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Abstract. Tree structure parameters of mangrove forests are hard to
measure in the field and therefore inventories of this type of forests are
impossible to keep up to date. In this article, we tested a structured point-
cloud segmentation method for extracting individual mangrove trees.
Structure parameters of individual trees were estimated from the seg-
mented pointcloud and its 3d geometry was generated using revolution
surfaces. Estimated parameters were then assessed at both plot and tree
levels using field data. It was observed that the number of segments in
each test plot agreed well with the number of trees observed in the field.
Nonetheless, the estimated parameters exhibited mixed accuracy with
top height being the most accurate.
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1 Introduction

The study and monitoring of fragile ecosystems such as mangrove forests is of
vital importance worldwide as they are among the most productive and most
Carbon-rich forest in the tropic; they provide habitats to over 1300 species of
animals and act as protection of shorelines, hurricanes and tidal surges. It is
estimated that between 35-50% of mangrove coverage have been lost in the past
60 years due mainly to human activities and, despite it accounts for only the
0.7% of tropical forest areas, it amounts as much as around 10% of emissions
from deforestation globally [3]. Their assessment have been largely carried out
through forest inventories that are time consuming, costly and, consequently,
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not frequently updated. More recently, efforts have been made to streamline
inventorying processes through remote sensing and computational technologies,
including pointcloud analysis, which is still limited due to the lack of efficient
automation processes.

Among the many alternatives found in the literature, the voxel method is one
of the most widely used method for three-dimensional models of trees due to its
relative easy structure [14]. Other approaches use simple geometric models such
as paraboloids or spheres to approximate the tree crown [7,9,12]. More realistic
models have been also investigated, but tend to be computationally costly. For
instance, radial basis functions and isosurfaces have been shown to achieve more
natural forms of tree crowns [4], while others have focused on the reconstruction
of the skeleton [1] or adjust free shapes to pointclouds [2]. From an inventorying
viewpoint, the most useful models are those that can encode the most relevant
structure parameters with the lowest complexity. One fundamental processing
step is the extraction of individual trees pointclouds through a segmentation
method. Major pointcloud segmentation strategies have been revised by [13],
but all of them can be grouped in one of three types depending on the format of
the input: 1) based on unstructured pointclouds, such as unsupervised clustering
or primitives fitting [5,15], 2) raster-based methods, which impose a regular
spatial structure, either in 2-d (pixels) or in 3-d (voxels) on the pointcloud [6,11],
and 3) based on structured pointclouds, where the neighbourhood relationship
is imposed using a directed graph. Although the latter approach can be the
most accurate, it is also the most difficult to implement and thus the least
researched approach. One of the few studies is that of [10] who used graph
partition and connected components labelling (CCL) to delineate tree crown
over a pine-dominated site. Nonetheless, they used a raster-based segmentation
for building a hierarchical structuring prior to graph partitioning.

In order to fill this gap, we propose a novel structured pointcloud-based seg-
mentation method that integrates a priori knowledge about the shape of target
objects for the neighbourhood definition. The general strategy consists in cre-
ating an initial neighborhood connectivity matrix used with the CCL algorithm
that is then progressively pruned and re-labelled. In the following sections we
present 1) a brief description of the study site and data used, 2) the segmenta-
tion method, 3) the 3-d modelling approach, 4) the accuracy assessment and 5)
the major conclusions.

2 Study Site and Data Used

The study site is around El Cometa, a small lagoon (67 ha) within the Pan-
tanos de Centla reserve located at the north of the Mexican state of Tabasco
(Fig. 1a). This site is mostly covered by the red mangrove ( Rhizophora mangle), a
threatened species (SEMARNAT, 2010) that mixes with medium sub evergreen
tropical forest of pucté (Bucida buceras L.). There is also a low population of
white mangrove (Laguncularia racemosa) around the lagoon and channels.
Tree structure data was collected from 10 plots of 50 m by 50 m in 2014 (plots
1-10), 20 plots of 25 m by 50 m in 2016 (plots 1-20) and 7 plots of 25 m by 50 m
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Fig. 1. (a) Location of the study area and (b) LiDAR-based DSM and plot locations

in 2017 (plots 21-27). Plot center and orientation were measured with sub-meter
precision GPS system. Tree individuals data included species name, xy-location
(measured with respect to plot center), total height, diameter at breast height
(DBH), diameter above and bellow highest root (mangrove trees only), crown
diameters along E-W and S-N orientations, root diameters along E-W and S-N
orientations, roots total height, and time and date of measurement. Individuals
with lower DBH than 10cm were not sampled. Only data from 25 plots were
used as some were either not fully covered by LiDAR data or repeated in two
different years.

