
Oq the object over which the query is performed, Aq the action performed by the
query, and Cq the request context under which the query is performed. Given a
security policy SP, AQ is allowed by SP if and only if the following condition
holds:

(i) ∃ri ∈ SP such that Sq ∈ Si, O
q ∈ Oi, A

q ∈ Ai, Cq satisfies Ci, and Di =
allow.

AQ is denied by SP if and only if one of the following conditions hold:

(ii) �ri ∈ SP such that Sq ∈ Si, O
q ∈ Oi, A

q ∈ Ai, Cq satisfies Ci, and
Di = allow.

(iii) ∃ri ∈ SP such that Sq ∈ Si, O
q ∈ Oi, A

q ∈ Ai, Cq satisfies Ci, and
Di = deny.

Policy Transformation. In this section, we propose a method for transforming
an access control policy as defined in Definition 3 towards a DTE specification.
Then, we prove that the transformation we propose is correct.
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Definition 3. Given a security policy SP composed of n rules r1, · · · , rn. SP is
transformed to a DTE policy by performing, for each rule ri ∈ SP the following
steps:

– step 1: If there exist no j < i such that PS
i = PS

j , define the domain s PS
i d

which will contain all entities of the considered system (i.e., the network ser-
vice to be deployed) that have the set of properties PS

i used to characterize the
subject Si. Otherwise, use the same domain s PS

j d (i.e., s PS
i d = s PS

j d)
defined for the subject Sj of the rule rj.

– step 2: If there exist no k < i such that Ci = Ck, define new type ci t.
Otherwise, use the same type ck t defined for the context of the rule rk
(i.e., ci t = ck t).

– step 3: If there exist no l < i such that PR
i = PR

l define new type o PR
i t

which will be associated to all resources of the considered system that have the
set of properties PR

i . Otherwise, use the same type o PR
l t (i.e., o PR

l t =
o PR

i t). In addition, if there exist no l′ < i such that PE
i = PE

l , define new
domain o PE

i d that will contain all entities of the considered system that
have the set of properties PE

i . Otherwise, use the same domain o PE
l′ d (i.e.,

o PE
l′ d = o PE

i d) defined for the object of the rule rl.
– Step 4: When associated to the request context Cq of an access query AQ

(i.e., the context of the rule ri is satisfied by the context Cq of AQ), allow
the type ci t to be an entry point allowing to transit AQ from domain s PS

i d
to the domain o PO

i d.
– Step 5: Authorize access queries that transit from s PS

i d to o PE
i d to per-

form the actions Ai on any objects having the type o PR
i t.

Finally, we denote C to be the set containing the set of DTE type ci t and their
respective context of the rule Ci created in step 2 (C = {(ci t, Ci)}).

We note here that only the rules having an allow decision are considered in the
previous definition. This choice is due to the fact that DTE is using by default
closed policies.

In our model, when an access query is created by the system, the query
inherits all the types associated to the subject Sq and belongs to the DTE
domains of Sq. In addition, we suppose that the system associates types to Cq

as follows. ∀(ci t, Ci) ∈ C : if Ci is satisfied in Cq, then associate the type ci t to
the request context Cq of the access query.

Example 1. This example illustrate the security policy transformation method
we defined in Definition 3. Let us consider that we have a security policy SP
that is composed of three rules r1, r2 and r3 such that:

– r1 = 〈S1 = {func : web server, sec level : high}, A1 = read,O1 = {PE
1 =

{func : ftp server, sec level : high},PR
1 = {file name : any}}, C1 =

{between 8am and 8pm},D1 = allow〉
– r2 = 〈S2 = {func : web server, sec level : high}, A2 = write,O2 = {PE

2 =
func : database server, sec level : low,PR

2 = db name : service db}, C2 =
{between 8am and 8pm},D2 = allow〉
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– r3 = 〈S3 = {func : web client, sec level : high}, A3 = access,O3 = {PE
3 =

func : ftp server, sec level : high,PR
3 = file name : web config}, C3 =

{between 8am and 8pm},D3 = allow〉

According to Definition 3, the transformation of the policy SP to a DTE
specification is illustrated using the schema in Fig. 1. Subjects S1, S2, of rules
r1, r2 are respectively represented in the transformation by the DTE domain
s web server high d while the subject S3 of r3 is represented by the domain
s web client high d. The entities of objects O1 and O3 of r1 and r3 (described
using the set of properties PE

