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Abstract. Integrating wind power to the electrical grid is complicated
due to the stochastic nature of the wind, which makes its prediction a
challenging task. Then, it is important to devise forecasting tools to sup-
port this task. For example, a network that integrates an Echo State Net-
work architecture and Long Short-Term Memory blocks as hidden units
(ESN+LSTM) has been proposed, showing good performance against
a physical model. This paper proposes to compare this network ver-
sus Echo State Network (ESN) and Long Short-Term Memory (LSTM),
to forecast wind power from 1 to 24 h ahead. Results show than the
ESN+LSTM model outperforms the performance reached for ESN and
LSTM, in terms of MSE, MAE, and the metrics used in the Taylor
diagram. In addition, we observe that the advantage of this network is
statistically significant during the first moments of the forecast horizon,
in terms of T-test and Wilcoxon-test.

Keywords: Wind power forecasting · Recurrent Neural Networks ·
Echo State Network · Long Short-Term Memory · Multivariate time
series

1 Introduction

One of the current challenges in the world is the integration of Non-Conventional
Renewable Energy (NCRE) sources into the global energy matrix. Among these
sources, wind energy presents great challenges for its integration, where one of
its critical factors is its stochastic nature. In this context, it is necessary to
have different forecasting tools that allow us to make better schedule of the
different sources that make up an electrical matrix, such that it allows us to
support the operational and economic tasks of the system [9]. Among the models
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proposed in the literature, Recurrent Neural Networks (RNNs) have reported
good performance in wind energy forecasting.

In particular, the ESN+LSTM recurrent neural network proposed in [12] has
showed good performance in this task. Therefore, in this paper, we compare the
ESN+LSTM model against its base models: LSTM and ESN.

To evaluate these models, we use a dataset from a wind farm in NorthEast
Denmark. The time series to model is formed by wind speed, wind direction,
temperature, month, day, hour, and wind power. Standardized metrics will be
used, measuring cumulative performance, because we will address the multi-
ahead step forecasting problem. In addition, the Taylor diagram is used to draw
some conclusions about the performance of the models, as well as a parametric
and non-parametric test to validate some results.

The rest of the paper is organized as follows. In Sect. 2 we describe the context
of wind power problem. Section 3 we describe briefly the recurrent networks that
will be compared. Next, we describe the experimental setting on which we tested
the models and we review the results. Finally, the last section is devoted to
conclusions and future work.

2 Wind Power Generation

The wind power generation is the result of transforming the kinetic energy of the
wind into electrical energy, traditionally by rotating turbine blades. The power
output from a wind turbine can be calculated by the following equation:

P =
(

1
2
ρπR2v3

1

)
· Cp, (1)

where ρ is the density of the air, R is the length of blades plus the rotor radius, v1
is wind speed that enters the turbine, and Cp is a coefficient of power provided
by the manufacturer, with a theoretical upper limit of 16/27, known as Betz
limit. Note that the power output is proportional to the wind speed, which it
has a stochastic nature, depending on different meteorological factors, hindering
its integration into the existing electricity supply system [9].

In the literature, there are different proposals to address wind power fore-
casting, being possible group by in four categories [3,9]: (i) persistence method,
that simply replicates the last recorded value to make the forecast; (ii) physical
methods that takes a detailed description of the physical conditions of the wind
farm (including turbines, terrain geography, and meteorological conditions) to
model the wind power by means of differential equations and downscaling tech-
niques [10,13]; (iii) statistical methods that try to exploit the possible underlying
dependency structure of data, under certain assumptions, by time series mod-
eling techniques [2,11]; (iv) machine learning methods that attempt to discover
underlying relationships of dataset, without an a priori structural hypothesis
[5,14].
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The last category has been received special interest nowadays, achieving
great performance in different tasks. Particularly in wind power forecasting, the
recurrent neural network models stand out from other machine learning methods
since it would allow modeling time series in a natural way.

3 Forecasting Models

In this section, we present three approaches of recurrent neural networks, which
aim to solve the vanishing gradient problem, and have been reported good per-
formances in time series modeling. Further, we use these models for experimental
comparisons.

Long Short-Term Memory (LSTM)

In [6] is proposed a class of recurrent network replacing the basic unit (neu-
ron) of a traditional network by a block of memory. This block contains one
or more memory cells. Each memory cell is associated with “gates” (activation
functions) for controlling the information flow moving through the cells. Each
auto-connected memory cell is so-called “Constant Error Carousel” (CEC) linear
unit, whose activation is the state of the cell as shown in Fig. 1. The CEC solves
the problem of vanishing (or explosion) gradient [1]. Since the local error back
flow remains constant within the CEC, without growing or decreasing, while not
a new entry or external signal error appears. However, its training process can be
computationally expensive, due to the complexity of its architecture. Besides, it
might overfit depending on the values of its hyperparameters such as the number
of blocks, the learning rate or the maximum number of epochs.

