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Abstract. Knowledge-intensive Processes (KiPs) are processes charac-
terized by high levels of unpredictability and dynamism. Their process
structure may not be known before their execution. One way to cope
with this uncertainty is to defer decisions regarding the process structure
until run time. In this paper, we consider the definition of the process
structure as a planning problem. Our approach uses automated plan-
ning techniques to generate plans that define process models according
to the current context. The generated plan model relies on a metamodel
called METAKIP that represents the basic elements of KiPs. Our solu-
tion explores Markov Decision Processes (MDP) to generate plan mod-
els. This technique allows uncertainty representation by defining state
transition probabilities, which gives us more flexibility than traditional
approaches. We construct an MDP model and solve it with the help
of the PRISM model-checker. The solution is evaluated by means of a
proof of concept in the medical domain which reveals the feasibility of
our approach.
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1 Introduction

In the last decades, the business process management (BPM) community has
established approaches and tools to design, enact, control, and analyze business
processes. Most process management systems follow predefined process models
that capture different ways to coordinate their tasks to achieve their business
goals. However, not all types of processes can be predefined at design time—
some of them can only be specified at run time because of their high degree of
uncertainty [18]. This is the case with Knowledge-intensive Processes (KiPs).
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KiPs are business processes with critical decision-making tasks that involve
domain-specific knowledge, information, and data [4]. KiPs can be found in
domains like healthcare, emergency management, project coordination, and case
management, among others. KiP structure depends on the current situation and
new emergent events that are unpredictable and vary in every process instance
[4]. Thus, a KiP’s structure is defined step by step as the process executes, by a
series of decisions made by process participants considering the current specific
situations and contexts [13]. In this sense, it is not possible to entirely define
beforehand which activities will execute or their ordering and, indeed, it is nec-
essary to refine them as soon as new information becomes available or whenever
new goals are set.

These kinds of processes heavily rely on highly qualified and trained profes-
sionals called knowledge workers. Knowledge workers use their own experience
and expertise to make complex decisions to model the process and achieve busi-
ness goals [3]. Despite their expertise, it is often the case that knowledge workers
become overwhelmed with the number of cases, the differences between cases,
rapidly changing contexts, and the need to integrate new information. They
therefore require computer-aided support to help them manage these difficult
and error-prone tasks.

In this paper, we explore how to provide this support by considering the pro-
cess modeling problem as an automated planning problem. Automated planning,
a branch of artificial intelligence, investigates how to search through a space of
possible actions and environment conditions to produce a sequence of actions
to achieve some goal over time [10]. Our work investigates an automated way
to generate process models for KiPs by mapping an artifact-centric case model
into a planning model at run time. To encode the planning domain and planning
problem, we use a case model defined according to the METAKIP metamodel
[20] that encloses data and process logic into domain artifacts. It defines data-
driven activities in the form of tactic templates. Each tactic aims to achieve a
goal and the planning model is derived from it.

In our approach, we use Markov decision processes (MDP) because they allow
us to model dynamic systems under uncertainty [7], although our definition of
the planning problem model enables using different planning algorithms and
techniques. MDP finds optimal solutions to sequential and stochastic decision
problems. As the system model evolves probabilistically, an action is taken based
on the observed condition or state and a reward or cost is gained [7,10]. Thus,
an MDP model allows us to identify decision alternatives for structuring KiPs
at run time. We use PRISM [11], a probabilistic model checker, to implement
the solution for the MDP model.

We present a proof of concept by applying our method in a medical treatment
scenario, which is a typical example of a non-deterministic process. Medical
treatments can be seen as sequential decisions in an uncertain environment.
Medical decisions not only depend on the current state of the patient, but they
are affected by the evolution of the states as well. The evolution of the patient
state is unpredictable, since it depends on factors such as preexisting patient
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illnesses or patient-specific characteristics of the diseases. In addition, medical
treatment decisions involve complex trade-offs between the risks and benefits of
various treatment options.