1 and PE
3 ) are represented in the DTE trans-

formation by the DTE domain o ftp server high d and the resources of the
objects O1 and O3 (described using the set of properties PR

1 and PR
3 ). In

the case of O2, the entities described using the set of properties PE
2 and the

resources are described using the set of properties PR
2 . The DTE domains

o ftp server high d and o db server low d are respectively created by the trans-
formation of the rules r1 and r3. After the transformation, o ftp server high d
contains the ftp server having the security level high while o db server low d
contains the database servers having the security level low. Finally, c t is a
DTE type that will be associated to any access query satisfying the context C1,
C2, and C3 of the rules r1, r2, and r3. Let us consider the access query AQ
:〈Sq = web client,Oq = ftp server,Aq = read,Cq = {query time = 12 am}〉
to be evaluated and performed on the considered system. According to our

Fig. 1. Transformation from a specific policy to a DTE policy
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transformation method, AQ will inherit the domain of its subject, so it will
initially belongs to the domain s web client high d. Moreover, the context Cq

of AQ satisfies the contexts C1,C2 and C3 of the three rules r1, r2, and
r3. Hence, the type c t will be associated to the query AQ. According to
the step 4 of our transformation method, the DTE type c t will allow the
access query AQ to transit from the domain s web client high d to the domain
o ftp server high d. Furthermore, according to the transformation shown in
Fig. 1, the action access is authorized to be performed by access queries belong-
ing to the domain o ftp server high d over objects associated to the DTE type
o ftp server high t. So, we conclude that the query AQ is to be authorized by
the transformation of SP.

Policy Transformation Correctness. A security policy transformation
method is correct if, for any access query, no rule in the transformed security
policy is violated when the transformation resulting policy is deployed. This is
formalized using the following definition.

Definition 4. Given a security policy SP = {r1, · · · , rn} and its corresponding
DTE transformation SPDTE (as described in Definition 3). The transformation
from SP to SPDTE is correct if and only if for any access query AQ: if AQ is
allowed (resp. denied) by SP, then it is allowed (resp. denied) by SPDTE.

Theorem 1. The policy transformation method proposed in Definition 3 is
correct.

Proof. We prove the previous theorem by contradiction. Let us denote by SP the
transformed policy and SPDTE the transformation resulting policy. According
to Definition 4, the policy transformation method is not correct if one of the
following cases hold:

– case 1: There exists an access query AQ such that it is allowed by SP and
denied by SPDTE .

– case 2: There exists an access query AQ such that it is denied by SP and
allowed by SPDTE .

For both cases, a contradiction is shown in the following.

Case 1: Formally, this case implies that ∃ri ∈ SP,∃AQ such that: Sq ∈ Si, O
q ∈

Oi, A
q ∈ Ai, Ci is satisfied in Cq, and Di = allow. Sq ∈ Si means that Sq

will belong to the same domain as Si (s PSi d) and that the query itself will
belong to s PSi d. According to the step 3 of our policy transformation method
(Definition 3), Oq ∈ Oi implies that the object Oq will have the type o PRi t.
In addition, according to the query initialization rules, Ci is satisfied in Cq

means that the type ci t will be assigned to Cq. Then, according the step 4 of
Definition 3, when executed, AQ will transit from the domain s PSi d to the
domain o PEi d. Subsequently, and according to the step 5 of Definition 3, since
AQ transited to o PEi d, it will have the permission to perform the set of actions
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Ai on all entities having the type o PRi t. Finally, since Oq ∈ Oi and Aq ∈ Ai,
then AQ will have the permission to perform the action Aq on the object Oq

which contradicts the hypothesis of the case 1.

Case 2: This case happens if one of the following conditions hold:

case 2.1: Given the access query AQ, there exists no rule in the policy SP
that allow AQ. Formally, �ri ∈ SP such that Sq ∈ Si, O

q ∈ Oi, A
q ∈ Ai, Cq

satisfies Ci, and Di = allow. Let us suppose that the AQ is allowed by SPDTE .
According to the transformation method, action permission is only specified
in step 5 of Definition 3. This step means that if AQ is allowed by SPDTE ,
then there exist a domain s PSi d and a type o PRi t such that AQ belongs
to s PSi d and Oq has the type o PRi t. This means that there exists ri ∈ SP
such that Aq ∈ Ai and Oq ∈ Oi. In addition, according to step 3 of Definition
3, o PRi d (i ∈ [1, n]) does not contain any access query when created. These
domains are only accessible for access queries thought the transformation rule
defined in step 4 of Definition 3. Since we already showed that AQ belongs to
s PSi d, then there exits an entrypoint type ci t that allow AQ to transit to the
domain o PEi d which allow us to deduce that Ci is satisfied in Cq and that
both Si and Sq belongs to the same domain s PSi d (since Sq ∈ Si). Then, we
deduce that ∃ri ∈ SP such that Sq ∈ Si, Oq ∈ Oi, Aq ∈ Ai, Ci satisfied in Cq

and Di = allow which contradicts the case 2.1.