Fig. 1. LSTM architecture with 1 block and 1 cell.

Echo State Network (ESN)
Another RNN that has performed well in time series forecasting is the model
proposed by Jaeger [8]. This model is very simple and easy to implement, consists
of three layers (input, hidden and output), where the hidden layer is formed by a
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Fig. 2. ESN topology.

large number of perceptron kind neurons, with a low rate of connectivity among
them (allowing self-connections), and they are randomly connected as depicted
in Fig. 2. An interesting property is all weights are initialized randomly (usually
using a normal o uniform centred on zero). Next, it rescales the recurrent weight
matrix to get a spectral radius close to one. Finally, only the output layer weights
are fixed using a ridge-regression. The output hidden neurons is computed by
the following expression,

s(t) = (1 − a) · s(t − 1) + a · f(net(t)), (2)

where s(t) is the output of a hidden neuron in the instant t, a ∈ [0, 1] is a leaking
rate that regulates the speed update of the internal dynamics, i.e., it is adjusted
to match the speed of the dynamics of x(t) and ŷ(t). Here, x(t) is the input to
the network and ŷ(t) is the output of the network at time t. Moreover, f(·) is
a hyperbolic tangent activation function and net(t) is the input signal to the
neuron. Furthermore, as the hidden states are initialized to zero s(0) = 0, it is
necessary to define the number of steps θ that the recurrent states are updated
without being considered in the process of adjusting the output layer. The above
is because the states are initialized to zero, s(0) = 0.

Echo State Network with Long Short-Term Memory (ESN+LSTM)
Given the advantages and some limitations identified on LSTM and ESN models,
ESN+LSTM [12] is proposed to integrate the architecture of an ESN with LSTM
units as hidden neurons (see Fig. 3). This proposal permits to train all network
weights through the following strategy: i) The input and hidden layer is trained
by an online gradient descent (OGD) algorithm with one epoch, using as target
the input signal; ii) Next, the output layer is adjusted with a regularized quantile
regression, using as target the desired output; iii) Finally, the whole network is
trained with an OGD algorithm with one epoch and the desired target.

The first step aims to extract characteristics automatically as the autoen-
coder approach. The second step aims to use a quantile regression in order to
obtain a robust estimate of the expected target. It should be noted that the
hidden layer is sparsely connected, and its weights matrix keep a spectral radius
close to one. In this model, the main hyperparameters to be tune are the hidden
units number, the spectral radius, and the regularization parameter.
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Fig. 3. ESN+LSTM topology.

Fig. 4. Time series split scheme for cross-validation approach

4 Experiments and Results

For assessing the presented models, we use a dataset from the Klim Fjordholme
wind farm (57.06oN, 9.15oE) [7], that consists of generated power measurements
and predictions of some meteorological variables (wind speed, wind direction
and ambient temperature).

We work with hourly time series, no missing values. The dataset is com-
posed of 5376 observations, starting at 00:00 on 14 January 2002 to 23:00 on 25
August 2002. The attributes considered to model are: wind speed, wind direction,
temperature, month, day, hour and wind power. All features are normalized to
the [−1, 1] range using the min-max function and predictions are denormalized
before computing the performance metrics.

A cross-validation approach is used to train and select the best hyperparam-
eters configuration. The time series is divided into R = 10 subseries, and the
performance of each model is evaluated in each of them (see Fig. 4).

To evaluate the performance of the models, we use some standardized metrics:
Mean Squared Error (MSE) and the Mean Absolute Error (MAE). Additionally,
we show a Taylor diagram to compare graphically the Pearson correlation coeffi-
cient (ρ), the root-mean-square error (RMSE), and the standard deviation (SD).
In this work, the performance will be checked over multi-step ahead forecasting,
which is generated using the multi-stage approach [4].

For a single subseries r, the different metrics are based on the error er(·) at
h hours ahead, defined for equation (3),

er(T + h|T ) = yr(T + h) − ŷr(T + h|T ), (3)
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Table 1. Parameters for tuning.