We show that it is possible to generate different optimal treatment plans
according to the current patient state and a target goal state, assuming that
we have enough data to accurately estimate the transition probabilities to the
next patient state. The resulting process models could help knowledge workers
to make complex decisions and structure execution paths at run time with more
probability of success and optimizing constraints, such as cost and time.

The remainder of this paper is organized as follows: Sect. 2 presents a moti-
vating medical scenario. Section 3 introduces the theoretical and methodological
background. Section4 describes the proposed method to encode a case model
as a planning model. Section 5 reports on the application of the methodology in
a scenario. Section 6 discusses the obtained findings and related work. Finally,
Sect. 7 wraps up the paper with the concluding remarks.

2 DMotivating Example

This section presents a motivating medical case scenario. Suppose we have the
following medical scenario in the oncology department stored in the Electronic
Medical Record (EMR).

Mary, 58 years old, married, two children. She was diagnosed with a lymphoma non-
Hodgkin admitted on 20/07/2019 and is receiving R-ICE Chemotherapy. R-ICE is
named after the initials of the drugs used: riturimab, ifosfamide, carboplatin, etopo-
side. R-ICE is applied as a course of several sessions (cycles) of treatment over a
few months. On 02/10/2019, Mary is supposed to receive the second cycle of R-ICE.
However, on admission, she is febrile at 38 °C and presents severe nausea (Level /).

In order to receive the second cycle of R-ICE, it is necessary to stabilize
Mary’s health status as soon as possible. Thus, at this time the goal is to decrease
her body temperature to 36.5°C < Temp < 37.2°C and reduce the level of
nausea to zero LN = 0. For that, physicians need to choose from vast treatment
strategies to decide which procedures are the best for Mary, in her specific current
context.

Assume that we have statistical data about two possible tactics for achiev-
ing the desired goal: fever (FVR) and nausea (NAUSEA) management, shown in
Table 1 adapted from [2]. Each of these tactics can be fulfilled through multiple
activities that have different interactions and constraints with each other, as
well as to the specifics of the patient being treated. For example, (a) treating
nausea with a particular drug may affect the fever, (b) administration of the
drug may depend on the drugs that the patient is taking, (c) drug effective-
ness may depend on the patient history with the drug, or (d) giving the drug
may depend on whether the drug has already been administered and how much
time has elapsed since the last dose. These issues make manual combination of
even this simple case challenging, and it becomes much harder for more complex
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treatments and patient histories. Support is therefore needed that can take into
account patient data, constraints, dependencies, and patient/doctor preferences

to help advise the doctor on viable and effective courses of treatment.

Table 1. Tactics templates for fever (FVR) and nausea (NAUSEA) management

Tactic: Fever Management (FVR)

Definition: Management of a
patient with hyperpyrexia caused by
non-environmental factors

Goal: Thermoregulation

(36.5°C < Temp < 37.2°C)
Metric: Temperature (Temp)
Preconditions: Temp > 37.2°C
Activities:

A1l. Administer ORAL antipyretic
medication,as appropriate

A2. Administer INTRAVENOUS
antipyretic medication, as
appropriate

A3. Administer medications to treat
the cause of fever, as appropriate
A4.Encourage increased intake of
oral fluids, as appropriate

A5. Administer oxygen, as
appropriate

Tactic: Nausea Management (NAUSEA)

Definition: Prevention and alleviation of
nausea,

Goal: Stop Nausea (LoN = 0)

Metric: Level of Nausea (LoN)
Preconditions: LoN >0

Activities:

B1. Ensure that effective antiemetic drugs
are given to prevent nausea when possible
(except for nausea related to pregnancy)
B2. Control environmental factors that may
evoke nausea (e.g., aversive smells, sound
and unpleasant visual stimulation

B3. Give cold, clear liquid and odorless and
colorless food, as appropriate

3 Background

This section presents the underlying concepts in our proposal. Section 3.1 pro-
vides an overview of the METAKIP metamodel; Sect. 3.2 introduces basic con-
cepts of automated planning; Sect. 3.3 explains Markov decision process (MDP).
Section 3.4 describes the PRISM tool and language.