case 2.2: This case implies that given the access query AQ, in one hand ∃ri ∈
SP,∃AQ such that: Sq ∈ Si, O

q ∈ Oi, A
q ∈ Ai, Ci is satisfied in Cq, and

Di = deny and in the other hand AQ is allowed by SPDTE . Sq ∈ Si means
that Sq will belong to the same domain as Si (s PSi d) and that the query itself
will belongs to s PSi d, since AQ inherit the domain of its subject then AQ
belongs also to s PSi d. Since the rule ri is transformed using our transformation
method, then there exists the type ci t that represents an entrypoint to the
domain o PEi d. Since Ci is satisfied in Cq, the type ci t will be associated
to the Cq of AQ, as a result, when executed, AQ will transit from s PSi d to
o PEi d. However, based on the transformation of ri, the domain o PEi d will
be denied to perform the action Ai on the type o PRi t. Finally, since Oq ∈ Oi

and Aq ∈ Ai then the query AQ will be denied by the SPDTE which contradicts
the case 2.2.

Service Requirements Specification

In our model, a security policy is going to be deployed on a VNF service. A
VNF service S is composed of a set of VNFs {vnf1, · · · , vnfn} and a set of
forwarding graphs {fg1, · · · , fgm}. Each forwarding graph fgi is composed of a
set of forwarding paths {fp1, · · · , fpd}, each fpi can be represented using the
following couple 〈〈vnf i

1, vnf
i
2, · · · , vnf i

ni
〉, fp mi〉, where vnf i

1 is the VNF that
is forwarding the traffic, vnf i

n is the VNF to which the traffic is forwarded, and
fp mi is the match policy that will be used to distinguish which traffic should
traverse the path.
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In our model, a traffic T is used to represent each exchange between two con-
secutive VNFs in the considered forwarding path. It is modeled as the quadruple
〈vnf src, vnf dst, t context, t content〉 where vnf src, vnf dst, t context, and
t content represent respectively, the VNF that is sending the traffic, the VNF
destination of the traffic, the context and the content of the traffic. Formally, a
forwarding path fp = 〈〈vnf1, vnf2, · · · , vnfn〉, fp m〉 is represented using n− 1
traffics Ti = 〈vnfi, vnfi+1, fpm, t content〉, 1 ≤ i < n.

It is worth highlighting that the action involved in the security policy to be
deployed can be implemented in the content of a traffic. For example, the “write”
action can be implemented according to the protocol that is used. If the FTP
protocol is used, a traffic containing the “post” ftp command implements the
action “writ” used in the security policy. Thanks to the previous observation, a
traffic can be modelled as an access query as defined in the following.

Definition 5. A traffic T = 〈vnf src, vnf dst, t context, t content〉 will be
modeled as an access query AQ = 〈Sq, Oq,Aq, Cq〉 where vnf src equals to Sq,
vnf dst equals to Oq, Aq are the actions that can be implemented by the traffic
content t content, and Cq = t context.

To ensure a proper functioning of the VNF service to be deployed, the traf-
fics that represent each forwarding path should be allowed to flow according to
the latter. To meet the previous objective, for each traffic Ti = 〈vnfi, vnfi+1,
ti context, ti content〉 that is modeled as the access query AQi = 〈vnfi, vnfi+1,
Aq

i , C
q
i 〉, we define the following policy rule:

rTi
= 〈S = vnfi, O = vnfi+1, A = Aq

i , C = Cq
i ,D = allow〉

The previous rule states that vnfi is allowed to perform the action Aq
i (imple-

mented by the content of the traffic Ti) over vnfi+1 if the context Cq
i is satisfied

in the considered system. Finally, The previous rule is transformed to a DTE
specification as described in Definition 1.