The LiDAR sensor was flown in March 26, 2014 over an area of 2.5km by
3.6 km (Fig. 1b) with an average point density of 20 pts/m? and vertical accuracy
of £0.15m. Data was delivered with ground points identified, from which a
terrain surface was generated. Subsets for each sampling plot with a buffer of 20%
where extracted and normalized by subtracting the terrain surface. These data
were the main input to the individual tree point extraction method described
next.

3 Segmentation Method

Major stages of the proposed pointcloud segmentation method are described in
the following subsections, where parameters referred throughout are defined in
Table 1.
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Table 1. Segmentation parameters used. Zmqs is the maximum z-coordinate of seg-
ment.

Symbol | Description Value
Zgrmae | Maximum z-coord of ground points | 0.15 [m]
Tmaz Maximum edge horiz. distance 5 [m]

dmaz Maximum segment diameter 5 [m]

Winin Minimum points per segment 10 [pts]
FEpin | Minimum break energy 20 [m*pts]
Niter Maximum splitting iterations 10

dmin Minimum crown diameter 2 [m]

Rmin Minimum tree height 2 [m]
Zhimin | Minimum z-coord of high points 0.32maz [m]
Zlomae | Maximum z-coord of low points 0.152mae [m]

3.1 Point Connectivity and Pruning

Pointcloud neighbourhood is represented through an adjacency or connectivity
matrix C' = [C} ;)i j=0,....n, SO that a point j is said to be in the neighbourhood
of point 7 if C;; is one, otherwise it is zero. The connectivity matrix of any
order, including the zeroth, shall be denoted by C*. Recall that the k-th order
neighbours are given by the power matrix C*.

There are several alternatives for defining pointcloud neighbourhoods, such
as maximum distance, k-nearest neighbours, and Delaunay tessellation, among
others. Here we used the latter option as its computation is efficient yielding
a relatively high sparsity, i.e., high fraction of zeroes in C. Hence, the initial
connectivity matrix is given by:

iy — {1 if (Z,j).ls a Delaunay edge 1)
0 otherwise

The sparsity of the connectivity matrix is further increased through applying

the following pruning:

1. All the neighbors must be lower than the point, i.e., C; ; = 0, if z; < 2;

All points must be non-terrain points, i.e., C; ; = 0, if 2; < Zgrmaa

3. Every point is at most in the neighborhood of the nearest option, i.e., C; ; =
0, if dl‘,j > mink{dk,j}

4. Horizontal distance between a pair of neighbors is within a maximum dis-
tance, i.e., C;; =0, if r; j > Tmae

o

The first criterion ensure that the graph defined by the connectivity matrix
is top-down directed, the second criterion discard terrain points, and the third
one ensures no loops are present in the directed graph, thus defining a tree-like
structure. The threshold distance 7,4, in the fourth criterion controls the size
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and number of segments. A large threshold value favors the inclusion of points
from distinct nearby trees into a single segment (under segmentation), whereas
a small value will tend to separate points from a single tree into several segments
(over segmentation). Because of the high density of mangrove forests, no optimal
value for 7,,,, can be satisfactory and one always needs to undertake further
steps to either merge or split segments. The favored option here is to select a
relative large threshold value and to apply a progressive splitting strategy. This
decision is mainly driven by the difficulty of searching points to reconnect over
the option of searching edges to eliminate.

3.2 Segment Splitting

Starting with the segmentation induced by labelling the connected components
in C, the segment splitting procedure is applied to wide segments as follows.
For each selected segment one of the connection in the connectivity matrix is
eliminated and the process repeated until either no more wide segments are
available or the maximum number of iterations has been reached.

Segments are considered to be wide if its diameter is greater than a maximum
allowed diameter (dqz), whereas segment diameter is computed by averaging
the ranges of projections u; = x; cosf + y; sinf along four directions: § = 0,
45, 90 and 135°. Such diameter computation must be based on high points, i.e.,
the points with z-coordinates greater than threshold (zpimin). In addition, seg-
ments with lower number of points than a threshold (2w,,:,) are not considered
candidates for splitting.