3.1 METAKIP: A Metamodel for KiPs Definition

Our previous work proposed an artifact-centric metamodel [20] for the defini-
tion of KiPs, aiming to support knowledge workers during the decision-making
process. The metamodel supports data-centric process management, which is
based on the availability and values of data rather than completion of activities.
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In data-centric processes, data values drive decisions and decisions dynamically
drive the course of the process [18]. The metamodel is divided into four major
packages: case, control-flow, knowledge, and decision, in such a way that there is
an explicit integration of the data, domain, and organizational knowledge, rules,
goals, and activities.

The Case Package defines the base structure of the metamodel, a Case. A
case model definition represents an integrated view of the context and environ-
ment data of a case, following the artifact-centric paradigm. This package is
composed of a set of interconnected artifacts representing the logical structure
of the business process. An artifact is a data object composed of a set of items,
attributes, and data values, defined at run time.

The Knowledge Package captures explicit organizational knowledge, which
is encoded through tactic templates, goals, and metrics that are directly influ-
enced by business rules. Tactics templates represent best practices and guide-
lines. Usually, they have semi-structured sequences of activities or unstructured
loose alternative activities pursuing a goal.

The Control-flow Package defines the behavior of a case. It is composed of
a set of data-driven activities to handle different cases. Activity definitions are
made in a declarative way and have pre- and post-conditions. The metamodel
refines the granularity of an activity that could be a step or a task. A task is
logically divided into steps, which allows better management of data entry on
the artifacts. Step definitions are associated with a single attribute of an artifact,
a resource, and a role type at most. This definition gives us a tight integration
between data, steps and resources.

These packages are used to model alternative plans to answer emergent cir-
cumstances, reflecting environmental changes or unexpected outcomes during the
execution of a KiP. The Decision Package represents the structure of a collab-
orative decision-making process performed by knowledge workers. We proposed
a representation of how decisions can be made by using the principles of strate-
gic management, such as, looking towards goals and objectives and embracing
uncertainty by formulating strategies for the future and correct them if neces-
sary. The strategic plan is structured at run time by goals, objectives, metrics
and tactic templates.

3.2 Automated Planning

Planning is the explicit and rational deliberation of actions to be performed to
achieve a goal [7]. The process of deliberation consists of choosing and organizing
actions considering their expected outcomes in the best possible way. Usually,
planning is required when an activity involves new or less familiar situations,
complex tasks and objectives, or when the adaptation of actions is constrained
by critical factors such as high risk. Automated planning studies the deliberation
process computationally [7].

A conceptual model for planning can be represented by a state-transition
system, which formally is a 4-tuple X' = (S, A, E,~), where S = {s1,52,....} is
a finite or recursively enumerable set of states; A = {aq,as,...} is a finite or
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recursively enumerable set of actions; E = {ej,ea,...} is a finite or recursively
enumerable set of events; and v : S x A x E — 29 is a state-transition function.

Actions are transitions controlled by a plan executor. Events are unforeseen
transitions that correspond to the internal dynamics of the system and cannot
be controlled by the plan executor. Both events and actions contribute to the
evolution of the system. Given a state transition system X', the purpose of plan-
ning is to deliberate which actions to apply into which states to achieve some
goal from a given state. A plan is a structure that gives the appropriate actions.

3.3 Markov Decision Process (MDP)

A Markov decision process (MDP) is a discrete-time stochastic control process.
It is a popular framework designed to make decisions under uncertainty, dealing
with nondeterminism, probabilities, partial observability, and extended goals [7].

In MDPs, an agent chooses action a based on observing state s and receives
a reward r for that action [10]. The state evolves probabilistically based on the
current state and the action taken by the agent.