DTE Policy Enforcement. The DTE policy obtained from the transforma-
tion of the access control policy to be enforced and the network service to be
deployed is enforced using a special VNF that we called VNF Filter. VNF Filter
will basically analyze the traffics exchanged between the different VNF that com-
pose the deployed network service to evaluate the authorization of each access
query. In order to allow this, we should modify (as described in Definition 6)
the forwarding graphs used to orchestrate and manage traffic through the VNFs
that compose the deployed network service to make sure that these traffics pass
certainly through the VNF Filter.

Definition 6 (Forwarding graph modification). Given a network service
S composed of a set of forwarding graphs {fg1, · · · , fgm}. Each forwarding graph
fgi is composed of a set of forwarding paths {fp1, · · · , fpd}, and each fpi is rep-
resented by a sequence sqi = 〈vnf i

1, vnf
i
2, · · · , vnf i

ni
〉 of the VNF that represents
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the path that should be traversed by a traffic. Each sqi = 〈vnf i
1, vnf

i
2, · · · , vnf i

ni
〉

of a forwarding path fpi will be modified as following:

sqi = 〈vnf i
1,vnf filter, vnf i

2,vnf filter, · · · ,vnf filter, vnf i
ni

〉

To illustrate, let us consider a forwarding path fp composed of a sequence of
three VNFs 〈vnf1, vnf2, vnf3〉. The modification of fp according to Definition
6 makes sure that the traffic managed by fp will pass through the VNF Filter
as shown in Fig. 2.

Fig. 2. Network Service forwarding graph modification

The observation of all traffics exchanged between the VNF that compose the
considered network service gives VNF Filter the ability to analyze those traffics
and authorize only the ones that are allowed by the considered DTE policy. The
pseudo-code in Algorithm 1 outlines the procedure used by the VNF Filter to
authorize a traffic exchanged between two VNF. It takes as inputs the traffic to
be authorized, the sets C of types and their respective contexts created in the
policy transformation process (Definition 3). It outputs a value (allow traffic or
deny traffic) indicating whether or not the traffic is allowed by the DTE policy.
The function parse traffic allow to model the traffic T into an access query as
defined in Definition 5. The functions get domains, get types, get transition src,
and get transition dst are used to retrieve respectively, the set of domains to
which the subject of the access query belong, the set of types associated with
the object of the access query, the source domain of the domain transition, and
the destination domain of the transition. The function assign types assigns to
the access query AQ the types used in C if their respective context matches
the context of AQ. Finally, the function check permission check whether a DTE
domain is allowed or denied to perform the actions in Aq on a given DTE type.
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Input: T /* the traffic to be authorized */
C = {(c ri t, Ci)}) /* Definition 3 (step 2) */

AQ : 〈Sq, Oq,Aq, Cq〉 = parse traffic(T )
subject domains = get domains(Sq)
object types = get types(Oq)
AQ types = assign types(AQ, C)
possible domains = ∅
foreach AQ type ∈ AQ types do

if AQ type is not a DTE entrypoint then continue ;
if get transition src(AQ type) /∈ subject domains then
continue ;

possible domains = possible domains ∪
get transition dst(AQ type)

end
is allowed = false
foreach type ∈ object types do

foreach domain ∈ possible domains do
if check permission(domain, type,Aq) = allow then

is allowed = true;
else if check permission(domain, type,Aq) = deny then

return deny traffic;
end

end
if is allowed then return allow traffic ;

Algorithm 1: Access query authorization

5 Implementation and Experimental Evaluations

This section presents the implementation details of a prototype of our proposed
access control model. The design architecture of the prototype implementing
the proposed model is illustrated in Fig. 3. The major functional components
are described in the following.

– OpenStack Tacker [22]: it is an official OpenStack project that orchestrates
and manages infrastructure resources and maintain the lifecycle management
of network services and VNF instances over the OpenStack infrastructure.

– Access control engine (ACE): it works together with the VNF orchestra-
tor (Taker) security policy enforcement to the deployed VNF service compo-
nents (e.g., VMs, VNFs.)

– OpenFlow Manager of OpenDaylight (ODL) [1] is an open-source appli-
cation development and delivery platform. OpenFlow Manager (OFM) [2]
is an application that runs on top of ODL allowing to visualize OpenFlow
topologies, program network traffic flow paths and gather network traffic
stats.
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– OpenStack Infrastructure: OpenStack as a virtual infrastructure manager
(VIM) layer is used to give a standardized interface for managing, monitoring
and assessing all resources within VNF infrastructure.