The segment splitting consists in eliminating, at most, one edge per connected
component, where selected edge fulfill three conditions:

1. Large horizontal distance
2. Similar number of points in generated sub-graphs
3. Low points available in generated sub-graphs

The first condition tends to maintain connected components horizontally com-
pact, the second one reduces the number of required iterations by fast reduction
of segments size, and the third one warrants connected components will include
points that most likely belong to the aerial roots of mangrove individuals. These
conditions are met by maximizing the following edge measure:

E; j = ri jmin{w;, wj} — min{bjw;, b5w;} (2)
where r; ; is the horizontal distance of the edge (¢, ), w; is the size of sub-graph
at j, wj the size of complement sub-graph at j, so that w; + wj is the size of
original graph, i.e., the total number of points in the segment, and b; and b$ are
z-coordinates of lowest point of each sub-graph. Equation (2) can be interpreted
through a physical system analogy where points represent particles of unit weight
connected trough rigid links, which are defined by the connectivity matrix C.
Each link is subject to a pair of forces or weights that excerpt torques with
respect to middle point of the link, which is supposed fix. Hence, maximizing
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of the energy acting on the rigid link while minimizing the tendency to motion
yields an expression like Eq. (2). Such energy is required to be over a threshold
(Emin) to cause the link to break.

At each iteration, Eq. (2) is evaluated for each wide segment and the edge
with maximum positive value is eliminated. This can be expressed as:

Ci,j =0, if E ;= r(Illcaf;({Ek’l} and E; ; > Enin (3)

4 3-D Modelling

4.1 Tree Structure Estimation

Small segments that did not comply with minimum tree height (h,ip), mini-
mum crown diameter (dq,) or samples size (10wp,;,) were discarded. Points
from remaining segments were then classified into low, mid and high based on
thresholds zpimin and Zzjomaes defined in Table 1, which had been empirically
calibrated. Then, tree location and structure parameters were estimated from
segmented pointcloud as described in Table 2.

Table 2. Tree structure parameters as computed from segment points.

Symbol Name Computed as®

Tloc, Yloc tree location mean of low points

Zloc base tree elevation median z of terrain points

Ye, Ye, Zc Crown location mean of high points

hy crown top height maximum z of high points

hy crown bottom vertical standard deviation

height of high points (z. — x0o-)

h, root height vertical standard deviation
of low points (xo)

d. crown diameter radial standard deviation
of high points (2xor)

ds trunk diameter empirical relation
dy = 0.03d. + 0.05

d, root diameter radial standard deviation
of low points (2xo)

b, 01 trunk orientation azimuth and elevation of
(Ic —Zlocy Ye —Yloc, hb 7hr)
¢ x = 2.1459 for a 90% confidence level.

Assuming a multivariate Gaussian distribution of points belonging to tree
crown and to roots, where radial symmetry can be assumed in both cases, and
symmetry along z can be further assumed for the roots, one can estimate crown
diameter, crown bottom height, root diameter and root height using the ellipse

in the rz-plane!:
r\? 2\°
(5) + () = )

! Root points are in the upper hemisphere of an ellipse.
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where the semi-axis of the ellipses are given by the standard deviations times a
constant (x = 2.1459) that is theoretically determined to enclose 90% of points
and o7 = (02 +0,)/2.

While high points and low points determined crown and root parameters,
trunk diameter had to be computed through an empirical relation between the
DBH and crown diameter of red mangrove, which was strongly linear and sta-
tistical significant (R? = 0.63). This was necessary, because trunk points are
hard to determine and seldom accessible from airborne LiDAR. Moreover, trunk
orientation was defined through the elevation and azimuth angles of a vector
joining root top and crown base locations, and where no low points were avail-
able, crown location was used, the root height was defined as zero and the root
diameter, same as the trunk diameter.

Estimated parameters were represented using a 3-D surface model with three
parts (roots, trunk and crown), each of which was represented through a revo-
lution surface of the form:

x(u,8) = p(u) cos 6 (5)

y(1,6) = p(u) sin 0 (6)

z(u,0) =a+ (a—b)(1 — (1 —u®))*" (7)
a— ag1l/as

p(z)=r ali[agag (a—b)} (8)

for 6 € [0,27) and u € [0, 1], where a1, ...,a7 are shape parameters, a is the
top limit, b the bottom limit and r is the radius of the surface. The + symbol
indicates that there are two types of models: models with the plus sign are of
hyperbolic type, whereas the negative are of parabolic type.

Models used for mangrove trees were ellipsoids for crown, with a-values
of (1,1,2,2,2,1,1), respectively, cylinders for trunk (2,0,1,0,2,1,1) and flattened
parabolid for roots (0,0,1,1,4,1,2). Furthermore, trunk inclination was modeled
by shifting the zy-coordinates as function of z-coordinate. In this case, xy-
coordinates are given by:

z— h,
z(u,0) = p(u) cos 0 + —y COS ¢y (9)
(w,0) = plusing + =2 sing (10)
y(u,0) = p(u)sin wang, S0

5 Accuracy Assesment

The segmentation method was applied on the 25 plots from which tree models
were generated. Figure 2 shows the top and lateral views of the segmented point-
cloud and the corresponding surface model for a couple of plots. It can be seen
that the object level representation captures the coarse shape of the pointcloud,
yet whether such a representation match the actual forest structure was subject
to a quantitative assessment, both at the plot and individual levels.
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Plot15 Plot 25

Fig. 2. Top and lateral view of segmented pointcloud (left) and surface model (right)
of extracted trees for two plots.