Figure 1(a) presents a decision network [10], used to represent a MDP. The
state transition function T(s'|s,a) represents the probability of transitioning
from state s to s’ after executing action a. The reward function R(s, a) represents
the expected reward received when executing action a from state s. We assume
that the reward function is a deterministic function of s and a.

mdp // type of model
module <Module_name>
// the values of var_1 and var_2 represent the state of the module

<var_1>: [0..n] init O; // local variable
<var_2>: bool init false;
//commands

[<action_1>] <guard> --> prob_1 : update_1 + ... + prob_n:
update_n;
[<action_2>] <guard> --> prob_1 : update_1 + ... + prob_n:
update_n;
endmodule

rewards

[]true: 1;
[<action_1>] true: a;
[<action_2>] true : 2*b;
endrewards

(a) (b)

Fig.1. (a) MDP representation [10] and (b) Example syntax of mdp PRISM [11]
module and rewards

An MDP treats planning as an optimization problem in which an agent needs
to plan a sequence of actions that maximizes the chances of reaching the goal.
Action outcomes are modeled with a probability distribution function. Goals
are represented as utility functions that can express preferences on the entire
execution path of a plan, rather than just desired final states. For example,
finding the optimal choice of treatment optimizing the life expectancy of the
patient or optimizing cost and resources.
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3.4 PRISM

PRISM [11] is a probabilistic model checker that allows the modeling and
analysis of systems that exhibit probabilistic behavior. The PRISM tool pro-
vides support for modeling and construction of many types of probabilistic
models: discrete-time Markov chains (DTMCs), continuous-time Markov chains
(CTMCs), Markov decision processes (MDPs), and probabilistic timed automata
(PTAs). The tool supports statistical model checking, confidence-level approx-
imation, and acceptance sampling with its discrete-event simulator. For non-
deterministic models it can generate an optimal adversary/strategy to reach a
certain state.

Models are described using the PRISM language, a simple, state-based lan-
guage based on the reactive modules formalism [1]. Figure 1(b) presents an exam-
ple of the syntax of a PRISM module and rewards. The fundamental compo-
nents of the PRISM language are modules. A module has two parts: variables
and commands. Variables describe the possible states that the module can be
in at a given time. Commands describe the behavior of a module, how the state
changes over time. A command comprises a guard and one or more updates. The
guard is a predicate over all the variables in the model. Each update describes
a transition that the module can take if the guard is true. A transition is speci-
fied by giving the new values of the variables in the module. Each update has a
probability which will be assigned to the corresponding transition. Commands
can be labeled with actions. These actions are used for synchronization between
modules. Cost and rewards are expressed as real values associated with certain
states or transitions of the model.

4 Dynamic Plan Generation for KiPs Execution

In our approach, plans are fragments of process models that are frequently cre-
ated and modified during process execution. Plans may change as new informa-
tion arrives and/or when a new goal is set. We advocate the creation of a planner
to structure process models at run time based on a knowledge base. The planner
synthesizes plans on-the-fly according to ongoing circumstances. The generated
plans should be revised and re-planned as soon as new information becomes
available. Thereby, it involves both computer agents and knowledge workers in
a constant interleaving of planning, execution (configuration and enactment),
plan supervision, plan revision, and re-planning. An interactive software tool
might assist human experts during planning. This tool should allow defining
planning goals and verifying emerging events, states, availability of activities
and resources, as well as preferences.

4.1 Model Formulation

The run-time generation of planning models according to a specific situation
in a case instance requires the definition of the planning domain and then the
planning problem itself.
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Definition 1. Let the case model be represented according to the METAKIP
metamodel. The planning domain is derived from the case model that can be
described using a state-transition system defined as a 5-tuple X = (S, A, E,~, C)
such as that: S is the set of possible case states. A is the set of actions that
are represented by activities inside tactics that an actor may perform. E is the
set of events in the context or in the environment. v : S x A x E — 25, s
the state-transition function, so the system evolves according to the actions and
events that it receives. C' : S x A — [0,00) is the cost function that may represent
monetary cost, time, risk or something that can be minimized or maximized.

The state of a case is the set of values (available data) of the attributes con-
tained in artifacts of the context and the environment. However, since the number
of attributes of the artifacts is very large, it is necessary to limit the number of
attributes to only the most relevant ones, which determines the current state of
the case at a given time ¢.