LSTM

Hidden layer size : J ∈ {10, 20, . . . , 100, 110, 120, . . . , 500}
Number of epochs : epoch ∈ {1, 10, 50, 100, 150, 200}
ESN

Hidden layer size : J ∈ {10, 20, . . . , 100, 110, 120, . . . , 500}
Leaking rate : a ∈ {0.1 , 0.2 , 0.3 , ... , 0.8 , 0.9 , 1}
Spectral radius : α ∈ {0.1 , 0.2 , 0.3 , ... , 0.8 , 0.9 , 1}
Regularization coeff : λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}
ESN+LSTM

Hidden layer size : J ∈ {10, 20, . . . , 100, 110, 120, . . . , 500}
Spectral radius : α ∈ {0.1 , 0.2 , 0.3 , ... , 0.8 , 0.9 , 1}
Regularization coeff : λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}

where yr(T + h) is the desired output at instant T + h of subseries r, T is the
index of the last point of the series used during training, h is the number of
steps ahead, and ŷr(T + h|T ) is the estimated output at time T + h generated
by the model for subserie r. Then, the metrics are calculated by the following
equations,

MSE(r) =
1
H

H∑
h=1

(er(T + h|T ))2, MSE =
1
R

R∑
r=1

MSE(r), (4)

MAE(r) =
1
H

H∑
h=1

|er(T + h|T )|, MAE =
1
R

R∑
r=1

MAE(r), (5)

where R is the total number subseries, and H is the ahead step limit used.
The parameters that will be tuning for the different networks are shown

in Table 1. For the ESN and ESN+LSTM, first we tune the number of hidden
units, keeping fixed α = 0.5 and λ = 0.001. Next, α and λ are tuned. In three
networks, the output layer uses the identity function as the activation function.
In addition, the ESN and ESN+LSTM use direct connections from the input
layer to the output layer. The weights of each matrix are generated from a
uniform distribution (−0.1; 0.1 ), independently of each other. Sparse arrays
were also used when connecting the input layer with the hidden layer. Thus,
configurations with the lowest error over the test set obtained for each model
are: LSTM (J = 30, epoch = 100), ESN (J = 470, a = 0.4, α = 0.6, λ = 10−5),
and ESN+LSTM (J = 190, α = 0.5, λ = 10−3).

Figure 5 shows the MSE for different values of H used. It can be seen that
ESN+LSTM achieves a lower error, extending this advantage from H = 1 to
H = 12, later its performance is similar to the one of obtained from the LSTM.
We also view that ESN is the network that presents the greatest error to different
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Fig. 5. MSE by each ahead step limit, H, used.

Fig. 6. MAE by each ahead step limit, H, used.

steps ahead. A similar scenario can be seen by observing the behavior of MAE
(see Fig. 6). In this case, ESN+LSTM presents better performance for all H
values. While ESN again presents the highest error, reaching a performance
similar to LSTM during the first moments H ∈ {1, 2, 3}.

Although ESN+LSTM achieves the lowest error in terms of MSE and MAE
for different H, this advantage may be due to the randomness of the system.
Then, a hypothesis test for paired samples will be evaluated, since each model
was tested with the same sub-series, to later build the global indicators.

Test 1 H0 : μesn ≤ μesn+lstm vs H1 : μesn > μesn+lstm

Test 2 H0 : μlstm ≤ μesn+lstm vs H1 : μlstm > μesn+lstm

For both cases, a parametric and nonparametric test will be used: t-test and
wilcoxon-test. Table 2 and 3 show the p-values to validate the statistical signifi-
cance if MSE of ESN+LSTM is lower than other models.

Using the t-test, it is observed that in the case of Test 1, ESN+LSTM is
significantly lower than ESN from H = 4 to H = 9, for a significance level of
10%. Next, the advantage observed in Fig. 5 would not be significant. On another
hand, in the Test 2, the advantage presented by ESN+LSTM over LSTM is
significative from H = 3 to H = 5, using the same significance level. If we use the
wilcoxon-test, the advantage shown by ESN+LSTM over ESN is significant from
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Table 2. T-test’s p-values by each ahead step limit used, for MSE. Best results at
highlighted in gray background.

H 1 2 3 4 5 6 7 8 9 10 11 12

Test 1 0.2202 0.2455 0.1973 0.0563 0.0560 0.0642 0.0660 0.0659 0.0922 0.1249 0.1464 0.1634

Test 2 0.1645 0.1417 0.0722 0.0366 0.0636 0.1342 0.2103 0.2188 0.2906 0.3812 0.3966 0.4150

H 13 14 15 16 17 18 19 20 21 22 23 24

Test 1 0.1770 0.1748 0.1722 0.1701 0.1695 0.1824 0.1936 0.2031 0.2104 0.2192 0.2308 0.2256

Test 2 0.4794 0.5675 0.5483 0.4688 0.4111 0.4093 0.4504 0.4766 0.4882 0.4969 0.4945 0.4944

Table 3. Wilcoxon-test’s p-values by each ahead step limit used, for MSE. Best results
at highlighted in gray background.