At the plot level, we selected the segments laying within the plot limits
based on their location, (Zioc, Yioc), and compared the averages parameter values.
Figure 3-left shows the scatterplot between the number of LiDAR-derived trees
within the plots and the groundtruth trees. With exception of plot 8, LiDAR-
derived trees seemed to follow a global trend that agrees with respect to those
observed in the field, with a median absolute error of 7 trees per plot.
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Fig. 3. LiDAR-derived vs. groundtruth trees based on number of trees within plot
limits (left) and number of matched trees (right). See text for further details.

Figure 4a shows the scatterplots of per-plot averages and Table 3a provides
the comparative analysis in terms of the coefficient of determination (R?) and
of the root mean squared error (RMSE). The scatterplots reveal that the crown
diameter, root diameter and root height were generally overestimated, whereas
such a bias was not present in the case of top height, which exhibited the largest
R? value (0.18). Nevertheless, the root height showed the lowest RMSE and
the root diameter had the largest value. This can be explained in terms of the
dynamical range of these structure parameters and in terms of an overestimation
of aerial roots for non-mangrove species.
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Fig. 4. Estimated vs. groundtruth scatterplots at the plot- and individual levels for
top height (top-left), crown diameter (top-right), root height (bottom-left) and root
diameter (bottom right).

At the individual level, LIDAR-derived trees were paired to the ground-truth
trees. This process required to correct for systematic errors in the location of
ground-truth trees, which was carried out through the spatial correlation of
the canopy height models in raster format using a rotation-invariant correlation
measure developed for raster data [8]. The resulting translation and rotation
parameters were then applied to the ground-truth tree locations to use as ground-
truth canopy location. Such canopy locations, together with ground-truth tree
height, served to match LiDAR-derived trees to ground-truth trees. A one-to-
one pairing was ensured by sequentially pairing the nearest unassigned trees
until no more pairs could be formed. Maximum distance between paired trees
was limited to 5m in order to limit the impact from pairing errors over the
parameter estimation errors. The number of pairs was generally slightly lower
than the actual number of trees in the plot as can be seen in the scatterplot of
Fig. 3-right. Figure 4b shows the scatterplot of matched trees and Table 3b, the
corresponding R? and RMSE measures. In this case, it was possible to segregate
mangrove trees using the species information from field data. The overestimation
bias that was observed at the plot level was again observed at the individual level
for crown diameter and root diameter, but not for root height. Top height was
again unbiased and showed the highest R? value (0.61), although in this case the
pairing process must have had an influence on these. Scatterplots also reveal that
non-null root parameters were retrieved for non-mangrove species thus indicating
a limitation of the segmentation method, which may have mistaken understorey
vegetation as roots.
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Table 3. Coefficient of determination (R?) and root mean square error (RMSE) at
the plot and individual levels. (Values in parenthesis were based on mangrove species
only).

Parameter R*[RMSE [m] Parameter R*[RMSE [m]
Top height 0.18 2.41 Top height 0.61(0.42)| 3.61(3.81)
Crown diameter|0.03 2.62 Crown diameter|0.22(0.13)| 4.15(4.59)
Root height 0.03 0.93 Root height 0.16(0.03)| 1.64(1.40)
Root diameter |0.07 5.67 Root diameter [0.05(0.08)| 7.23(5.30)
(a) Plot level: n =25 (b) Individual level: n = 1100(370)

6 Conclusions

Most existing tree crown segmentation methods have focused on temperate
forests, where intertwined branches and aerial roots do not represent an issue.
In contrast, in this study we developed and tested a segmentation method that
incorporates information about the structure of objects embedded in the point-
cloud, namely, the mangrove trees. The method used a sparse matrix that defines
the neighbourhood relation among points, from which the connected-component
labelling method is repeatedly applied together with a segment splitting strat-
egy. The accuracy assessment showed a good promise for automated mangrove
forest inventories. Nonetheless, methods for parameters estimation must be fur-
ther improved, specially root structural parameters, specially because they are
critical for quantifying blue Carbon storage by mangrove forests.
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