Definition 2. A state s; is the set of values corresponding to a set of relevant
attributes {v1,va,... v}, with r > 1, contained in the business artifacts at a
given time t.

Actions in the METAKIP metamodel are represented by the activities within
a tactic. Tactics represent best practices and guidelines used by the knowledge
workers to make decisions. In METAKIP, they serve as tactic templates to be
instantiated to deal with some situations during the execution of a case instance.
Tactics are composed of a finite set of activities pursuing a goal. A tactic can
be structured or unstructured. A tactic is a 4-tuple T = (G, PC, M, A), where:
G is a set of variables representing the pursuing goal state, PC' is a finite set of
preconditions representing a state required for applying the tactic, M is a set
of metrics to track and assess the pursuing goal state, and A is a finite set of
activities.

In METAKIP, an activity could be a single step or a set of steps (called a
task). An activity has some preconditions and post-conditions (effects). We map
activities into executable actions. An executable action is an activity in which
their effects can modify the values of the attributes inside business artifacts.
These effects can be deterministic or non-deterministic.

Definition 3. An action is a 4-tuple a = (Pr, Eff, Pb,c) where: Pr is a finite
set of preconditions. Eff is a finite set of effects. Pb is a probability distribu-
tion on the effects, such that, P.;(i) is the probability of effect ef € Eff and
> ereng Per(i) = 1. ¢ is the number which represents the cost (monetary, time,
ete.) of performing a.

As the state-transition function « is too large to be explicitly specified, it is
necessary to represent it in a generative way. For that, we use the planning oper-
ators from which it is possible to compute . Thus, v can be specified through
a set of planning operators O. A planning operator is instantiated by an action.
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Definition 4. A planning operator O is a pair (id,a) where a is an action and
id is a unique identifier of action a.

At this point, we are able to define the planning problem to generate a plan
as a process model.

Definition 5. The planning problem for gemerating a process model at a given
time t is defined as a triple P = (OSt, GSy, ROy), where: OS; is the observable
situation of a case state at time t. GSy is the goal state at time t, a set of
attributes with expected output values. ROy represents a subset of the O that
represents only available and relevant actions for a specific situation during the
execution of a case instance at a given time t.

Definition 6. The observable situation of a case instance C state at a given
time t is a set of attributes OS; = {v1,va,...,0n}, with m > 1, such that
v;i € SUIL for each 1 < i < m, where the state of C' is Sy and the set issues in
the situation of C' is I;.

Definition 7. The goal state of an observable situation of case instance C at
a given time t is the set of attributes GSy = {v1,va,..., 0}, with m > 1, such
that, for 1 < i < m, v; is an attribute with an expected output value, v; belongs
to an artifact of C'. These attributes are selected by the knowledge workers. Some
metrics required to asses some goals inside tactics can be added to the goal. G S
represents the expected reality of C.

GS; serves as an input for searching an execution path for a specific situation.
Different goal states can be defined over time.

Definition 8. Let P = (0S;, GS, RO;) be the planning problem. A plan 7 is
a solution for P. The state produced by applying w to a state OS; in the order
given is the state GS;. A plan is any sequence of actions © = (a1, ..., ax), where
k > 1. The plan 7 represents the process model.

Our problem definition enables the use of different planning algorithms and
the application of automatic planning tools to generate alternatives plans. As
we are interested in KiPs, which are highly unpredictable processes, we use
Markov Decision Processes for formulating the model for the planner. MDPs
allows us to represent uncertainty with a probability distribution. MDP makes
sequential decision making and reasons about the future sequence of actions
and obstructions, which provides us with high levels of flexibility in the process
models. In the following, we show how to derive an MDP model expressed in the
PRISM language from a METAKIP model automatically.

4.2 PRISM Model Composition

Algorithm 1 shows the procedure to automatically generate the MDP model
for the PRISM tool, where the input parameters are: OS;, GSy, set of domain
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Tactics, t is the given time, PP minimum percentage of preconditions satis-
faction, and PG minimum percentage of goal satisfaction, both PP and PG
are according to the rules of the domain. As described in Sect. 3.4, a module
is composed of variables and commands. Variables of the module are the set of
attributes from the case artifacts that belong to OS; UGS;. Commands are rep-
resented for the relevant planning operators RO;. The name of the command is
the identifier of the action, the guards are the preconditions PC' and the effects
Eff are the updates with associated probabilities. Rewards are represented by
the cost of actions ¢ and are outside of the module of PRISM.