Fig. 3. Design architecture of the implementation of the proposed model and the oper-
ational flow of an access control policy deployment

In addition, Fig. 3 illustrates the different steps that are implemented in order
to deploy an access control policy on a VNF network service. In the following,
more details on each step are given.

– Onboard and deploy the network service (Steps 1 and 2): In these steps,
Tacker uses the network service descriptor provided as an input to onboard
and deploy the network service on the OpenStack infrastructure.

– Access control policy parsing and transformation (Steps 3 and 4): In these
steps, the access policy engine parses the VNF service descriptor, the secu-
rity properties associated which the different VNF that compose the network
service (e.g., security level, trust level, etc.), and the access control policy to
be deployed. Then, it transforms the access control policy to a DTE policy
as described in Definition 3.

– DTE policy refinement (Steps 5 and 6): The ACE engine queries Tacker to
get the set of resources (e.g., VMs, Connection points, networks, etc.) that are
used to deploy the different VNF that compose the deployed service. Then it
refines the DTE-policy at the resources level of the VNF service.
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– Policy enforcement (Steps 7, 8, 9 and 10): To enforce the DTE policy, the ACE
first uses Tacker to deploy VNF Filter which is a special VNF that imple-
ments a DTE engine we developed in python [21]. Second, it loads the refined
DTE policy to be enforced over the deployed VNF service on VNF Filter.
Third, ACE updates the forwarding graphs of the deployed network service
(as illustrated in Fig. 2) and uses OpenFlow Manager of ODL to make sure
that all network flows exchanged between the VNF that compose the deployed
network service will transit through VNF Filter. Once VNF Filter receives a
network traffic, it starts by parsing the traffic to extract its source and its
destination as well as the actions that are implemented by its content. Finally
it uses the DTE engine to check whether the traffic is allowed to transit from
its source to its destination i.e., the actions that are implemented by the con-
tent of the traffic are allowed to be performed by the traffic source component
over the traffic destination component.

We experimentally evaluate the performance of our approach. Our access
control engine prototype is hosted in a server running Linux with an Intel Xeon
E5-2680 v4 Processor with 8 vCPU and 16 GB of RAM while our implementa-
tion of the VNF filter including the implementation of the DTE engine is hosted
in a virtual machine running Linux having a processor with 2 vCPU and 2 GB of
RAM. In our empirical evaluation, we aim to quantify the following characteris-
tics of our approach. First, the time needed to transform an access control policy
to a DTE specification as a function of the number of rules of the considered
access control policy is quantified. The obtained results are depicted in Fig. 4.
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Fig. 4. Policy transformation time

They show that transformation method we are proposing is quite efficient
since it takes around 230 ms to transform an access control policy composed
of 104 rules to a DTE specification. The time needed to transform a security
policy to a DTE specification grows linearly in function of the number of rules
in policy. Second, we quantify the round-trip time (RTT) required for a packet
as a function of the activation of our VNF Filter (i.e., we aim to compare the
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RTT when our VNF filter is used and when it is not) and the number of rules
in the considered access control policy.

Figure 5 reports a linear growth of the measured RTT in function of the
number of rules in the policy to be deployed. It shows that our implementation
introduces less than 2 ms delay when a policy composed of 500 rules is considered.
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Fig. 5. RTT as a function of the number of rules in the access policy to be deployed

6 Conclusion

This paper proposes an access control as a service model to improve security
management in the context of NFV. We firstly investigated several existing NFV
orchestrators and several existing access control model in NFV infrastructure
and observed that (1) none of them provides a generic model and (2) they are
often not fully compliant with the ETSI NFV infrastructure in the sense that
the deployment of the access control policies requires often the modification of
the NFVI infrastructure. The previous observations motivate us to define a new
software-defined access control as a service model. Compared to existing models,
our proposition offers several advantages to VNF users. First, it is generic in the
sense that they can deploy most types of access control policy such as RBAC,
ORBAC, ABAC, etc. Second, it complies with the ETSI-NFV infrastructure
because it does not require any modification of the latter for policy deployment.
The conducted experimentations show that the implementation of the proposed
model is quite efficient. The deployment of a security policy composed of 500
rules introduces less than 2 ms delay for the round-trip time of a network packet.
As a future work, we aim to extend our proposed model to allow to check whether
a given network service deployment satisfies the requirements of a given security
policy.
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