H 1 2 3 4 5 6 7 8 9 10 11 12

Test 1 0.2768 0.3178 0.2768 0.0486 0.0963 0.0801 0.0527 0.0527 0.0801 0.0967 0.1611 0.1611

Test 2 0.0654 0.2158 0.0322 0.0137 0.0527 0.0801 0.1377 0.2158 0.2461 0.3125 0.2783 0.2461

H 13 14 15 16 17 18 19 20 21 22 23 24

Test 1 0.1875 0.1611 0.2461 0.2783 0.2158 0.2158 0.1875 0.1875 0.2783 0.3125 0.3125 0.2783

Test 2 0.3477 0.3477 0.2461 0.2461 0.2158 0.2461 0.2783 0.3477 0.3125 0.3477 0.3477 0.3477

Table 4. T-test’s p-values by each ahead step limit used, for MAE. Best results at
highlighted in gray background.

H 1 2 3 4 5 6 7 8 9 10 11 12

Test 1 0.1037 0.1748 0.1129 0.0399 0.0397 0.0469 0.0350 0.0343 0.0393 0.0454 0.0605 0.0649

Test 2 0.0684 0.0650 0.0077 0.0057 0.0235 0.0675 0.1223 0.1037 0.1085 0.1275 0.1260 0.0865

H 13 14 15 16 17 18 19 20 21 22 23 24

Test 1 0.0790 0.0822 0.0861 0.0960 0.0932 0.0939 0.0955 0.1107 0.1218 0.1223 0.1282 0.1216

Test 2 0.1153 0.1442 0.1540 0.1468 0.1536 0.1570 0.1825 0.2055 0.2268 0.2241 0.2197 0.2144

Table 5. Wilcoxon-test’s p-values by each ahead step limit used, for MAE. Best results
at highlighted in gray background.

H 1 2 3 4 5 6 7 8 9 10 11 12

Test 1 0.1181 0.2386 0.1432 0.0486 0.0776 0.0654 0.0322 0.0322 0.0322 0.0527 0.0801 0.0801

Test 2 0.0527 0.0801 0.0029 0.0098 0.0244 0.0801 0.0967 0.1377 0.1611 0.1611 0.1611 0.0801

H 13 14 15 16 17 18 19 20 21 22 23 24

Test 1 0.1377 0.0967 0.1377 0.1377 0.1377 0.1377 0.1377 0.1611 0.2158 0.1875 0.1611 0.1611

Test 2 0.1162 0.1162 0.1162 0.1377 0.1611 0.1875 0.1611 0.1875 0.1875 0.1875 0.2158 0.1875

H = 4 to H = 10. While comparing ESN+LSTM and LSTM, it is appreciated
that better performance is achieved when H = 1 and from H = 3 to H = 6.

When using the MAE metric, the Table 4 shows the results of applying the t-
test. We observe that ESN+LSTM is significatively lower than ESN from H = 4
to H = 14 for a significance level of 10%. While in Test 2, ESN+LSTM model
presents a better performance from H = 1 to H = 6 to a significance level of
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Fig. 7. Taylor Diagram. Each number close to point represents the ahead step limit
used H.

10%. Finally, Table 5 shows the results using the wilcoxon-test for MAE. The
ESN error improvement is presented when H ∈ {4, . . . , 12} and H = 14. And
when H ∈ {1, . . . , 7}, ESN+LSTM improves to LSTM with a 10% of significance.

Additionally, Fig. 7 shows the Taylor Diagram using only from H = 1 to
H = 10. It is observed that ESN+LSTM achieves better performance based
on correlation, RMSE, and SD, compared ESN and LSTM model for the same
ahead step limit H. It is also appreciated that, as the forecast horizon increases,
the correlation decreases, as does the RMSE increases, but the SD generated by
the model is close to the real one.

5 Conclusions and Future Work

This work compares the performance of three recurrent neuronal networks
for wind power forecasting task. The experimental results show that the
ESN+LSTM model is able to capture the underlying dynamics and to predict
several steps ahead better than ESN and LSTM models. Since the metrics used
were defined cumulatively, it is expected that all three models will exhibit an
increase in error as the forecast horizon increases. As our results show, the per-
formance of the chosen networks begins to deteriorate as H grows. However, at
least up to H = 10, ESN+LSTM performes better based on the Taylor diagram.
Besides, according to t-test over MAE results, ESN+LSTM outperformed ESN
during the first 19 steps ahead (except for H = 1, 2, 3) and outperformed LSTM
during the first 6 steps ahead. Similar behavior is observed in the other cases.
The above suggests that ESN+LSTM model is a good alternative to consider for
short-term forecasting, especially considering that this model uses just 2 epochs,
while the LSTM needs more epochs to learn the time series. As a future work,
we would like to test these models using more data from other locations around
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the world. Also, given that ESN+LSTM uses as hidden units LSTM blocks, it
would be interesting to evaluate the performance of this model by changing those
units to GRU blocks. Finally, one can explore the capabilities of these networks
to address the problem of prediction intervals.
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