Algorithm 1. PRISM Model Generator
Require: OS;, GS¢, Tactics, t, PP, PG

V — 0SS UGS, > Attributes of OS; and GS; correspond to PRISM variables
for all T € Tactics do > For each tactic
p1 — |T.PCNOS,|/|T.PC| > Percentage of satisfied preconditions
p2 «— |GS: NT.G|/|GS¢| > Percentage of achievable target goal
if p;1 > PP and p2 > PG then > If percentages are acceptable
ST — STUT > Add to the set of selected tactics
end if
end for
RT «— SelectRevevantTactics(ST) > Relevant tactics for the current situation OS;
Ay — CheckAvailable Activities(RT, t) > Select available activities at time t

RO < CreatePlanningOperators(Ay¢)

C — CreateCommands(RO)

R < CreateRewards(ROy)

V—VU{T.M:T e RT} > Add necessary metrics to evaluate
CreatePRISM Model(V,C, R)

For finding the set of relevant planning operators RO, first, we select tactics
whose preconditions must be satisfied by the current situation O.S; and whose
goal is related to the target state GS;. This can be done by calculating the
percentages of both the satisfied preconditions and achievable goals. If these
percentages are within an acceptable range according to the rules of the domain,
the tactics are selected. Second, this first set of tactics is shown to the knowledge
workers who select the most relevant tactics. The set of the selected relevant
tactics is denoted as RT. From this set of tactics, we verify which activities
inside the tactics are available at time t. Thus, the set of available actions at
time ¢ is denoted by A; = aq,as, ..., ay,. Finally, the relevant planning operators,
RO;, are created by means of A;.

4.3 Plan Generation

To generate plans in PRISM, it is necessary to define a property file that contains
properties that define goals as utility functions. PRISM evaluates properties over
an MDP model and generates all possible resolutions of non-determinism in the
model, state graphs, and gives us the optimal state graph. The state graph
describes a series of possible states that can occur while choosing actions aiming
to achieve a goal state. It maximizes the probability to reach the goal state
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taking into consideration rewards computed, that is maximizing or minimizing
rewards and costs.

In our context, a property represents the goal state G.S; to be achieved while
trying to optimize some criteria. Then, PRISM calculates how desirable an exe-
cuting path is according to one criterion. Thus, plans can be customized accord-
ing to knowledge workers’ preferences (costs and rewards). To generate a plan,
we need to evaluate a property. The generated plan is a state graph that rep-
resents a process model to be executed at time t. The generated process model
shows case states as nodes and states transitions as arcs labeled with actions
which outcomes follow probability distribution function. According to this state
graph, the knowledge worker could choose which action to execute in a particular
state. This helps knowledge workers to make decisions during KiPs execution.

5 Proof of Concept

This section formulates a patient-specific MDP model in PRISM for the medical
scenario presented in Sect.2. In the area of health care, medical decisions can
be modeled with Markov Decisions Processes (MDP) [5,17]. Although MDP is
more suitable for certain types of problems involving complex decisions, such
as liver transplants, HIV, diabetes, and others, almost every medical decision
can be modeled as an MDP [5]. We generate the PRISM model by defining
the observable situation O.S;, Goal state G.S;, and the set of relevant planning
operators RO;.

Table 2. Activity modeling

Activity Al: Administer Oral Activity B1: Ensure that effective
antipyretic medication, as antiemetic drugs are given to
appropriate prevent nausea when possible
Pre-condition: ((Temp > 37.2) and | Pre-condition: Pregnancy(FALSE)
(LN=0or LN=1)) and (allergic = and (LN > 2) and (allergic = false)
false) and (conflict with current and (conflict with current medications

medications = false) and (medication is | = false)
available = true)

Effects: Effects:

E1: p=0.6 Respond to treatment E1: p=0.7 Respond to treatment
(Temp = 37) (LN =0)

E2: p=0.3 Partial Respond to E2: p=0.2 Partially respond to
treatment (Temp =Temp — 0.5) treatment (LN =LN —1)

E3: p=0.1 Not Responding to E3: p=0.1 Not Responding to
treatment (Temp = Temp + 0.5) treatment (LN =LN +1))

Task execution time : 5min Task execution time : 5min

Cost: 0.08 Cost: 0.08
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Taking in consideration the medical scenario, the observable situation is
0S8y = {Tempy = 38°, LNy = 4} and the goal state is GSy = {36°C < Temp <
37.2°C, LN = 0} where: Temp is the temperature of the patient and LN is the
level of nausea, both attributes of the Health Status artifact. We assume that the
set of relevant tactics RT according to the current health status of the patient
are fever and nausea management, presented in Sect. 2.

Table 2 shows the specification of one activity of each tactic, showing their
preconditions, effects with their probability, time, and cost of execution. We
modeled the activity effects with probabilities related to the probability of the
patient to respond to the treatment. For example, the possible effects of apply-
ing the activity Administer ORAL antipyretic medication are: (E1) the patient
successfully responds to treatment, occurring with a probability 0.6; (E2) 30%
of the time the patient partially responds to treatment where their temperature
decreases by 0.5° or more fails to reach the goal level; and (E3) the patient does
not respond at all to treatment or gets worse (occurring with a probability of
0.1). The other activities are similarly modeled according to the response of the
patient. Assuming that all activities from both tactics are available, the set of
executable actions is A; = {Al, A2, A3, A4, A5, B1, B2, B3}. Then, it is possible
to model the set of relevant planning operators RO;. Having OS;, GS; and ROy,
it is possible to generate the MDP model in the language PRISM.

Once we created the MDP model, the following utility functions were evalu-
ated: minimize time and cost while reaching the target state. The optimal plan
to achieve the goal state GS; while minimizing the cost shows that reachabil-
ity is eight iterations. The resulting model has 13 states, 35 transitions, and 13
choices. The time for the model construction was 0.056s.

Legend
Temp:38.5 LN:0
Temp 38LN: 0 o State
\Q 06 —— Action recommended

0."7
Probability distribution of
Temp:38 LN:2 Temp,37 SLNG) e > outcomes
.................... Temp:38 LN:1 © Goal State

Fig. 2. Plan for reaching the goal state optimizing the cost

Figure 2 presents only a fragment of the model generated, highlighting the
most probable path from the initial state to the goal state. The first suggested
action is B1 (labeled arc) with possible outcome states with their probabilities.
If the most probable next state is achieved, the next action to perform is Al
which has a probability of 0.6 to reach the goal state. Knowledge workers can
use this generated plan to decide which is the next activity they should perform
in a particular state. To make the plan readable to knowledge workers, they
could be presented with only the most probable path, and this could be updated
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according to the state actually reached after activity execution. Further studies
are necessary to help guiding knowledge workers in interpreting and following
the model.

6 Discussion and Related Work

In the last decades, there has been a growing interest in highly dynamic process
management, with different types of approaches that deal with the variability,
flexibility, and customization of processes at design time and at run time. Most
approaches start from the premise that there is a process model to which different
changes have to be made, such as adding or deleting fragments according to a
domain model or to generate an alternative sequence of activities due to some
customization option. A few approaches use automated planning for synthesizing
execution plans. Laurent et al. [12] explored a declarative modeling language
called Alloy to create the planning model and generate the plans. This approach
seems to be very promising for activity-centric processes, but not effective enough
for data-centric processes, as data is not well-enough treated to be the driver of
the process as required in KiPs.

SmartPM [16] investigated the problem of coordinating heterogeneous com-
ponents inside cyber-physical systems. They used a PDDL (Planning Domain
Definition Language) planner that evaluates the physical reality and the expected
reality, and synthesize a recovery process. Similarly, Marrella and Lespérance
proposed an approach [15] to dynamically generate process templates from a
representation of the contextual domain described in PDDL, an initial state,
and a goal condition. However, for the generation of the process templates, it is
assumed that tasks are black boxes with just deterministic effects. On the other
hand, Henneberger et al. [8] explored an ontology for generating process mod-
els. The generated process models are action state graphs (ASG). Although this
work uses a very interesting semantic approach, they did not consider important
aspects such as resources and cost for the planning model.

There has been an increasing interest in introducing cognitive techniques for
supporting the business process cycle. Ferreira et. al. [6] proposed a new life cycle
for workflow management based on continuous learning and planning. It uses a
planner to generate a process model as a sequence of actions that comply with
activity rules and achieve the intended goal. Hull and Nezhad [9] proposed a
new cycle Plan-Act-Learn for cognitively-enabled processes that can be carried
out by humans and machines, where plans and decisions define actions, and
it is possible to learn from it. Recently, Marrella [14] showed how automatic
planning techniques can improve different research challenges in the BPM area.
This approach explored a set of steps for encoding a concrete problem as a PDDL
planning problem with deterministics effects.

In this paper we introduced the notion of the state of a case regarding data-
values in the artifacts of a case instance. From this state, we can plan differ-
ent trajectories towards a goal state using automated planning techniques. Our
solution generates action plans considering the non-deterministic effects of the
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actions, new emerging goals and information, which provides high levels of flex-
ibility and adaptation. As we describe a generic planning model, it is possible
to use different planning algorithms or combine other planning models, such as
the classical planning model or the hierarchical task network (HTN), accord-
ing to the structuring level of the processes at different moments. Thereby, we
could apply this methodology to other types of processes, from well-structured
processes to loosely or unstructured processes.

Our approach relies on MDP, which requires defining transition probabilities,
which in some situations can be very difficult and expensive to get. Nowadays a
huge amount of data is produced by many sensors, machines, software systems,
etc, which might facilitate the acquisition of data to estimate these transition
probabilities. In the medical domain, the increasing use of electronic medical
record systems shall provide the medical data from thousands of patients, which
can be exploited to derive these probabilities. A limitation in MDPs refers to the
size of the problem because the size of the state-space explodes, and it becomes
more difficult to solve. In this context, several techniques for finding approximate
solutions to MDPs can be applied in addition to taking advantage of the rapid
increase of processing power in the last years.

Flexible processes could be easily designed if we replan after an activity exe-
cution. In fact, our approach suggests a system that has a constant interleaving of
planning, execution, and monitoring. In this way, it will help knowledge workers
during the decision-making process.

7 Conclusion

Process modeling is usually conducted by process designers in a manual way.
They define the activities to be executed to accomplish business goals. This
task is very difficult and prone to human errors. In some cases (e.g., for KiPs),
it is impossible due to uncertainty, context-dependency, and specificity. In this
paper, we devised an approach to continually generate run-time process models
for a case instance using an artifact-centric case model, data-driven activities,
and automatic planning techniques, even for such loosely-structured processes
as KiPs.

Our approach defined how to synthesize a planning model from an artifact-
oriented case model defined according to the METAKIP metamodel. The for-
mulation of the planning domain and the planning problem rely on the current
state of a case instance, context and environment, target goals, and tactic tem-
plates from which we can represent actions, states, and goals. As our focus is
KiPs management, we chose to use the MDP framework that allows represent-
ing uncertainty, which is one of KiPs essential characteristics. To automatically
generate the action plan, we used the tool PRISM, which solves the MDP model
and provides optimal solutions.

Future work involve devising a user-friendly software application for knowl-
edge workers to interact with the planner and improve the presentation of plans
in such a way that it is more understandable to them. Our goal is to develop
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a planner which combines different types of planning algorithms to satisfy dif-
ferent requirements in business processes, especially regarding the structuring
level. This planner will be incorporated into a fully infrastructure for managing
Knowledge-intensive processes that will be based on the DW-SA Arch reference
architecture [19].
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